Protein drug stability: a formulation challenge

Nature Reviews Drug Discovery - Tập 4 Số 4 - Trang 298-306 - 2005
Sven Frøkjær1, Daniel E. Otzen2
1Department of Pharmaceutics, the Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen O, Denmark
2Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, Aalborg, Denmark

Tóm tắt

Từ khóa


Tài liệu tham khảo

Holmer, A. F. Survey: Medicines In Development for HIV/AIDS (Pharmaceutical Research and Manufacturers Association, Washington DC, 2004).

IBM Consulting Services. Pharma 2010: The Threshold of Innovation (IBM, 2003).

Dobson, C. M. Chemical space and biology. Nature 432, 824–828 (2004).

Pavlou, A. K. & Reichert, J. M. Recombinant protein therapeutics — success rates, market trends and values to 2010. Nature Biotechnol. 22, 1513–1519 (2004).

Krishnamurthy, R. & Manning, M. C. The stability factor: importance in formulation development. Curr. Pharm. Biotech. 3, 361–371 (2002).

Wang, W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int. J. Pharm. 185, 129–188 (1999).

Hermelin, S., Crommelin, D. J. A., Schellekenes, H. & Jiskoot, W. Structure–immunogenicity relationship of therapeutic proteins. Pharm. Res. 21, 897–903 (2004).

Ahern, T. J. & Manning, M. C. (eds) Stability of Protein Pharmaceuticals — Part A: Chemical and Physical Pathways of Protein Degradation Pharmaceutical Biotechnology Series Vol. 2 (Plenum, New York, 1992).

Cleland, J. L., Powell, M. F. & Shire, S. J. The development of stable protein formulations: a close look at protein aggregation, deamidation and oxidation. Crit. Rev. Ther. Drug Carrier Syst. 10, 307–377 (1993).

Alpar, H. O., Somavarapu, S., Atuah, K. N. & Bramwell, V. W. Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery. Adv. Drug Deliv. Rev. 57, 411–430 (2005).

Hussain, A., Arnold, J. J., Khan, M. A. & Ashan, F. Absorption enhancers in pulmonary protein delivery. J. Control. Release 94, 15–24 (2004).

Brange, J., Owens, D. R., Kang, S. & Vølund, A. Monomeric insulins and their experimental and clinical implications. Diabetes Care 13, 923–954 (1990).

Kurtzhals, P. et al. Albumin binding of insulins acylated with fatty acids: characterization of the ligand–protein interaction and correlation between binding affinity and timing of the insulin effect in vivo. Biochem. J. 312, 725–731 (1995).

Markussen, J. et al. Soluble, fatty acid acylated insulins bind to albumin and show protracted action in pigs. Diabetologia 39, 281–288 (1996).

Knudsen, L. B. et al. Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J. Med. Chem. 43, 1664–1669 (2000).

Foldvari, M. et al. Palmitoyl derivatives of interferon α: potential for cutaneous delivery. J. Pharm. Sci. 87, 1203–1208 (1998).

Wang, J., Shen, D. & Shen, W. C. Preparation, purification, and characterization of a reversible lipidized desmopressin with potential anti-diurectic activity. Pharm. Res. 16, 1674–1679 (1999).

Bhadra, D., Bhadra, S., Jain, P. & Jain, N. K. Pegnology: a review of PEG-ylated systems. Pharmazie 57, 5–29 (2002).

Matthews, S. J. & McCoy, C. Peginteferon α2a: a review of approved and investigational uses. Clin. Ther. 26, 991–1025 (2004).

Lee, H. -J. & Park, T. G. Preparation and characterization of mono-PEGylated epidermal growth factor: evaluation of in vitro biological activity. Pharm. Res. 19, 845–851 (2002).

Veronese, F. & Harris, J. M. Introduction and overview of peptide and protein pegylation. Adv. Drug Deliv. Rev. 54, 453–459 (2002).

Dailey, L. A., Wittmar, M. & Kissel, T. The role of branched polyesters and their modifications in the development of modern drug delivery vehicles. J. Control. Release 101, 137–149 (2005).

