Prospects of using carbonaceous nanoparticles in binders for polymer composites

Е. Н. Каблов1, С. В. Кондрашов2, G. Yu. Yurkov3
1All-Russian Research Institute of Aviation Materials
2All Russian Research Institute of Aviation Materials, Moscow, Russia
3All-Russian Research Institute of Aviation Materials, ul. Radio 17, Moscow, 105005, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

E. R. Badamshina, M. P. Gafurova, Ya. I. Estrin, “Carbon nanotubes modification and synthesis of polymeric composites with their paticipation,” Usp. Khim. 79(11), 1027–1063 (2010).

S. M. Aldoshin, E. R. Badamshina, and E. N. Kablov, “Polymeric nanocomposites is the new generation of polymer materials with increased operating parameters,” in Proc. Int. Forum on Nanotechnologies “Rusnanotech 2008” (Moscow, 2008), p. 385.

E. G. Rakov, “Chemistry and application of carbon nanotubes,” Usp. Khim. 70(10), 934–973 (2001).

S. P. Gubin, O. V. Popkov, G. Yu. Yurkov, V. N. Nikiforov, Yu. A. Koksharov, and N. K. Eremenko, “Magnetic nanoparticles fixed on the surface of detonation nanodiamond microgranules,” Diamond Relat. Mater. 16(11), 1924–1928 (2007).

S. P. Gubin, Yu. A. Koksharov, G. B. Khomutov, and G. Yu. Yurkov, “Magnetic nanoparticles: the way to produce, structure, properties,” Usp. Khim. 74(6) 539–574 (2005).

D. Puglia, L. Valentini, and J. M. Kenny, “Analysis of the cure reaction of carbon nanotubes/epoxy resin composites through thermal analysis and Raman spectroscopy,” J. Appl. Polymer Sci. 88, 452–458 (2003).

L. Valentini, I. Armentano, D. Puglia, and J. M. Kenny, “Dynamics of amine functionalized nanotubes/epoxy composites by dielectric relaxation spectroscopy,” Carbon 42, 323–329 (2004).

T. Zhou, X. Wangaand, and T. Wang, “Cure reaction of multi-walled carbon nanotubes/diglycidyl ether of bisphenol A/2-ethyl-4-methylimidazole(MWCNTs/DGEBA/EMI-2,4) nanocomposites: effect of carboxylic functionalization of MWCNTs,” Polymer Int. 58, 445–452 (2009).

J. Wu and D. D. L Chung, “Calorimetric study of the effect of carbon fillers on the curing of epoxy,” Carbon 42, 3003–3042 (2004).

H. Xie, B. Liu, Z. Yuan, J. Shen, and R. Cheng, “Cure kinetics of carbon nanotube/tetrafunctional epoxy nanocomposites by isothermal differential scanning calorimetry,” J. Polymer Sci.: Part B: Polymer Phys. 42, 3701–3712 (2004).

L. Valentini, I. Armentano, D. Puglia, and J. M. Kenny, “Dynamics of amine functionalized nanotubes/epoxy composites by dielectric relaxation spectroscopy,” Carbon 42, 323–329 (2004).

D. Puglia, L. Valentini, I. Armentano, and J. M. Kenny, “Effects of single-walled carbon nanotube incorporation on the cure reaction of epoxy resin and its detection by Raman spectroscopy,” Diamond Relat. Mater. 12, 827–832 (2003).

A. Visco, L. Calabrese, and C. Milone, “Cure rate and mechanical properties of a DGEBF epoxy resin modified with carbon nanotubes,” J. Reinf. Plast. Composit. 28, 937–949 (2009).

V. G. Khozin, Epoxy Polymers Strengthening (Izd. PIK “Dom pechati”, Kazan, 2004) [in Russian].

A. F. Magsumova, “The way to improve the processes for producing units made of composites by controlling surface energy and interphase interaction,” Extended Abstract of Candidate’s Dissertation (2005).

R. V. Akatenkov, S. V. Kondrashov, A. S. Fokin, and P. S. Marakhovskii, “Features of polymer grids formation under curing of epoxy oligomers with functionalized nanotubes,” Aviats. Mater. Tekhnol., No. 2, 31–37 (2011).

A. Allaoui and N. El Bounia, “How carbon nanotubes affect the cure kinetics and glass transition temperature of their epoxy composites?,” eXPRESS Polym. Lett. 3(9), 588–594 (2009).

F. Hernandez-Pereza, F. Avilesa, A. May-Pata, A. Valadez-Gonzaleza, P. J. Herrera-Francoa, and P. Bartolo-Perez, “Effective properties of multiwalled carbon nanotube/epoxy composites using two different tubes,” Composit. Sci. Technol. 68, 1422–1431 (2008).

