Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tiềm năng bảo vệ của dimethyl fumarate trong mô hình chuột của sự mất myelin thalamocortical
Tóm tắt
Sự thay đổi trong tổ chức tế bào vỏ não, chức năng mạng lưới, cũng như các thiếu sót về nhận thức và vận động gần đây đã được gợi ý là những dấu hiệu bệnh lý trong bệnh xơ cứng đa hệ thống và các mô hình động vật tương ứng, vì chúng có thể xảy ra sau sự mất myelin. Để điều tra những thay đổi chức năng sau sự mất myelin trong một mạng lưới nơ-ron được định nghĩa tốt và tổ chức theo tọa độ, cả in vitro và in vivo, chúng tôi đã tập trung vào vỏ thính giác chính (A1) của chuột trong mô hình cuprizone về sự mất và phục hồi myelin. Sau khi mất myelin trong hệ thống mô hình này, sự lan truyền không-thời gian của các kích thích ở A1 đã bị thay đổi và sự kích hoạt phân cấp của các lớp vỏ não siêu và hạ hạch đã bị mất, cho thấy sự ảnh hưởng sâu sắc đối với mức độ mạng lưới nơ-ron. Ngoài ra, độ trễ phản ứng trong các ghi chép tiềm năng trường và hình ảnh nhuộm nhạy cảm với điện thế đã tăng lên sau khi mất myelin. Những thay đổi này đi kèm với việc mất khả năng phân biệt âm thanh ở các động vật tự do hành vi, giảm lượng protein yếu tố hạt nhân-erythroid 2- có liên quan-2 (Nrf-2) trong nhân tế bào trong nhuộm mô học và vẫn tồn tại trong quá trình phục hồi myelin. Để tìm kiếm các chiến lược mới nhằm khôi phục sự thay đổi mạng lưới do sự mất myelin gây ra bên cạnh quá trình phục hồi myelin đang diễn ra, chúng tôi đã thử nghiệm tiềm năng bảo vệ tế bào của dimethyl fumarate (DMF). Việc điều trị bằng DMF trong quá trình phục hồi myelin đã thay đổi đáng kể sự lan truyền kích thích không-thời gian trong vỏ não, giảm thiểu sự suy giảm nhận thức, và ngăn chặn sự giảm lượng Nrf-2 hạt nhân do mất myelin gây ra. Những kết quả này chỉ ra sự tham gia của các cơ chế chống oxi hóa trong việc điều chỉnh mô hình phản ứng vỏ não không-thời gian sau sự thay đổi trong myelin hóa và chỉ ra DMF như một hợp chất trị liệu cho can thiệp.
Từ khóa
#myelin #xơ cứng đa hệ thống #dimethyl fumarate #tổ chức tế bào vỏ não #chức năng mạng lưới #phục hồi myelinTài liệu tham khảo
Agmon A, Connors B (1992) Correlation between intrinsic firing patterns and thalamocortical synaptic responses of neurons in mouse barrel cortex
Atencio CA, Shen V, Schreiner CE (2016) Synchrony, connectivity, and functional similarity in auditory midbrain local circuits. Neuroscience 335:30–53. https://doi.org/10.1016/J.NEUROSCIENCE.2016.08.024
Barbour DL, Callaway EM (2008) Excitatory local connections of superficial neurons in rat auditory cortex. J Neurosci 28:11174–11185. https://doi.org/10.1523/JNEUROSCI.2093-08.2008
Bomprezzi R (2015) Dimethyl fumarate in the treatment of relapsing-remitting multiple sclerosis: an overview. Ther Adv Neurol Disord 8:20–30. https://doi.org/10.1177/1756285614564152
Broicher T, Bidmon H-J, Kamuf B et al (2010) Thalamic afferent activation of supragranular layers in auditory cortex in vitro: a voltage sensitive dye study. Neuroscience 165:371–385
Brousse B, Magalon K, Durbec P, Cayre M (2015) Region and dynamic specificities of adult neural stem cells and oligodendrocyte precursors in myelin regeneration in the mouse brain. Biol Open 4:980–992. https://doi.org/10.1242/bio.012773
Busche MA, Eichhoff G, Adelsberger H et al (2008) Clusters of Hyperactive Neurons Near Amyloid Plaques in a Mouse Model of Alzheimer’s Disease
Calabrese M, Magliozzi R, Ciccarelli O et al (2015) Exploring the origins of grey matter damage in multiple sclerosis. Nat Rev Neurosci 16:147–158. https://doi.org/10.1038/nrn3900
Cate HS, Wu Q-Z, Kemper D et al (2010) Influence of methylprednisolone on magnetic resonance and histological measures during cuprizone-induced demyelination. Neurosci Lett 483:47–52. https://doi.org/10.1016/J.NEULET.2010.07.060
Cerina M, Narayanan V, Göbel K et al (2017) The quality of cortical network function recovery depends on localization and degree of axonal demyelination. Brain Behav Immun 59:103–117. https://doi.org/10.1016/j.bbi.2016.08.014