Kopecek, J. Smart and genetical engineered biomaterials and drug delivery systems. Eur. J. Pharm. Sci. 20, 1–16 (2003).

Crommelin, D. J. et al. Nanotechnological approaches for the delivery of macromolecules. J. Control. Release 87, 81–88 (2003).

Peppas, N. A., Bures, P., Leobandung, W. & Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50, 27–46 (2000).

Packhaeuser, C. B., Schnieders, J., Oster, C. G. & Kissel, T. In situ forming parenteral drug delivery systems: an overview. Eur. J. Pharm. Biopharm. 58, 445–455 (2004).

Metselaar, J. M., Mastrobattista, E. & Storm, G. Liposomes for intravenous drug targeting: design and applications. Mini Rev. Med. Chem. 2, 319–329 (2002).

Muller, R., Radtke, M. & Wissing, S. A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm. 242, 121–128 (2002).

Bjerregaard, S. et al. Parenteral water/oil emulsions containing hydrophilic compounds with enhanced in vivo retention: formulation, rheological characterization and study of in vivo fate using whole body gammascintography. Int. J. Pharm. 215, 13–27 (2001).

Pedersen, T. B., Sabra, M. C., Frokjaer, S., Mouritsen, O. G. & Jorgensen, K. Association of acylated cationic decapeptides with dipalmitoylphosphatidylserine-dipalmitoylphosphatidylcholine lipid membranes. Chem. Phys. Lipids 113, 83–95 (2001).

Jørgensen, K., Davidsen, J. & Mouritsen, O. G. Biophysical mechanisms of phosholipase A2 activation and their use in liposome-based delivery. FEBS Lett. 531, 23–27 (2002).

Ross, C. et al. Immunogenicity of interferon-β in multiple sclerosis patients: influence of preparation, dosage, dose frequency, and route of administration. Ann. Neurol. 48, 706–712 (2000).

Sorensen, P. S. et al. Clinical importance of neutralising antibodies against interferon-β in patients with relapsing-remitting multiple sclerosis. Lancet 362, 1184–1191 (2003).

Casadevall, N. et al. Pure red-cell aplasia and antierythropoitin antibodies in patients treated with recombinant erythropoietin. N. Engl. J. Med. 346, 469–475 (2002).

Casadevall, N. Antibodies against rHuEPO: native and recombinant. Nephro. Dial. Transplant. 17 (Suppl. 5), 42–47 (2002).

Hermelin, S., Schellekenes, H., Crommelin, D. J. & Jiskoot, W. Micelle-associated protein in epoetin formulations: a risk factor for immunogenicity? Pharm. Res. 20, 1903–1907 (2003).

Jørgensen, L., Van de Weert, M., Vermehren, C., Bjerregaard, S. & Frokjaer, S. Probing structural changes of proteins incorporated into water-in-oil emulsions. J. Pharm. Sci. 93, 1847–1859 (2004).

Holm, J. et al. Allergy vaccine engineering: epitope modulation of recombinant Bet v 1 reduces IgE binding but retains protein folding pattern for induction of protective blocking-antibody responses. J. Immunol. 173, 5258–5267 (2004).

Wang, W. Protein aggregation and its inhibition in biopharmaceutics. Int. J. Pharm. (in the press).

Fink, A. L. Protein aggregation: folding aggregates, inclusion bodies and amyloid. Folding Des. 3, R9–R29 (1998).

Carpenter, J. F., Kendrick, B. S., Chang, B. S., Manning, M. C. & Randolph, T. W. in Methods in Enzymology (ed. Wetzel, R.) 236–255 (Academic, San Diego, 1999).

Gidalevitz, D., Zhengoing, H. & Rice, S. A. Protein folding at the air–water interface studied with X-ray reflectivity. Proc. Natl Acad. Sci. USA 96, 2608–2611 (1999).

Nichols, M. R., Moss, M., Reed, D. K., Hoh, J. H. & Rosenberry, T. L. Rapid assembly of amyloid-β peptide at a liquid/liquid interface produces unstable β-sheet fibers. Biochemistry 44, 165–173 (2005).

Kato, A. & Takagi, T. Formation of intermolecular β-sheet structure during heat denaturation of ovalbumin. J. Agric. Food Chem. 36, 1156–1159 (1988).

