Protective effect of epigallocatechin gallate, a major constituent of green tea, against renal ischemia–reperfusion injury in rats
Tóm tắt
Renal ischemia–reperfusion (I/R) injury plays an important role in the acute kidney injury. The pathogenetic mechanisms potential I/R injury is involved in apoptosis and inflammation. Epigallocatechin gallate (EGCG), a major constituent of green tea, has been shown to have anti-inflammatory and anti-apoptotic activities. This study aimed to explore the underlying effects and mechanisms of EGCG on renal I/R injury in a rat model. We induced renal I/R injury in SD rats by clamping the left renal artery for 45 min followed by 24-h reperfusion, along with a contralateral nephrectomy. We randomly allocated 30 rats to three groups (n = 10): sham group, IRI group, and EGCG group. We preconditioned rats intraperitoneally with EGCG (50 mg/kg) or vehicle (50 mg/kg) 45 min before inducing renal ischemia. We collected serum and kidneys at 24 h after reperfusion. Renal function and histologic damage were assessed. We also determined markers of inflammation and apoptosis in kidneys or serum. EGCG pretreatment can significantly reduce renal dysfunction, histologic change and the expression of tumor necrosis factor-α, IL-1β, IL-6, Bax and cleavage caspase 3 induced by I/R injury and increase the expression of Bax and caspase 3. Moreover, EGCG pretreatment can further induce the activation of p38 mitogen-activated protein kinase in kidney, with no influence on the expression of p38. EGCG treatment can decrease renal ischemia–reperfusion injury by suppressing inflammation and cell apoptosis. Thus, EGCG may represent a potential strategy to reduce renal I/R injury.
Tài liệu tham khảo
Wang Y, Seto SW, Golledge J (2013) Therapeutic effects of renal denervation on renal failure. Curr Neurovasc Res 10:172–184
Kher A, Meldrum KK, Wang M, Tsai BM, Pitcher JM, Meldrum DR (2005) Cellular and molecular mechanisms of sex differences in renal ischemia-reperfusion injury. Cardiovasc Res 67:594–603
Daemen MA, de Vries B, Buurman WA (2002) Apoptosis and inflammation in renal reperfusion injury. Transplantation 2002(15):1693–1700
Rogers NM, Stephenson MD, Kitching AR, Horowitz JD, Coates PT (2012) Amelioration of renal ischaemia-reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigen-presenting cells. Br J Pharmacol 166:194–209
Kao WP, Yang CY, Su TW, Wang YT, Lo YC, Lin SC (2015) The versatile roles of CARDs in regulating apoptosis, inflammation, and NF-κB signaling. Apoptosis 20:174–195
Pae M, Wu D (2013) Immunomodulating effects of epigallocatechin-3-gallate from green tea: mechanisms and applications. Food Funct 4:1287–1303
Camfield DA, Stough C, Farrimond J, Scholey AB (2014) Acute effects of tea constituents L-theanine, caffeine, and epigallocatechin gallate on cognitive function and mood: a systematic review and meta-analysis. Nutr Rev 72:507–522
Daemen MA, van’t Veer C, Denecker G, Heemskerk VH, Wolfs TG, Clauss M, Vandenabeele P, Buurman WA (1999) Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. J Clin Invest 104:541–549
Si Y, Bao H, Han L, Shi H, Zhang Y, Xu L, Liu C, Wang J, Vohra A, Ma D (2013) Dexmedetomidine protects against renal ischemia and reperfusion injury by inhibiting the JAK/STAT signaling activation. J Transl Med 11:141
Zhang S, Lv JW, Yang P, Yu Q, Pang J, Wang Z, Guo H, Liu S, Hu J, Li J, Leng J, Huang Y, Ye Z, Wang CY (2012) Loss of dicer exacerbates cyclophosphamide-induced bladder overactivity by enhancing purinergic signaling. Am J Pathol 181:937–946
Sugiyama A, Chiba M, Nakagami T, Kawano S, Sanada Y, Tajiri T, Toki A (2012) Beneficial effects of (−)-epigallocatechin gallate on ischemia-reperfusion testicular injury in rats. J Pediatr Surg 47:1427–1432
Kakuta Y, Okumi M, Isaka Y, Tsutahara K, Abe T, Yazawa K, Ichimaru N, Matsumura K, Hyon SH (2011) Epigallocatechin-3-gallate protects kidneys from ischemia reperfusion injury by HO-1 upregulation and inhibition of macrophage infiltration. Transpl Int 24:514–522
Wang F, Chang Z, Fan Q, Wang L (2014) Epigallocatechin-3-gallate inhibits the proliferation and migration of human ovarian carcinoma cells by modulating p38 kinase and matrix metalloproteinase-2. Mol Med Rep 9:1085–1089
Li R, Ding T, Liu X, Li C (2006) Influence of SB203580 on cell apoptosis and P38MAPK in renal ischemia/reperfusion injury. J Huazhong Univ Sci Technol Med Sci 26:50–52