R. V. Akatenkov, V. M. Aleksashin, I. V. Anoshkin, A. N. Babin, V. A. Bogatov, V. P. Grachev, S. V. Kondrashov, V. T. Minakov, and E. G. Rakov, “Effect of small quantity of functionalized nanotubes onto physical-mechanical properties and structure of epoxy composites,” Deform. Razrush. Mater., No. 11, 35–40 (2011).

S. Wang, R. Liang, T. Liu, B. Wang, and C. Zhang, “Effective amino-functionalization of carbon nanotubes for reinforcing epoxy polymer composites,” Nanotecnol. 17, 1551–1557 (2006).

S. Wang, R. Liang, T. Liu, B. Wang, and C. Zhang, “Covalent addition of diethyltoluenediamines onto carbon nanotubes for composite application,” Polym. Compos. 30(8), 1050–1057 (2009).

J. Shen, W. Huang, L. Wu, Y. Hu, and M. Ye, “Thermo-physical properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes,” Composites: Part A 38, 1331–1336 (2007).

J. Shen, W. Huang, L. Wu, Y. Hu, and M. Ye, “The reinforcement role of different amino-functionalized multi-walled carbon nanotubes in epoxy nanocomposites,” Composit. Sci. Technol. 67, 3041–3050 (2007).

J. Wang, Z. Fang, A. Gu, L. Xu, and Fu Liu, “Effect of amino-functionalization of multi-walled carbon nanotubes on the dispersion with epoxy resin matrix,” J. Appl. Polymer Sci. 100, 97–104 (2006).

J. Zhy, H. Peng, F. Rodriguez, J. L. Margrave, V. N. Khabashesky, A. M. Imam, K. Lozano, E. V. Barera, “Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes,” Adv. Funct. Mater. 14(7), 643–648 (2004).

C.-H. Tseng, C.-C. Wang, and C. Y. Chen, “Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites,” Chem. Mater. 19, 308–315 (2007).

W. J. Choi, R. L. Powell, and D. S. Kim, “Curing behavior and properties of epoxy nanocomposites with amine functionalized multiwall carbon nanotubes,” Polymer Composite 30(4), 415–421 (2009).

J. T. Kim, H.-C. Kim, S.-K. Kim, and J. Kathi, “3-aminopropyltriethoxysilane effect on thermal and mechanical properties of multi-walled carbon nanotubes reinforced epoxy composites,” J. Composite Mater. 43(22), 2533–2541 (2009).

G. Sui, W. H. Zhona, M. C. Liu, and P. H. Wu, “Enhancing mechanical properties of an epoxy resin using “Liquid nano-reinforcements”,” Mater. Sci. Eng. A 512, 139–142 (2009).

M. L. Auad, M. A. Mosiewicki, C. Uzunpinar, and R. J. J. Williams, “Functionalization of carbon nanotubes and carbon nanofibers used in epoxy/amine matrices that avoid partitioning of the monomers at the fiber interface,” Polymer Eng. Sci. 50(1), 183–190 (2010).

Yu. A. Mikhailin, Thermo-Resistant Polymers and Polymeric Materials (Professiya, St. Petersburg, 2006) [in Russian].

G. V. Korolev, M. M. Mogilevich, and I. V. Golikov, Cross-Linked Polyacrilates. Microheterogeneous Structures, Physical Grids, Deformation-Strength Properties (Khimiya, Moscow, 1995) [in Russian].

A. N. Ponomarev, “Nanotechnology and nanostructure materials,” Industriya, No. 1, 14–15 (2002).

S. V. Kondrashov, V. A. Bogatov, T. P. D’yachkova, I. A. Mansurova, P. S. Marakhovskii, I. A. Mokretsova, and A. S. Fokin, “The way to raise the heat resistance of epoxy binder by using carbon nanotubes,” Perspekt. Mater. (2013) (in press).

G. M. Gunyaev, L. V. Chursova, O. A. Komarova, and A. G. Gunyaeva, “Structure carbonplastics modified by nanoparticles,” in Appendix to the Journal “Aviation Materials and Technologies” (VIAM, Moscow, 2012), pp. 277–286 [in Russian].

F. H. Gojny, M. H. G. Wichmann, B. Fiedler, and K. Schulte, “Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-a comparative study,” Composit. Sci. Technol. 65, 2300–2313 (2005).

F. H. Gojny, M. H. G. Wichmann, U. Kopke, B. Fied- ler, and K. Schulte, “Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content,” Composit. Sci. Technol. 64, 2363–2371 (2004).

R. V. Akatenkov, K. R. Akhmadeeva, V. A. Bogatov, S. V. Kondrashov, P. S. Marakhovskii, and A. S. Fokin, RF Patent No. 2011118714 (16.07.2012).