Pedersen, J. S., Christiansen, G. & Otzen, D. E. Modulation of S6 fibrillation by unfolding rates and gatekeeper residues. J. Mol. Biol. 341, 575–588 (2004).

Fields, G. & Alonso, D. Theory for the aggregation of proteins and copolymers. J. Phys. Chem. B 96, 3674–3981 (1992).

Chi, E. Y., Krishnan, S., Randolph, T. W. & Carpenter, J. F. Physical stability of proteins in aqueous solution: mechanism and driving forces in non-native protein aggregation. Pharm. Res. 20, 1325–1336 (2003).

Kendrick, B. S., Carpenter, J. F., Cleland, J. L. & Randolph, T. W. A transient expansion of the native state precedes aggregation of recombinant human interferon-γ. Proc. Natl Acad. Sci. USA 95, 14142–14146 (1998).

Treuheit, M. J., Kosky, A. A. & Brems, D. N. Inverse relationship of protein concentration and aggregation. Pharm. Res. 19, 511–516 (2002).

Krishnan, S. et al. Aggregation of granulocyte colony stimulating factor under physiological conditions: characterization and thermodynamic inhibition. Biochemistry 41, 6422–6431 (2002).

Hevehan, D. & De Bernardez-Clark, E. Oxidative renaturation of lysozyme at high concentrations. Biotechnol. Bioeng. 54, 221–230 (1997).

Gass, J. N., Gunn, K. E., Sriburi, R. & Brewer, J. W. Stressed-out B cells? Plasma-cell differentiation and the unfolded protein response. Trends Immunol. 25, 17–24 (2004).

Rutkowski, D. T. & Kaufman, R. J. A trip to the ER: coping with stress. Trends Cell Biol. 14, 20–28 (2004).

Ellis, R. J. Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol. 11, 114–119 (2001).

Minton, A. P. Influence of excluded volume upon macromolecular structure and associations in 'crowded' media. Curr. Opin. Biotech. 8, 65–69 (1997).

London, J., Skrzynia, C. & Goldberg, M. E. Renaturation of Escherichia coli tryptophanase after exposure to 8M urea. Evidence for the existence of nucleation centers. Eur. J. Biochem. 47, 409–415 (1974).

Chapman, M. R. et al. Role of Eschericia coli curli operons in directing amyloid fiber formation. Science 295, 851–855 (2002).

Huff, M. E., Balch, W. E. & Kelly, J. W. Pathological and functional amyloid formation orchestrated by the secretory pathway. Curr. Op. Struct. Biol. 13, 674–682 (2003).

Sunde, M. et al. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273, 729–739 (1997).

Dobson, C. M. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24, 329–332 (1999).

Harper, J. D. & Lansbury, P. T. Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407 (1997).

Cao, Z. & Ferrone, F. A. A 50th order reaction predicted and observed for sickle hemoglobin nucleation. J. Mol. Biol. 256, 219–222 (1996).

Patro, S. Y. & Przybycien, T. M. Simulations of kinetically irreversible protein aggregate structure. Biophys. J. 66, 1274–1289 (1994).

Istrail, S., Schwartz, R. & King, J. Lattice simulations of aggregation funnels for protein folding. J. Comput. Biol. 6, 143–162 (1999).

Ferrone, F. Analysis of protein aggregation kinetics. Meth. Enzymol. 309, 256–274 (1999).

Clark, P. L. Protein folding in the cell: reshaping the folding funnel. Trends Biochem. Sci. 29, 527–534 (2004).

Chiti, F. et al. Kinetic partitioning of protein folding and aggregation. Nature Struct. Biol. 9, 137–143 (2002).

Kunjithapatham, R. et al. Role for the α-helix in aberrant protein aggregation. Biochemistry 44, 149–156 (2005).

Fernandez-Escamilla, A. M., Rousseau, F., Schymkowitz, J. & Serrano, L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and protein. Nature Biotechnol. 22, 1302–1306 (2004).

Chiti, F., Stefani, M., Taddei, N., Ramponi, G. & Dobson, C. M. Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 424, 805–808 (2003).

