Protein acrobatics in pairs — dimerization via domain swapping

Current Opinion in Structural Biology - Tập 19 Số 1 - Trang 39-49 - 2009
Angela M. Gronenborn1
1Department of Structural Biology, School of Medicine, University of Pittsburgh, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Berman, 2000, The Protein Data Bank, Nucleic Acids Res, 28, 235, 10.1093/nar/28.1.235

Marianayagam, 2004, The power of two: protein dimerization in biology, Trends Biochem Sci, 29, 618, 10.1016/j.tibs.2004.09.006

Huang, 1996, Three quaternary structures for a single protein, Proc Natl Acad Sci U S A, 93, 7017, 10.1073/pnas.93.14.7017

Jaffe, 2005, Morpheeins—a new structural paradigm for allosteric regulation, Trends Biochem Sci, 30, 490, 10.1016/j.tibs.2005.07.003

Lawrence, 2008, Shape shifting leads to small-molecule allosteric drug discovery, Chem Biol, 15, 586, 10.1016/j.chembiol.2008.04.012

Bennett, 1994, Domain swapping: entangling alliances between proteins, Proc Natl Acad Sci U S A, 91, 3127, 10.1073/pnas.91.8.3127

Liu, 2002, 3D domain swapping: as domains continue to swap, Protein Sci, 11, 1285, 10.1110/ps.0201402

Newcomer, 2002, Protein folding and three-dimensional domain swapping: a strained relationship?, Curr Opin Struct Biol, 12, 48, 10.1016/S0959-440X(02)00288-9

Bennett, 2006, Deposition diseases and 3D domain swapping, Structure, 14, 811, 10.1016/j.str.2006.03.011

Bergdoll, 1998, All in the family: structural and evolutionary relationships among three modular proteins with diverse functions and variable assembly, Protein Sci, 7, 1661, 10.1002/pro.5560070801

Rousseau, 2001, Three-dimensional domain swapping in p13suc1 occurs in the unfolded state and is controlled by conserved proline residues, Proc Natl Acad Sci U S A, 98, 5596, 10.1073/pnas.101542098

Barrientos, 2002, The domain-swapped dimer of cyanovirin-N is in a metastable folded state: reconciliation of X-ray and NMR structures, Structure, 10, 673, 10.1016/S0969-2126(02)00758-X

Chen, 1999, Crystal structure of a dimeric chymotrypsin inhibitor 2 mutant containing an inserted glutamine repeat, Proc Natl Acad Sci U S A, 96, 1257, 10.1073/pnas.96.4.1257

Ogihara, 2001, Design of three-dimensional domain-swapped dimers and fibrous oligomers, Proc Natl Acad Sci U S A, 98, 1404, 10.1073/pnas.98.4.1404

Wolynes, 1996, Fast-folding experiments and the topography of protein folding energy landscapes, Chem Biol, 3, 425, 10.1016/S1074-5521(96)90090-3

Yang, 2004, Domain swapping is a consequence of minimal frustration, Proc Natl Acad Sci U S A, 101, 13786, 10.1073/pnas.0403724101

Cho, 2005, Overcoming residual frustration in domain-swapping: the roles of disulfide bonds in dimerization and aggregation, Phys Biol, 2, S44, 10.1088/1478-3975/2/2/S05

Koharudin, 2008, The evolutionarily conserved family of cyanovirin-N homologs: structures and carbohydrate specificity, Structure, 16, 570, 10.1016/j.str.2008.01.015

Esposito, 2005, Insight into ribonuclease A domain swapping by molecular dynamics unfolding simulations, Biochemistry, 44, 3358, 10.1021/bi0488350

Kundu, 2004, Molecular mechanism of domain swapping in proteins: an analysis of slower motions, Biophys J, 86, 3846, 10.1529/biophysj.103.034736

Malevanets, 2008, Mechanism and energy landscape of domain swapping in the B1 domain of protein G, J Mol Biol, 382, 223, 10.1016/j.jmb.2008.06.025

Crestfield, 1962, On the aggregation of bovine pancreatic ribonuclease, Arch Biochem Biophys, Suppl 1, 217

Liu, 1998, The crystal structure of a 3D domain-swapped dimer of RNase A at a 2.1-Å resolution, Proc Natl Acad Sci U S A, 95, 3437, 10.1073/pnas.95.7.3437

Liu, 2001, A domain-swapped RNase A dimer with implications for amyloid formation, Nat Struct Biol, 8, 211, 10.1038/84941

Liu, 2002, Structures of the two 3D domain-swapped RNase A trimers, Protein Sci, 11, 371, 10.1110/ps.36602

Gotte, 2004, Oligomerization of ribonuclease A: two novel three-dimensional domain-swapped tetramers, J Biol Chem, 279, 36670, 10.1074/jbc.M404780200

