Protection from Isopeptidase-Mediated Deconjugation Regulates Paralog-Selective Sumoylation of RanGAP1
Tài liệu tham khảo
Alkuraya, 2006, SUMO1 haploinsufficiency leads to cleft lip and palate, Science, 313, 1751, 10.1126/science.1128406
Ayaydin, 2004, Distinct in vivo dynamics of vertebrate SUMO paralogues, Mol. Biol. Cell, 15, 5208, 10.1091/mbc.E04-07-0589
Bailey, 2004, Characterization of the localization and proteolytic activity of the SUMO-specific protease, SENP1, J. Biol. Chem., 279, 692, 10.1074/jbc.M306195200
Bernier-Villamor, 2002, Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1, Cell, 108, 345, 10.1016/S0092-8674(02)00630-X
Evdokimov, 2008, Loss of SUMO1 in mice affects RanGAP1 localization and formation of PML nuclear bodies, but is not lethal as it can be compensated by SUMO2 or SUMO3, J. Cell Sci., 121, 4106, 10.1242/jcs.038570
Geiss-Friedlander, 2007, Concepts in sumoylation: a decade on, Nat. Rev. Mol. Cell Biol., 8, 947, 10.1038/nrm2293
Hang, 2002, Association of the human SUMO-1 protease SENP2 with the nuclear pore, J. Biol. Chem., 277, 19961, 10.1074/jbc.M201799200
Hecker, 2006, Specification of SUMO1- and SUMO2-interacting motifs, J. Biol. Chem., 281, 16117, 10.1074/jbc.M512757200
Johnson, 2004, Protein modification by SUMO, Annu. Rev. Biochem., 73, 355, 10.1146/annurev.biochem.73.011303.074118
Kerscher, 2007, SUMO junction-what's your function? New insights through SUMO-interacting motifs, EMBO Rep., 8, 550, 10.1038/sj.embor.7400980
Mahajan, 1997, A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2, Cell, 88, 97, 10.1016/S0092-8674(00)81862-0
Matunis, 1996, A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex, J. Cell Biol., 135, 1457, 10.1083/jcb.135.6.1457
Matunis, 1998, SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex, J. Cell Biol., 140, 499, 10.1083/jcb.140.3.499
Meulmeester, 2008, Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25, Mol. Cell, 30, 610, 10.1016/j.molcel.2008.03.021
Mikolajczyk, 2007, Small ubiquitin-related modifier (SUMO)-specific proteases: profiling the specificities and activities of human SENPs, J. Biol. Chem., 282, 26217, 10.1074/jbc.M702444200
Mossessova, 2000, Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast, Mol. Cell, 5, 865, 10.1016/S1097-2765(00)80326-3
Mukhopadhyay, 2007, Modification in reverse: the SUMO proteases, Trends Biochem. Sci., 32, 286, 10.1016/j.tibs.2007.05.002
Pichler, 2002, The nucleoporin RanBP2 has SUMO1 E3 ligase activity, Cell, 108, 109, 10.1016/S0092-8674(01)00633-X
Reverter, 2005, Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex, Nature, 435, 687, 10.1038/nature03588
Reverter, 2006, Structural basis for SENP2 protease interactions with SUMO precursors and conjugated substrates, Nat. Struct. Mol. Biol., 13, 1060, 10.1038/nsmb1168
Rosas-Acosta, 2005, A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers, Mol. Cell. Proteomics, 4, 56, 10.1074/mcp.M400149-MCP200
Saitoh, 2006, In situ SUMOylation analysis reveals a modulatory role of RanBP2 in the nuclear rim and PML bodies, Exp. Cell Res., 312, 1418, 10.1016/j.yexcr.2006.01.013
Sampson, 2001, The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification, J. Biol. Chem., 276, 21664, 10.1074/jbc.M100006200
Shen, 2006, SUMO protease SENP1 induces isomerization of the scissile peptide bond, Nat. Struct. Mol. Biol., 13, 1069, 10.1038/nsmb1172
Song, 2004, Identification of a SUMO-binding motif that recognizes SUMO-modified proteins, Proc. Natl. Acad. Sci. USA, 101, 14373, 10.1073/pnas.0403498101
Stewart, 2007, Molecular mechanism of the nuclear protein import cycle, Nat. Rev. Mol. Cell Biol., 8, 195, 10.1038/nrm2114
Tatham, 2003, Role of an N-terminal site of Ubc9 in SUMO-1, −2, and −3 binding and conjugation, Biochemistry, 42, 9959, 10.1021/bi0345283
Tatham, 2005, Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection, Nat. Struct. Mol. Biol., 12, 67, 10.1038/nsmb878
Uchimura, 2004, Generation of SUMO-1 modified proteins in E. coli: towards understanding the biochemistry/structural biology of the SUMO-1 pathway, FEBS Lett., 564, 85, 10.1016/S0014-5793(04)00321-7
Vertegaal, 2006, Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics, Mol. Cell. Proteomics, 5, 2298, 10.1074/mcp.M600212-MCP200
Zhang, 2008, Sumo-1 Function is Dispensable in Normal Mouse Development, Mol. Cell. Biol., 13, 1045
Zhang, 2002, Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex, Mol. Cell. Biol., 22, 6498, 10.1128/MCB.22.18.6498-6508.2002
Zhang, 2008, SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis, Mol. Cell, 29, 729, 10.1016/j.molcel.2008.01.013
Zhu, 2008, Small Ubiquitin-related Modifier (SUMO) Binding Determines Substrate Recognition and Paralog-selective SUMO Modification, J. Biol. Chem., 283, 29405, 10.1074/jbc.M803632200
Zhu, 2006, SUMO modification through rapamycin-mediated heterodimerization reveals a dual role for Ubc9 in targeting RanGAP1 to nuclear pore complexes, Exp. Cell Res., 312, 1042, 10.1016/j.yexcr.2005.12.031