DuBay, K. F. et al. Predicting absolute aggregation rates of amyloidogenic polypeptide chains. J. Mol. Biol. 341, 1317–1326 (2004).

Fraser, P. E. et al. Conformation and fibrillogenesis of Alzheimer Aβ peptides with selected substitution of charged residues. J. Mol. Biol. 244, 64–73 (1994).

Frokjaer, S. et al. Probing the mechanism of insulin fibril formation with insulin mutants. Biochemistry 40, 8397–8409 (2001).

Otzen, D. E., Kristensen, P. & Oliveberg, M. Designed protein tetramer zipped together with an Alzheimer sequence: a structural clue to amyloid assembly. Proc. Natl Acad. Sci. USA 97, 9907–9912 (2000).

Otzen, D. E. & Oliveberg, M. Salt-induced detour through compact regions of the protein folding landscape. Proc. Natl Acad. Sci. USA 96, 11746–11751 (1999).

Ferrone, F. Analysis of protein aggregation kinetics. Meth. Enzymol. 309, 256–274 (1999).

Hall, D. & Edskes, H. Silent prions lying in wait: a two-hit model of prion/amyloid formation and infection. J. Mol. Biol. 336, 775–786 (2004).

Masel, J. & Jansen, V. A. Designing drugs to stop the formation of prion aggregates and other amyloids. Biophys. Chem. 88, 47–59 (2000).

Chen, S., Ferrone, F. & Wetzel, R. Huntington's disease age-of-onset linked to polyglutamine aggregation nucleation. Proc. Natl Acad. Sci. USA 99, 11884–11889 (2002).

Jarrett, J. T., Berger, E. P. & Lansbury, P. T. The carboxy terminus of the β amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's Disease. Biochemistry 32, 4693–4697 (1993).

Krebs, M. R., Morozova-Roche, L. A., Daniel, K., Robinson, C. V. & Dobson, C. M. Observation of sequence specificity in the seeding of protein amyloid fibrils. Protein Sci. 13, 1933–1938 (2004).

Wadai, H. et al. Stereospecific amyloid-like fibril formation by a peptide fragment of β2-microglobulin. Biochemistry 44, 157–164 (2005).

O'Nuallain, B., Williams, A. D., Westermark, P. & Wetzel, R. Seeding specificity in amyloid growth induced by heterologous fibrils. J. Biol. Chem. 279, 17490–17499 (2004).

Petkova, A. T. et al. Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science 307, 262–265 (2005).

Kardos, J., Yamamoto, K., Hasegawa, K., Naiki, H. & Goto, Y. Direct measurement of the thermodynamic parameters of amyloid formation by isothermal titration calorimetry. J. Biol. Chem. 279, 55308–55314 (2004).

Perutz, M. F., Finch, J. T., Berriman, J. & Lesk, A. Amyloid fibers are water-filled nanotubes. Proc. Natl Acad. Sci. USA 99, 5591–5595 (2002).

Onoue, S. et al. Mishandling of the therapeutic peptide glucagon generates cytotoxic amyloidogenic fibrils. Pharm. Res. 21, 1274–1283 (2004).

Wurth, C., Guimard, N. K. & Hecht, M. H. Mutations that reduce aggregation of the Alzheimer's Aβ42 peptide: an unbiased search for the sequence determinants of Aβ amyloidogenesis. J. Mol. Biol. 319, 1279–1290 (2002).

Manning, M. & Colón, W. Structural basis of protein kinetic stability: resistance to sodium dodecyl sulfate suggests a central role for rigidity and a bias toward β-sheet structure. Biochemistry 43, 11248–11254 (2004).

Klibanov, A. M. Why are enzymes less active in organic solvents than in water? Trends Biotechnol. 15, 97–101 (1997).

Partridge, J., Moore, B. D. & Halling, P. J. α-chymotrypsin stability in aqueous-acetonitrile mixtures: is the native enzyme thermodynamically or kinetically stable under low water conditions? J. Mol. Catal., B Enzym. 6, 11–20 (1999).

Machius, M., Declerck, N., Huber, R. & Wiegand, G. Kinetic stabilization of Bacillus licheniformis α-amylase through introduction of hydrophobic residues at the surface. J. Biol. Chem. 278, 11546–11553 (2003).