Nenci, 2001, Structural properties of trimers and tetramers of ribonuclease A, Protein Sci, 10, 2017, 10.1110/ps.14101

Gronenborn, 1991, A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G, Science, 253, 657, 10.1126/science.1871600

Byeon, 2003, A protein contortionist: core mutations of GB1 that induce dimerization and domain swapping, J Mol Biol, 333, 141, 10.1016/S0022-2836(03)00928-8

Byeon, 2004, A captured folding intermediate involved in dimerization and domain-swapping of GB1, J Mol Biol, 340, 615, 10.1016/j.jmb.2004.04.069

Jee, 2008, The point mutation A34F causes dimerization of GB1, Proteins, 71, 1420, 10.1002/prot.21831

Louis, 2005, The GB1 amyloid fibril: recruitment of the peripheral beta-strands of the domain swapped dimer into the polymeric interface, J Mol Biol, 348, 687, 10.1016/j.jmb.2005.02.071

Frank, 2002, Core mutations switch monomeric protein GB1 into an intertwined tetramer, Nat Struct Biol, 9, 877

O’Neill, 2001, Single-site mutations induce 3D domain swapping in the B1 domain of protein L from Peptostreptococcus magnus, Structure, 9, 1017, 10.1016/S0969-2126(01)00667-0

Bewley, 1998, Solution structure of cyanovirin-N, a potent HIV-inactivating protein, Nat Struct Biol, 5, 571, 10.1038/828

Yang, 1999, Crystal structure of cyanovirin-N, a potent HIV-inactivating protein, shows unexpected domain swapping, J Mol Biol, 288, 403, 10.1006/jmbi.1999.2693

Botos, 2002, Structures of the complexes of a potent anti-HIV protein cyanovirin-N and high mannose oligosaccharides, J Biol Chem, 277, 34336, 10.1074/jbc.M205909200

Kelley, 2002, Engineering an obligate domain-swapped dimer of cyanovirin-N with enhanced anti-HIV activity, J Am Chem Soc, 124, 3210, 10.1021/ja025537m

Matei, 2008, Solution and crystal structures of a sugar binding site mutant of cyanovirin-N: no evidence of domain swapping, Structure, 16, 1183, 10.1016/j.str.2008.05.011

Ziolkowska, 2006, Domain-swapped structure of the potent antiviral protein griffithsin and its mode of carbohydrate binding, Structure, 14, 1127, 10.1016/j.str.2006.05.017

Calarese, 2003, Antibody domain exchange is an immunological solution to carbohydrate cluster recognition, Science, 300, 2065, 10.1126/science.1083182

Spinelli, 2004, Domain swapping of a llama VHH domain builds a crystal-wide beta-sheet structure, FEBS Lett, 564, 35, 10.1016/S0014-5793(04)00304-7

Gamble, 1997, Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein, Science, 278, 849, 10.1126/science.278.5339.849

Ternois, 2005, The HIV-1 capsid protein C-terminal domain in complex with a virus assembly inhibitor, Nat Struct Mol Biol, 12, 678, 10.1038/nsmb967

Worthylake, 1999, Structures of the HIV-1 capsid protein dimerization domain at 2.6A resolution, Acta Crystallogr D Biol Crystallogr, 55, 85, 10.1107/S0907444998007689

Ganser-Pornillos, 2007, Structure of full-length HIV-1 CA: a model for the mature capsid lattice, Cell, 131, 70, 10.1016/j.cell.2007.08.018

Berthet-Colominas, 1999, Head-to-tail dimers and interdomain flexibility revealed by the crystal structure of HIV-1 capsid protein (p24) complexed with a monoclonal antibody Fab, EMBO J, 18, 1124, 10.1093/emboj/18.5.1124

Ivanov, 2005, Mammalian SCAN domain dimer is a domain-swapped homolog of the HIV capsid C-terminal domain, Mol Cell, 17, 137, 10.1016/j.molcel.2004.12.015

Ivanov, 2007, Domain-swapped dimerization of the HIV-1 capsid C-terminal domain, Proc Natl Acad Sci U S A, 104, 4353, 10.1073/pnas.0609477104

Zahn, 2000, NMR solution structure of the human prion protein, Proc Natl Acad Sci U S A, 97, 145, 10.1073/pnas.97.1.145

Knaus, 2001, Crystal structure of the human prion protein reveals a mechanism for oligomerization, Nat Struct Biol, 8, 770, 10.1038/nsb0901-770

Lee, 2003, Seeded conversion of recombinant prion protein to a disulfide-bonded oligomer by a reduction–oxidation process, Nat Struct Biol, 10, 725, 10.1038/nsb961

Yamasaki, 2008, Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization, Nature, 455, 1255, 10.1038/nature07394