Protein Phase Separation: A New Phase in Cell Biology

Trends in Cell Biology - Tập 28 Số 6 - Trang 420-435 - 2018
Steven Boeynaems1,2,3, Simon Alberti4, Nicolas L. Fawzi5, Tanja Mittag6, Magdalini Polymenidou7, Frédéric Rousseau8,9, Joost Schymkowitz8,9, James Shorter10, Benjamin Wolozin11,12, Ludo Van Den Bosch2,3, Péter Tompa13,14, Mónika Fuxreiter15
1Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
2KU Leuven, Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium
3VIB Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
4Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
5Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, USA
6Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
7Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
8KU Leuven, Department for Cellular and Molecular Medicine, Leuven, Belgium
9Switch Laboratory, VIB, Leuven, Belgium
10Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
11Department of Neurology, Boston University School of Medicine, Boston, MA USA
12Department of Pharmacology, Boston University School of Medicine, Boston, MA USA
13Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
14VIB, Center for Structural Biology (CSB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
15MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary

Tóm tắt

Từ khóa


Tài liệu tham khảo

Glisovic, 2008, RNA-binding proteins and post-transcriptional gene regulation, FEBS Lett., 582, 1977, 10.1016/j.febslet.2008.03.004

Mitrea, 2016, Phase separation in biology; functional organization of a higher order, Cell Commun. Signal., 14, 1, 10.1186/s12964-015-0125-7

Uversky, 2017, Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder, Curr. Opin. Struct. Biol., 44, 18, 10.1016/j.sbi.2016.10.015

Hyman, 2014, Liquid-liquid phase separation in biology, Annu. Rev. Cell Dev. Biol., 30, 39, 10.1146/annurev-cellbio-100913-013325

Boulay, 2017, Cancer-specific retargeting of BAF complexes by a prion-like domain, Cell, 171, 163, 10.1016/j.cell.2017.07.036

Li, 2012, Phase transitions in the assembly of multivalent signalling proteins, Nature, 483, 336, 10.1038/nature10879

Wheeler, 2016, Distinct stages in stress granule assembly and disassembly, Elife, 5, 10.7554/eLife.18413

Su, 2016, Phase separation of signaling molecules promotes T cell receptor signal transduction, Science, 352, 595, 10.1126/science.aad9964

Boeynaems, 2017, Phase separation of C9orf72 dipeptide repeats perturbs stress granule dynamics, Mol. Cell, 65, 1044, 10.1016/j.molcel.2017.02.013

Burke, 2015, Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase II, Mol. Cell, 60, 231, 10.1016/j.molcel.2015.09.006

Conicella, 2016, ALS mutations disrupt phase separation mediated by alpha-helical structure in the TDP-43 low-complexity C-terminal domain, Structure, 24, 1537, 10.1016/j.str.2016.07.007

Kwon, 2014, Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells, Science, 345, 1139, 10.1126/science.1254917

Lee, 2016, C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles, Cell, 167, 774, 10.1016/j.cell.2016.10.002

Molliex, 2015, Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization, Cell, 163, 123, 10.1016/j.cell.2015.09.015

Murakami, 2015, ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function, Neuron, 88, 678, 10.1016/j.neuron.2015.10.030

Patel, 2015, A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation, Cell, 162, 1066, 10.1016/j.cell.2015.07.047

Handwerger, 2005, Cajal bodies, nucleoli, and speckles in the Xenopus oocyte nucleus have a low-density, sponge-like structure, Mol. Biol. Cell, 16, 202, 10.1091/mbc.e04-08-0742

Kedersha, 2000, Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules, J. Cell Biol., 151, 1257, 10.1083/jcb.151.6.1257

Andrei, 2005, A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies, RNA, 11, 717, 10.1261/rna.2340405

Brangwynne, 2009, Germline P granules are liquid droplets that localize by controlled dissolution/condensation, Science, 324, 1729, 10.1126/science.1172046

Brangwynne, 2011, Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes, Proc. Natl. Acad. Sci. U. S. A., 108, 4334, 10.1073/pnas.1017150108

Trcek, 2015, Drosophila germ granules are structured and contain homotypic mRNA clusters, Nat. Commun., 6, 10.1038/ncomms8962

Jain, 2016, ATPase-modulated stress granules contain a diverse proteome and substructure, Cell, 164, 487, 10.1016/j.cell.2015.12.038

Feric, 2016, Coexisting liquid phases underlie nucleolar subcompartments, Cell, 165, 1686, 10.1016/j.cell.2016.04.047

Fei, 2017, Quantitative analysis of multilayer organization of proteins and RNA in nuclear speckles at super resolution, J. Cell Sci., 130, 4180, 10.1242/jcs.206854