Crawford DK, Mangiardi M, Tiwari-Woodruff SK (2009a) Assaying the functional effects of demyelination and remyelination: Revisiting field potential recordings. J Neurosci Methods 182:25–33. https://doi.org/10.1016/j.jneumeth.2009.05.013
Crawford DK, Mangiardi M, Xia X et al (2009b) Functional recovery of callosal axons following demyelination: a critical window. Neuroscience 164:1407–1421. https://doi.org/10.1016/j.neuroscience.2009.09.069
Dahmen JC, Hartley DEH, King AJ (2008) Stimulus-timing-dependent plasticity of cortical frequency representation. J Neurosci 28:13629–13639. https://doi.org/10.1523/JNEUROSCI.4429-08.2008
Daldrup T, Remmes J, Lesting J et al (2015) Expression of freezing and fear-potentiated startle during sustained fear in mice. Genes Brain Behav. https://doi.org/10.1111/gbb.12211
de Jong R, Bezemer AC, Zomerdijk TP et al (1996) Selective stimulation of T helper 2 cytokine responses by the anti-psoriasis agent monomethylfumarate. Eur J Immunol 26:2067–2074. https://doi.org/10.1002/eji.1830260916
Deppe M, Marinell J, Krämer J et al (2014) Increased cortical curvature reflects white matter atrophy in individual patients with early multiple sclerosis. NeuroImage Clin 6:475–487. https://doi.org/10.1016/j.nicl.2014.02.012
Deshmukh VA, Tardif V, Lyssiotis CA et al (2013) A regenerative approach to the treatment of multiple sclerosis. Nature 502:327–332. https://doi.org/10.1038/nature12647
Dubois-Dalcq M, Ffrench-Constant C, Franklin RJM (2005) Enhancing central nervous system remyelination in multiple sclerosis. Neuron 48:9–12. https://doi.org/10.1016/j.neuron.2005.09.004
Ehling P, Bittner S, Budde T et al (2011) Ion channels in autoimmune neurodegeneration. FEBS Lett 585:3836–3842. https://doi.org/10.1016/j.febslet.2011.03.065
Falco A, Pennucci R, Brambilla E, de Curtis I (2014) Reduction in parvalbumin-positive interneurons and inhibitory input in the cortex of mice with experimental autoimmune encephalomyelitis. Exp brain Res 232:2439–2449. https://doi.org/10.1007/s00221-014-3944-7
Fox RJ, Kita M, Cohan SL et al (2014) BG-12 (dimethyl fumarate): a review of mechanism of action, efficacy, and safety. Curr Med Res Opin 30:251–262. https://doi.org/10.1185/03007995.2013.849236
Gamboa OL, Tagliazucchi E, von Wegner F et al (2014) Working memory performance of early MS patients correlates inversely with modularity increases in resting state functional connectivity networks. Neuroimage 94:385–395. https://doi.org/10.1016/j.neuroimage.2013.12.008
Gavornik JP, Bear MF (2014) Higher brain functions served by the lowly rodent primary visual cortex. Learn Mem 21:527–533. https://doi.org/10.1101/lm.034355.114
Ghaffarian N, Mesgari M, Cerina M et al (2016) Thalamocortical-auditory network alterations following cuprizone-induced demyelination. J Neuroinflammation 13:160. https://doi.org/10.1186/s12974-016-0629-0
Groh A, Bokor H, Mease RA et al (2014) Convergence of cortical and sensory driver inputs on single thalamocortical cells. Cereb Cortex 24:3167–3179. https://doi.org/10.1093/cercor/bht173
Gudi V, Gingele S, Skripuletz T, Stangel M (2014) Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned. Front Cell Neurosci 8:73. https://doi.org/10.3389/fncel.2014.00073
Hackett TA, Barkat TR, O’Brien BMJ et al (2011) Linking topography to tonotopy in the mouse auditory thalamocortical circuit. J Neurosci 31:2983–2995. https://doi.org/10.1523/JNEUROSCI.5333-10.2011
Hamada MS, Kole MHP (2015) Myelin loss and axonal ion channel adaptations associated with gray matter neuronal hyperexcitability. J Neurosci 35:7272–7286. https://doi.org/10.1523/JNEUROSCI.4747-14.2015
He Y, Dagher A, Chen Z et al (2009) Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load. Brain 132:3366–3379. https://doi.org/10.1093/brain/awp089
Hübner NS, Mechling AE, Lee H-L et al (2017) The connectomics of brain demyelination: Functional and structural patterns in the cuprizone mouse model. Neuroimage 146:1–18. https://doi.org/10.1016/j.neuroimage.2016.11.008
