Protein crystallization analysis on the World Community Grid

Christian Cumbaa1, Igor Jurišica2,1
1Division of Signaling Biology, Ontario Cancer Institute, University Health Network, Toronto, Canada
2Department of Computer Science, University of Toronto, Toronto, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bern M, Goldberg D, Stevens RC, Kuhn P (2004) Automatic classification of protein crystallization images using a curve-tracking algorithm. J Appl Cryst 37:279–287. doi: 10.1107/S0021889804001761

Breiman L (2001) Random forests. Mach Learn 45:5–32. doi: 10.1023/A:1010933404324

Cumbaa CA, Lauricella A, Fehrman N, Veatch C, Collins R, Luft J, DeTitta G, Jurisica I (2002) Automatic classification of sub-microlitre protein-crystallization trials in 1536-well plates. Acta Crystallogr D 59:1619–1627. doi: 10.1107/S0907444903015130

Cumbaa CA, Jurisica I (2005) Automatic classification and pattern discovery in high-throughput protein crystallization trials. J Struct Funct Genomics 6:195–202. doi: 10.1007/s10969-005-5243-9

Haralick RM, Shanmugan K, Dinstein I (1973) Textural Features for Image Classification. IEEE Trans Syst Man Cybern 3:610–621

Kawabata K, Takahashi M, Saitoh K, Asama H, Mishima T, Sugahara M, Miyano M (2006) Evaluation of crystalline objects in crystallizing protein droplets based on line-segment information in greyscale images. Acta Crystallogr D 62:239–245. doi: 10.1107/S0907444905041077

Liaw A, Wiener M (2002) Classification and regression by random forest. R News 2:18–22

Liu R, Freund Y, Spraggon G (2008) Image-based crystal detection: a machine-learning approach. Acta Crystallogr D 64:1187–1195. doi: 10.1107/S090744490802982X

Luft JR, Collins RJ, Fehrman NA, Lauricella AM, Veatch CK, DeTitta GT (2003) A deliberate approach to screening for initial crystallization conditions of biological macromolecules. J Struct Biol 142:170–179. doi: 10.1016/S1047-8477(03)00048-0

Nagel RM, Luft JR, Snell EH (2008) AutoSherlock: a program for effective crystallization data analysis. J Appl Cryst 41:1173–1176. doi: 10.1107/S0021889808028938

Pan S, Shavit G, Penas-Centeno M, Xu DH, Shapiro L, Ladner R, Riskin E, Hol W, Meldrum D (2006) Automated classification of protein crystallization images using support vector machines with scale-invariant texture and Gabor features. Acta Crystallogr D 62:271–279. doi: 10.1107/S0907444905041648

Po MJ, Laine AF (2008) Leveraging genetic algorithm and neural network in automated protein crystal recognition. Conf Proc IEEE Eng Med Biol Soc 2008:1926–1929. doi: 10.1109/IEMBS.2008.4649564

Saitoh K, Kawabata K, Asama H, Mishima T, Sugahara M, Miyano M (2005) Evaluation of protein crystallization states based on texture information derived from greyscale images. Acta Crystallogr D 61:873–880. doi: 10.1107/S0907444905007948

Snell EH, Luft JR, Potter SA, Lauricella AM, Gulde SM, Malkowski MG, Koszelak-Rosenblum M, Said MI, Smith JL, Veatch CK, Collins RJ, Franks G, Thayer M, Cumbaa CA, Jurisica I, Detitta GT (2008) Establishing a training set through the visual analysis of crystallization trials. Part I: approximately 150, 000 images. Acta Crystallogr D 64:1123–1130. doi: 10.1107/S0907444908028047

Snell EH, Lauricella AM, Potter SA, Luft JR, Gulde SM, Collins RJ, Franks G, Malkowski MG, Cumbaa CA, Jurisica I, DeTitta GT (2008) Establishing a training set through the visual analysis of crystallization trials. Part II: crystal examples. Acta Crystallogr D 64:1131–1137. doi: 10.1107/S0907444908028059

Spraggon G, Lesley SA, Kreusch A, Priestle JP (2002) Computational analysis of crystallization trials. Acta Crystallogr D 58:1915–1923. doi: 10.1107/S0907444902016840

Wilson J (2007) Automated classification of crystallisation images. Euro Pharm Rev 3:61–66

Wilson J (2002) Towards the automated evaluation of crystallization trials. Acta Crystallogr D 58:1907–1914. doi: 10.1107/S0907444902016633