Murphy, C. M. Peptide aggregation in neurodegenerative disease. Annu. Rev. Biomed. Eng. 4, 155–174 (2002).

Conway, K. A., Rochet, J. -C., Bieganski, R. M. & Lansbury, P. T. Kinetic stabilization of the α-synuclein protofibril by a dopamine–α-synuclein adduct. Science 294, 1346–1349 (2001).

Taniguchi, S. et al. Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J. Biol. Chem. 280, 7614–7623 (2005).

Tjernberg, L. O. et al. Arrest of β-amyloid fibril formation by a pentapeptide ligand. J. Biol. Chem. 271, 8545–8548 (1996).

Rzepecki, P. et al. Prevention of Alzheimer's disease-associated Aβ aggregation by rationally designed nonpeptidic β-sheet ligands. J. Biol. Chem. 279, 47497–47505 (2004).

Gestwicki, J. E., Crabtree, G. R. & Graef, I. A. Harnessing chaperones to generate small-molecule inhibitors of amyloid β aggregation. Science 306, 865–869 (2004).

Shire, S. J., Shahrokh, Z. & Liu, J. H. Challenges in the development of high protein concentration formulations. J. Pharm. Sci. 93, 1390–1402 (2004).

Timasheff, S. Protein hydration, thermodynamic binding, and preferential hydration. Biochemistry 41, 13473–13482 (2002).

Baldwin, R. L. How Hofmeister ion interactions affect protein stability. Biophys. J. 71, 2056–2063 (1996).

De Bernardez-Clark, E., Schwarz, E. & Rudolph, R. Inhibition of aggregation side reactions during in vitro protein folding. Meth. Enzymol. 309, 217–236 (1999).

Golovanov, A. P., Hautbergue, G. M., Wilson, S. A. & Lian, L. -Y. A simple method for improving protein solubility and long-term stability. J. Am. Chem. Soc. 126, 8933–8939 (2004).

Webb, S. D., Cleland, J. L., Carpenter, J. F. & Randolph, T. W. A new mechanism for decreasing aggregation of recombinant human interferon-γ by a surfactant: slowed dissolution of lyophilized formulations in a solution containing 0.03% polysorbate 20. J. Pharm. Sci. 91, 543–558 (2002).

Kerwin, B. A., Heller, M. C., Levin, S. H. & Randolph, T. W. Effects of Tween 80 and sucrose on acute short-term stability and long-term storage at −20° C of a recombinant hemoglobin. J. Pharm. Sci. 87, 1062–1068 (1998).

Arakawa, T. & Kita, Y. Protection of bovine serum albumin from aggregation by Tween 80. J. Pharm. Sci. 89, 646–651 (2000).

Rozema, D. & Gellman, S. H. Artificial chaperone-assisted refolding of carbonic anhydrase B. J. Biol. Chem. 271, 3478–3487 (1996).

Tsai, A. M., van Zanten, J. H. & Betenbaugh, M. J. II: Electrostatic effect in the aggregation of heat-denatured RNase A and implications for protein additive design. Biotechnol. Bioeng. 59, 281–285 (1998).

Zhao, H., Tuominen, E. K. J. & Kinnunen, P. K. J. Formation of amyloid fibers triggered by phosphatidylserine-containing membranes. Biochemistry 43, 10302–10307 (2004).

Knight, J. D. & Miranker, A. D. Phospholipid catalysis of diabetic amyloid assembly. J. Mol. Biol. 341, 1175–1187 (2004).

Necula, M., Chirita, C. N. & Kuret, J. Rapid anionic micelle-mediated α-synuclein fibrillization in vitro. J. Biol. Chem. 278, 46674–46680 (2003).

Chirita, C. N. & Kuret, J. Evidence for an intermediate in tau filament formation. Biochemistry 43, 1704–1714 (2004).

Frömming, K. -H. & Szejtli, J. Cyclodextrins in Pharmacy (Kluwer Academic, Dordrecht, 1994).

Larsen, K. L. Large cyclodextrins. Biol. J. Armenia 53, 9–26 (2001).