Wang, 2014, Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans, Elife, 3, 10.7554/eLife.04591

Pitt, 2000, P granules in the germ cells of Caenorhabditis elegans adults are associated with clusters of nuclear pores and contain RNA, Dev. Biol., 219, 315, 10.1006/dbio.2000.9607

Flory, 1942, Thermodynamics of high polymer solutions, J. Chem. Phys., 10, 10, 10.1063/1.1723621

Broide, 1991, Binary-liquid phase separation of lens protein solutions, Proc. Natl. Acad. Sci. U. S. A., 88, 5660, 10.1073/pnas.88.13.5660

Galkin, 2002, Liquid-liquid separation in solutions of normal and sickle cell hemoglobin, Proc. Natl. Acad. Sci. U. S. A., 99, 8479, 10.1073/pnas.122055299

Dumetz, 2008, Protein phase behavior in aqueous solutions: crystallization, liquid-liquid phase separation, gels, and aggregates, Biophys. J., 94, 570, 10.1529/biophysj.107.116152

ten Wolde, 1997, Enhancement of protein crystal nucleation by critical density fluctuations, Science, 277, 1975, 10.1126/science.277.5334.1975

Kim, 2013, Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS, Nature, 495, 467, 10.1038/nature11922

Andersen, 2005, Nucleolar proteome dynamics, Nature, 433, 77, 10.1038/nature03207

Fong, 2013, Whole-genome screening identifies proteins localized to distinct nuclear bodies, J. Cell Biol., 203, 149, 10.1083/jcb.201303145

Boke, 2016, Amyloid-like self-assembly of a cellular compartment, Cell, 166, 637, 10.1016/j.cell.2016.06.051

Oldfield, 2014, Intrinsically disordered proteins and intrinsically disordered protein regions, Annu. Rev. Biochem., 83, 553, 10.1146/annurev-biochem-072711-164947

Varadi, 2015, Functional advantages of conserved intrinsic disorder in RNA-binding proteins, PLoS One, 10, 10.1371/journal.pone.0139731

Kato, 2012, Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels, Cell, 149, 753, 10.1016/j.cell.2012.04.017

Gilks, 2004, Stress granule assembly is mediated by prion-like aggregation of TIA-1, Mol. Biol. Cell, 15, 5383, 10.1091/mbc.e04-08-0715

Decker, 2007, Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae, J. Cell Biol., 179, 437, 10.1083/jcb.200704147

Reijns, 2008, A role for Q/N-rich aggregation-prone regions in P-body localization, J. Cell Sci., 121, 2463, 10.1242/jcs.024976

Lunde, 2007, RNA-binding proteins: modular design for efficient function, Nat. Rev. Mol. Cell Biol., 8, 479, 10.1038/nrm2178

Wu, 2016, The structure and dynamics of higher-order assemblies: amyloids, signalosomes, and granules, Cell, 165, 1055, 10.1016/j.cell.2016.05.004

Banjade, 2015, Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck, Proc. Natl. Acad. Sci. U. S. A., 112, E6426, 10.1073/pnas.1508778112

Frey, 2006, FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties, Science, 314, 815, 10.1126/science.1132516

Lin, 2015, Formation and maturation of phase-separated liquid droplets by RNA-binding proteins, Mol. Cell, 60, 208, 10.1016/j.molcel.2015.08.018

Elbaum-Garfinkle, 2015, The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics, Proc. Natl. Acad. Sci. U. S. A., 112, 7189, 10.1073/pnas.1504822112

Nott, 2015, Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles, Mol. Cell, 57, 936, 10.1016/j.molcel.2015.01.013

Brangwynne, 2015, Polymer physics of intracellular phase transitions, Nat. Phys., 11, 899, 10.1038/nphys3532

Tompa, 2014, A million peptide motifs for the molecular biologist, Mol. Cell, 55, 161, 10.1016/j.molcel.2014.05.032

Monahan, 2017, Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity, EMBO J., 36, 2951, 10.15252/embj.201696394

Pak, 2016, Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein, Mol. Cell, 63, 72, 10.1016/j.molcel.2016.05.042

Riback, 2017, Stress-triggered phase separation is an adaptive, evolutionarily tuned response, Cell, 168, 1028, 10.1016/j.cell.2017.02.027

Vernon, 2018, Pi-pi contacts are an overlooked protein feature relevant to phase separation, Elife, 7, 10.7554/eLife.31486

Brady, 2017, Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation, Proc. Natl. Acad. Sci. U. S. A., 114, E8194, 10.1073/pnas.1706197114