Jin W, Zhang R, Wu J (2002) Voltage-sensitive dye imaging of population neuronal activity in cortical tissue. J Neurosci Methods 115:13–27
Kappos L, Gold R, Miller DH et al (2008) Efficacy and safety of oral fumarate in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet 372:1463–1472. https://doi.org/10.1016/S0140-6736(08)61619-0
Kaur S, Rose HJ, Lazar R et al (2005) Spectral integration in primary auditory cortex: laminar processing of afferent input, in vivo and in vitro. Neuroscience 134:1033–1045. https://doi.org/10.1016/j.neuroscience.2005.04.052
Kilkenny C, Browne W, Cuthill IC et al (2010) Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol 160:1577–1579. https://doi.org/10.1111/j.1476-5381.2010.00872.x
Kubota M, Nasu M, Taniguchi I (1999) Layer-specific horizontal propagation of excitation in the auditory cortex. Neuroreport 10:2865–2867
Li R, Rezk A, Ghadiri M et al (2017) Dimethyl Fumarate Treatment Mediates an Anti-Inflammatory Shift in B Cell Subsets of Patients with Multiple Sclerosis. J Immunol 198:691–698. https://doi.org/10.4049/jimmunol.1601649
Linden JF, Schreiner CE (2003) Columnar transformations in auditory cortex? A comparison to visual and somatosensory cortices. Cereb Cortex 13:83–89
Linker RA, Lee D-H, Ryan S et al (2011) Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 134:678–692. https://doi.org/10.1093/brain/awq386
Luchtman D, Gollan R, Ellwardt E et al (2016) In vivo and in vitro effects of multiple sclerosis immunomodulatory therapeutics on glutamatergic excitotoxicity. J Neurochem 136:971–980. https://doi.org/10.1111/jnc.13456
Markoullis K, Sargiannidou I, Gardner C et al (2012a) Disruption of oligodendrocyte gap junctions in experimental autoimmune encephalomyelitis. Glia 60:1053–1066. https://doi.org/10.1002/glia.22334
Markoullis K, Sargiannidou I, Schiza N et al (2012b) Gap junction pathology in multiple sclerosis lesions and normal-appearing white matter. Acta Neuropathol 123:873–886. https://doi.org/10.1007/s00401-012-0978-4
Matsushima GK, Morell P (2001) The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 11:107–116
Meuth SG, Herrmann AM, Simon OJ et al (2009) Cytotoxic CD8 + T cell-neuron interactions: perforin-dependent electrical silencing precedes but is not causally linked to neuronal cell death. J Neurosci 29:15397–15409. https://doi.org/10.1523/JNEUROSCI.4339-09.2009
Mighdoll MI, Tao R, Kleinman JE, Hyde TM (2014) Myelin, myelin-related disorders, and psychosis. Schizophr Res 161:85–93. https://doi.org/10.1016/j.schres.2014.09.040
Moharregh-Khiabani D, Blank A, Skripuletz T et al (2010) Effects of fumaric acids on cuprizone induced central nervous system de- and remyelination in the mouse. PLoS One 5:e11769. https://doi.org/10.1371/journal.pone.0011769
Musacchia G, Large EW, Schroeder CE (2014) Thalamocortical mechanisms for integrating musical tone and rhythm. Hear Res 308:50–59. https://doi.org/10.1016/j.heares.2013.09.017
Narayanan V, Heiming RS, Jansen F et al (2011) Social defeat: impact on fear extinction and amygdala-prefrontal cortical theta synchrony in 5-HTT deficient mice. PLoS One 6:e22600. https://doi.org/10.1371/journal.pone.0022600
Nave K-A, Werner HB (2014) Myelination of the nervous system: mechanisms and functions. Annu Rev Cell Dev Biol 30:503–533. https://doi.org/10.1146/annurev-cellbio-100913-013101
O’Connell MN, Barczak A, Schroeder CE, Lakatos P (2014) Layer specific sharpening of frequency tuning by selective attention in primary auditory cortex. J Neurosci 34:16496–16508. https://doi.org/10.1523/JNEUROSCI.2055-14.2014
Olechowski CJ, Parmar A, Miller B et al (2010) A diminished response to formalin stimulation reveals a role for the glutamate transporters in the altered pain sensitivity of mice with experimental autoimmune encephalomyelitis (EAE). Pain 149:565–572. https://doi.org/10.1016/j.pain.2010.03.037
Pierson E, Simmons SB, Castelli L, Goverman JM (2012) Mechanisms regulating regional localization of inflammation during CNS autoimmunity. Immunol Rev 248:205–215. https://doi.org/10.1111/j.1600-065X.2012.01126.x