Banga, A. K. & Mitra, R. Minimization of shaking-induced formation of insoluble aggregates of insulin by cyclodextrins. J. Drug Target. 1, 341–345 (1993).

Dotsikas, Y. & Loukas, Y. L. Kinetic degradation study of insulin complexed with methyl-β cyclodextrin. Confirmation of complexation with electrospray mass spectrometry and 1H-NMR. J. Pharm. Biomed. Anal. 29, 487–494 (2002).

Tokihiro, K., Irie, T., Uekama, K. & Pitha, J. Potential use of maltosyl-β-cyclodextrin for inhibition of insulin self-association in aqueous solution. Pharm. Sci. 1, 49–53 (1995).

Otzen, D. E., Knudsen, B. R., Aachmann, F. L., Larsen, K. L. & Wimmer, R. Structural basis for cyclodextrins' suppression of human growth hormone aggregation. Protein Sci. 11, 1779–1787 (2002).

Hagenlocher, M. & Pearlman, R. Use of a substituted cyclodextrin for stabilization of solutions of recombinant human growth hormone. Pharm. Res. 6, S30 (1989).

Sharma, L. & Sharma, A. Influence of cyclodextrin ring substituents on folding-related aggregation of bovine carbonic anhydrase. Eur. J. Biochem. 268, 2456–2463 (2001).

Sigurjonsdottir, J. F., Loftsson, T. & Masson, M. Influence of cyclodextrins on the stability of the peptide salmon calcitonin in aqueous solution. Int. J. Pharm. 186, 205–213 (1999).

Aachmann, F. L., Otzen, D. E., Larsen, K. L. & Wimmer, R. Structural background of cyclodextrin–protein interactions. Protein Eng. 16, 1–8 (2003).

Cooper, A. Effect of cyclodextrins on the thermal stability of globular proteins. J. Am. Chem. Soc. 114, 9208–9209 (1992).

Otzen, D. E. & Oliveberg, M. A simple way to measure protein refolding rates in water. J. Mol. Biol. 313, 479–483 (2001).

Karuppiah, N. & Sharma, A. Cyclodextrins as protein folding aids. Biochem. Biophys. Res. Commun. 211, 60–66 (1995).

Easton, C. J. & Lincoln, S. F. Modified Cyclodextrins: Scaffolds and Templates for Supramolecular Chemistry (Imperial College Press, London, 1999).

Szejtli, J & Osa, T (eds). Comprehensive Supramolecular Chemistry (Elsevier Science, Oxford, 1996).

Franks, F. Protein destabilization at low temperatures. Adv. Protein Chem. 46, 105–139 (1995).

Wang, W. Lyophilization and development of slid protein pharmaceuticals. Int. J. Pharm. 203, 1–60 (2000).

Franks, F. Freeze-drying of bioproducts: putting principles into practice. Eur. J. Pharm. Biopharm. 45, 221–229 (1998).

Franks, F. Long-term stabilization of biologicals. Biotechnology (NY) 12, 253–256 (1994).

Levine, H. & Slade, L. Water as a plasticizer: physico-chemical aspects of low-moisture polymeric systems. Water Sci. Rev. 3, 79–185 (1988).

Costantino, H. R., Langer, R. & Klibanov, A. M. Moisture-induced aggregation of lyophilized insulin. Pharm. Res. 11, 21–29 (1994).

Yoshioka, S., Aso, Y., Izutsu, K. & Terao, T. Aggregates formed during storage of β-galactosidase in solution and in the freeze-dried state. Pharm. Res. 10, 687–691 (1993).

Klibanov, A. M. & Schefiliti, J. A. On the relationship between conformation and stability in solid pharmaceutical protein formulations. Bioctechnol. Lett. 26, 1103–1106 (2004).

Brange, J., Andersen, L., Laursen, E. D., Meyn, G. & Rasmussen, E. Toward understanding insulin fibrillation. J. Pharm. Sci. 86, 517–525 (1997).

Malencik, D. A. & Anderson, S. R. Dityrosine as a product of oxidative stress and fluorescent probe. Amino Acids 25, 233–247 (2003).

Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003).