Lin, 2016, Toxic PR poly-dipeptides encoded by the C9orf72 repeat expansion target LC domain polymers, Cell, 167, 789, 10.1016/j.cell.2016.10.003

Schwartz, 2013, RNA seeds higher-order assembly of FUS protein, Cell Rep., 5, 918, 10.1016/j.celrep.2013.11.017

Zhang, 2017, RNA stores tau reversibly in complex coacervates, PLoS Biol., 15, 10.1371/journal.pbio.2002183

Zhang, 2015, RNA controls polyQ protein phase transitions, Mol. Cell, 60, 220, 10.1016/j.molcel.2015.09.017

Banerjee, 2017, Reentrant phase transition drives dynamic substructure formation in ribonucleoprotein droplets, Angew. Chem. Int. Ed. Engl., 56, 11354, 10.1002/anie.201703191

Kedersha, 2013, Stress granules and cell signaling: more than just a passing phase, Trends Biochem. Sci., 38, 494, 10.1016/j.tibs.2013.07.004

Berry, 2015, RNA transcription modulates phase transition-driven nuclear body assembly, Proc. Natl. Acad. Sci. U. S. A., 112, E5237, 10.1073/pnas.1509317112

Jin, 2017, Glycolytic enzymes coalesce in G bodies under hypoxic stress, Cell Rep., 20, 895, 10.1016/j.celrep.2017.06.082

Jain, 2017, RNA phase transitions in repeat expansion disorders, Nature, 546, 243, 10.1038/nature22386

Woodruff, 2017, The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin, Cell, 169, 1066, 10.1016/j.cell.2017.05.028

Zeng, 2016, Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity, Cell, 166, 1163, 10.1016/j.cell.2016.07.008

West, 2016, Structural, super-resolution microscopy analysis of paraspeckle nuclear body organization, J. Cell Biol., 214, 817, 10.1083/jcb.201601071

Boeynaems, 2016, Inside out: the role of nucleocytoplasmic transport in ALS and FTLD, Acta Neuropathol., 132, 159, 10.1007/s00401-016-1586-5

Ramaswami, 2013, Altered ribostasis: RNA-protein granules in degenerative disorders, Cell, 154, 727, 10.1016/j.cell.2013.07.038

Li, 2013, Stress granules as crucibles of ALS pathogenesis, J. Cell Biol., 201, 361, 10.1083/jcb.201302044

Neumann, 2006, Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis, Science, 314, 130, 10.1126/science.1134108

Lin, 2008, Ultrastructural localization of TDP-43 in filamentous neuronal inclusions in various neurodegenerative diseases, Acta Neuropathol., 116, 205, 10.1007/s00401-008-0408-9

Kao, 2015, Detection of TDP-43 oligomers in frontotemporal lobar degeneration-TDP, Ann. Neurol., 78, 211, 10.1002/ana.24431

Vance, 2009, Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6, Science, 323, 1208, 10.1126/science.1165942

Murray, 2017, Structure of FUS protein fibrils and its relevance to self-assembly and phase separation of low-complexity domains, Cell, 171, 615, 10.1016/j.cell.2017.08.048

Liu-Yesucevitz, 2010, Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue, PLoS One, 5, 10.1371/journal.pone.0013250

Harmon, 2017, Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins, Elife, 6, 10.7554/eLife.30294

Tourriere, 2003, The RasGAP-associated endoribonuclease G3BP assembles stress granules, J. Cell Biol., 160, 823, 10.1083/jcb.200212128

Shen, 2006, The mechanisms of PML-nuclear body formation, Mol. Cell, 24, 331, 10.1016/j.molcel.2006.09.013

Hebert, 2000, Self-association of coilin reveals a common theme in nuclear body localization, Mol. Biol. Cell, 11, 4159, 10.1091/mbc.11.12.4159

Marzahn, 2016, Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles, EMBO J., 35, 1254, 10.15252/embj.201593169

Afroz, 2017, Functional and dynamic polymerization of the ALS-linked protein TDP-43 antagonizes its pathologic aggregation, Nat. Commun., 8, 10.1038/s41467-017-00062-0

Shin, 2017, Spatiotemporal control of intracellular phase transitions using light-activated optodroplets, Cell, 168, 159, 10.1016/j.cell.2016.11.054

Hughes, 2018, Atomic structures of low-complexity protein segments reveal kinked beta sheets that assemble networks, Science, 359, 698, 10.1126/science.aan6398

Updike, 2011, P granules extend the nuclear pore complex environment in the C. elegans germ line, J. Cell Biol., 192, 939, 10.1083/jcb.201010104

Wei, 2017, Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles, Nat. Chem., 9, 1118, 10.1038/nchem.2803