Potter LE, Paylor JW, Suh JS et al (2016) Altered excitatory-inhibitory balance within somatosensory cortex is associated with enhanced plasticity and pain sensitivity in a mouse model of multiple sclerosis. J Neuroinflammation 13:142. https://doi.org/10.1186/s12974-016-0609-4
Praet J, Guglielmetti C, Berneman Z et al (2014) Cellular and molecular neuropathology of the cuprizone mouse model: Clinical relevance for multiple sclerosis. Neurosci Biobehav Rev 47:485–505. https://doi.org/10.1016/j.neubiorev.2014.10.004
Ramsey CP, Glass CA, Montgomery MB et al (2007) Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol 66:75–85. https://doi.org/10.1097/nen.0b013e31802d6da9
Reick C, Ellrichmann G, Thöne J et al (2014) Neuroprotective dimethyl fumarate synergizes with immunomodulatory interferon beta to provide enhanced axon protection in autoimmune neuroinflammation. Exp Neurol 257:50–56. https://doi.org/10.1016/j.expneurol.2014.04.003
Rodgers JM, Robinson AP, Miller SD (2013) Strategies for protecting oligodendrocytes and enhancing remyelination in multiple sclerosis. Discov Med 16:53–63
Saji E, Arakawa M, Yanagawa K et al (2013) Cognitive impairment and cortical degeneration in neuromyelitis optica. Ann Neurol 73:65–76. https://doi.org/10.1002/ana.23721
Scannevin RH, Chollate S, Jung M et al (2012) Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J Pharmacol Exp Ther 341:274–284. https://doi.org/10.1124/jpet.111.190132
Sherman SM (2012) Thalamocortical interactions. Curr Opin Neurobiol 22:575–579. https://doi.org/10.1016/j.conb.2012.03.005
Skripuletz T, Lindner M, Kotsiari A et al (2008) Cortical demyelination is prominent in the murine cuprizone model and is strain-dependent. Am J Pathol 172:1053–1061. https://doi.org/10.2353/ajpath.2008.070850
Skripuletz T, Gudi V, Hackstette D, Stangel M (2011) De- and remyelination in the CNS white and grey matter induced by cuprizone: the old, the new, and the unexpected. Histol Histopathol 26:1585–1597
Spence RD, Kurth F, Itoh N et al (2014) Bringing CLARITY to gray matter atrophy. Neuroimage 101:625–632. https://doi.org/10.1016/j.neuroimage.2014.07.017
Stidworthy MF, Genoud S, Suter U et al (2006) Quantifying the early stages of remyelination following cuprizone-induced demyelination. Brain Pathol 13:329–339. https://doi.org/10.1111/j.1750-3639.2003.tb00032.x
Sutor B, Schmolke C, Teubner B et al (2000) Myelination defects and neuronal hyperexcitability in the neocortex of connexin 32-deficient mice. Cereb Cortex 10:684–697. https://doi.org/10.1093/cercor/10.7.684
Tambalo S, Peruzzotti-Jametti L, Rigolio R et al (2015) Functional magnetic resonance imaging of rats with experimental autoimmune encephalomyelitis reveals brain cortex remodeling. J Neurosci 35:10088–10100. https://doi.org/10.1523/JNEUROSCI.0540-15.2015
Vitorino R, Hojjat S-P, Cantrell CG et al (2016) Regional frontal perfusion deficits in relapsing-remitting multiple sclerosis with cognitive decline. Am J Neuroradiol 37:1800–1807. https://doi.org/10.3174/ajnr.A4824
Winkowski DE, Kanold PO (2013) Laminar transformation of frequency organization in auditory cortex. J Neurosci 33:1498–1508. https://doi.org/10.1523/JNEUROSCI.3101-12.2013
Wu Q-Z, Yang Q, Cate HS et al (2008) MRI identification of the rostral-caudal pattern of pathology within the corpus callosum in the cuprizone mouse model. J Magn Reson Imaging 27:446–453. https://doi.org/10.1002/jmri.21111
Zendedel A, Beyer C, Kipp M (2013) Cuprizone-induced demyelination as a tool to study remyelination and axonal protection. J Mol Neurosci 51:567–572. https://doi.org/10.1007/s12031-013-0026-4
Ziskind-Conhaim L, Redman S (2005) Spatiotemporal patterns of dorsal root-evoked network activity in the neonatal rat spinal cord: optical and intracellular recordings. J Neurophysiol 94:1952–1961. https://doi.org/10.1152/jn.00209.2005
Zoupi L, Markoullis K, Kleopa K, Karagogeos D (2013) Alterations of juxtaparanodal domains in two rodent models of CNS demyelination. Glia 61:1236–1249. https://doi.org/10.1002/glia.22511