Johnston, 1998, Aggresomes: a cellular response to misfolded proteins, J. Cell Biol., 143, 1883, 10.1083/jcb.143.7.1883

Aumiller, 2016, Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles, Nat. Chem., 8, 129, 10.1038/nchem.2414

Kwon, 2013, Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains, Cell, 155, 1049, 10.1016/j.cell.2013.10.033

Ryan, 2018, Mechanistic view of hnRNPA2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation, Mol. Cell, 69, 465, 10.1016/j.molcel.2017.12.022

Wippich, 2013, Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling, Cell, 152, 791, 10.1016/j.cell.2013.01.033

Fox, 2010, Paraspeckles, Cold Spring Harb. Perspect. Biol., 2, 10.1101/cshperspect.a000687

Thompson, 2006, The 3D profile method for identifying fibril-forming segments of proteins, Proc. Natl. Acad. Sci. U. S. A., 103, 4074, 10.1073/pnas.0511295103

Wojciechowska, 2011, Cellular toxicity of expanded RNA repeats: focus on RNA foci, Hum. Mol. Genet., 20, 3811, 10.1093/hmg/ddr299

Cleary, 2013, Repeat-associated non-ATG (RAN) translation in neurological disease, Hum. Mol. Genet., 22, R45, 10.1093/hmg/ddt371

Mori, 2013, The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS, Science, 339, 1335, 10.1126/science.1232927

Ash, 2013, Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS, Neuron, 77, 639, 10.1016/j.neuron.2013.02.004

Zu, 2013, RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia, Proc. Natl. Acad. Sci. U. S. A., 110, E4968, 10.1073/pnas.1315438110

Yamakawa, 2015, Characterization of the dipeptide repeat protein in the molecular pathogenesis of c9FTD/ALS, Hum. Mol. Genet., 24, 1630, 10.1093/hmg/ddu576

Buchan, 2013, Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function, Cell, 153, 1461, 10.1016/j.cell.2013.05.037

Renton, 2014, State of play in amyotrophic lateral sclerosis genetics, Nat. Neurosci., 17, 17, 10.1038/nn.3584

Rubinsztein, 2011, Autophagy and aging, Cell, 146, 682, 10.1016/j.cell.2011.07.030

Ganassi, 2016, A surveillance function of the HSPB8-BAG3-HSP70 chaperone complex ensures stress granule integrity and dynamism, Mol. Cell, 63, 796, 10.1016/j.molcel.2016.07.021

Mateju, 2017, An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function, EMBO J., 36, 1669, 10.15252/embj.201695957

D’Angelo, 2009, Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells, Cell, 136, 284, 10.1016/j.cell.2008.11.037

Boeynaems, 2016, Drosophila screen connects nuclear transport genes to DPR pathology in c9ALS/FTD, Sci. Rep., 6, 10.1038/srep20877

Zhang, 2015, The C9orf72 repeat expansion disrupts nucleocytoplasmic transport, Nature, 525, 56, 10.1038/nature14973

Jovicic, 2015, Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS, Nat. Neurosci., 18, 1226, 10.1038/nn.4085

Freibaum, 2015, GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport, Nature, 525, 129, 10.1038/nature14974

Grima, 2017, Mutant huntingtin disrupts the nuclear pore complex, Neuron, 94, 93, 10.1016/j.neuron.2017.03.023

Gasset-Rosa, 2017, Polyglutamine-expanded huntingtin exacerbates age-related disruption of nuclear integrity and nucleocytoplasmic transport, Neuron, 94, 48, 10.1016/j.neuron.2017.03.027

Lin, 2006, Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases, Nature, 443, 787, 10.1038/nature05292

Patel, 2017, ATP as a biological hydrotrope, Science, 356, 753, 10.1126/science.aaf6846

Grundke-Iqbal, 1986, Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology, Proc. Natl. Acad. Sci. U. S. A., 83, 4913, 10.1073/pnas.83.13.4913

Ambadipudi, 2017, Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau, Nat. Commun., 8, 10.1038/s41467-017-00480-0

Boeynaems, 2018, Phasing in on the cell cycle, Cell Div., 13, 1, 10.1186/s13008-018-0034-4

Rabbitts, 1993, Fusion of the dominant-negative transcription regulator chop with a novel gene Fus by translocation T(12-16) in malignant liposarcoma, Nat. Genet., 4, 175, 10.1038/ng0693-175

Hegyi, 2009, Intrinsic structural disorder confers cellular viability on oncogenic fusion proteins, PLoS Comput. Biol., 5, 10.1371/journal.pcbi.1000552

Latysheva, 2016, Molecular principles of gene fusion mediated rewiring of protein interaction networks in cancer, Mol. Cell, 63, 579, 10.1016/j.molcel.2016.07.008

Toretsky, 2014, Assemblages: functional units formed by cellular phase separation, J. Cell Biol., 206, 579, 10.1083/jcb.201404124

Janke, 2017, Lysines in the RNA polymerase II C-terminal domain contribute to TAF15 fibril recruitment, Biochemistry

Grabocka, 2016, Mutant KRAS enhances tumor cell fitness by upregulating stress granules, Cell, 167, 1803, 10.1016/j.cell.2016.11.035

Somasekharan, 2015, YB-1 regulates stress granule formation and tumor progression by translationally activating G3BP1, J. Cell Biol., 208, 913, 10.1083/jcb.201411047

Adriaens, 2016, p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity, Nat. Med., 22, 861, 10.1038/nm.4135

Xu, 2011, Gain of function of mutant p53 by coaggregation with multiple tumor suppressors, Nat. Chem. Biol., 7, 285, 10.1038/nchembio.546

Soragni, 2016, A designed inhibitor of p53 aggregation rescues p53 tumor suppression in ovarian carcinomas, Cancer Cell, 29, 90, 10.1016/j.ccell.2015.12.002

White, 2012, Regulation of stress granules in virus systems, Trends Microbiol., 20, 175, 10.1016/j.tim.2012.02.001

Hou, 2017, Zika virus hijacks stress granule proteins and modulates the host stress response, J. Virol., 10.1128/JVI.00474-17

Kroschwald, 2015, Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules, Elife, 4, 10.7554/eLife.06807

Schoch, 2017, Antisense oligonucleotides: translation from mouse models to human neurodegenerative diseases, Neuron, 94, 1056, 10.1016/j.neuron.2017.04.010

Elden, 2010, Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS, Nature, 466, 1069, 10.1038/nature09320

Becker, 2017, Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice, Nature, 544, 367, 10.1038/nature22038

Vanderweyde, 2016, Interaction of tau with the RNA-binding protein TIA1 regulates tau pathophysiology and toxicity, Cell Rep., 15, 1455, 10.1016/j.celrep.2016.04.045

Apicco, 2018, Reducing the RNA binding protein TIA1 protects against tau-mediated neurodegeneration in vivo, Nat. Neurosci., 21, 72, 10.1038/s41593-017-0022-z

Guo, 2014, A cellular system that degrades misfolded proteins and protects against neurodegeneration, Mol. Cell, 55, 15, 10.1016/j.molcel.2014.04.030

Barmada, 2014, Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models, Nat. Chem. Biol., 10, 677, 10.1038/nchembio.1563

Yasuda, 2017, FUS inclusions disrupt RNA localization by sequestering kinesin-1 and inhibiting microtubule detyrosination, J. Cell Biol., 216, 1015, 10.1083/jcb.201608022

Jackrel, 2014, Potentiated Hsp104 variants antagonize diverse proteotoxic misfolding events, Cell, 156, 170, 10.1016/j.cell.2013.11.047

Quiroz, 2015, Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers, Nat. Mater., 14, 1164, 10.1038/nmat4418

Rauscher, 2017, The liquid structure of elastin, Elife, 6, 10.7554/eLife.26526

Johnson, 2009, TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity, J. Biol. Chem., 284, 20329, 10.1074/jbc.M109.010264

Banani, 2016, Compositional control of phase-separated cellular bodies, Cell, 166, 651, 10.1016/j.cell.2016.06.010

Schmidt, 2015, Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity, Elife, 4, 10.7554/eLife.04251

Tuu Szabo, 2018, Simulations of higher-order protein assemblies using a fuzzy framework, bioRxiv

Tompa, 2008, Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions, Trends Biochem. Sci., 33, 2, 10.1016/j.tibs.2007.10.003

Hernandez-Vega, 2017, Local nucleation of microtubule bundles through tubulin concentration into a condensed tau phase, Cell Rep., 20, 2304, 10.1016/j.celrep.2017.08.042

Gueroussov, 2017, Regulatory expansion in mammals of multivalent hnRNP assemblies that globally control alternative splicing, Cell, 170, 324, 10.1016/j.cell.2017.06.037

Arrasate, 2004, Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death, Nature, 431, 805, 10.1038/nature02998

Cremers, 2016, Polyphosphate: a conserved modifier of amyloidogenic processes, Mol. Cell, 63, 768, 10.1016/j.molcel.2016.07.016

Wallace, 2015, Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress, Cell, 162, 1286, 10.1016/j.cell.2015.08.041