T. Villmow, B. Kretzschmar, and P. Pötschke, “Influence of screw configuration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites,” Composit. Sci. Technol. 70, 2045–2055 (2010).

B. Krause, R. Boldt, and P. Pötschke, “A method for determination of length distributions of multiwalled carbon nanotubes before and after melt processing,” Carbon 49(4), 1243–1247 (2011).

G. R. Kasaliwal, S. Pegel, A. Göldel, P. Pötschke, and G. Heinrich, “Analysis of agglomerate dispersion mechanisms of multiwalled carbon nanotubes during melt mixing in polycarbonate,” Polymer 51, 2708–2720 (2010).

S. Pegela, P. Potschkea, G. Petzold, I. Alig, S. M. Dudkin, and D. Lellinger, “Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts,” Polymer 49, 974–984 (2008).

J.-H. Du, J. Bai, and H.-M. Cheng, “The present status and key problems of carbon nanotube based polymer composites,” eXPRESS Polymer Lett. 1(5), 253–273 (2007).

K. Yu, Z. Zhang, Y. Liu, and J. Leng, “Carbon nanotube chains in a shape memory polymer/carbon black composite: to significantly reduce the electrical resistivity,” Appl. Phys. Lett. 98, 074102–074104 (2011).

Y. Huang, L. Ning, M. Yanfeng, D. Feng, L. Feifei, H. Xiaobo, L. Xiao, G. Hongjun, and C. Yongsheng, “The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites,” Carbon 10, 1016–1028 (2007).

X. Changshu, P. Yubai, L. Xuejian, S. Xingwei, S. Xiaomei, and G. Jingkun, “Microwave attenuation of multi-walled carbon nanotube-fused silica composites,” Appl. Phys. Lett. 87, 123103–123105 (2005).

V. E. Muradyan, E. A. Sokolov, S. D. Babenko, and A. P. Moravskii, “Dielectric properties of composites modified by carbon nanostructures in the microwave band,” Zh. Tekh. Fiz. 80(2), 83–87 (2010).

B. De. Vivo, L. Guadagno, P. Lambeerrttii, R. Raimo, M. S. Sarto, A. Tamburrano, V. Tucci, and L. Vertuccio, “Electromagnetic properties of carbon nanotube/epoxy nanocomposites,” in IEEE Conf. “2009 EMC Europe Workshop Materials and Applications” (Athenes, June 11–12, 2009).

Q. Huang, T. B. Holland, A. K. Mukherjee, E. Chojnack, M. Malloy, and M. Tigner, “Carbon nanotube RF absorbing materials,” in Proc. SRF2009 (Berlin, 2009).

R. K. Challa, D. Kajfez, V. Demir, J. R. Gladden, and A. Z. Elsherbeni, “Characterization of multiwalled carbon nanotube (MWCNT) composites in a waveguide of square cross section,” IEEE Microwave Wireless Components Lett. 18(3), 161–163 (2008).

L. Ning, Y. Huang, D. Feng, H. Xiaobo, L. Xiao, G. Hongjun, M. Yanfeng, L. Feifei, C. Yongsheng, and P. C. Eklun, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).

X. Hua and S. M. Anlage, “Microwave shielding of transparent and conducting single-walled carbon nanotube films,” Appl. Phys. Lett. 90, 183119–183121 (2007).

X. Hu, Z. Shixong, and S. M. Anlage, “Frequency- and electric-field-dependent conductivity of single-walled carbon nanotube networks of varying density,” Phys. Rev. B 77, 075418–075423 (2008).

R. V. Akatenkov, I. V. Anoshkin, A. A. Belyaev, V. V. Bitt, V. A. Bogatov, T. P. D’yachkova, K. E. Kutsevich, S. V. Kondrashov, A. M. Romanov, V. V. Shirokov, and N. V. Khorobrov, “Effect of carbon nanotubes structure organization onto radio shielding and electroconducting nanocomposites properties,” Aviats. Mater. Tekhnol., No. 1, 35–42 (2011).

E. Bekyarova, M. E. Itkis, N. Cabrera, B. Zhao, A. Yu, J. Gao, and R. C. Haddon, “Electronic properties of single-walled carbon nanotube networks,” J. Am. Chem. Soc., No. 127, 5990–5995 (2005).

G. M. Gunyaev, L. V. Chursova, A. E. Raskutin, G. V. Nachinkina, A. G. Gunyaeva, and V. M. Kuprienko, “Lightning-proof coatings for structure carbon plastics, containing nanoparticles,” in All Materials. Encyclopedia (2012), No. 3, pp. 24–35.

E. N. Kablov, G. M. Gunyaev, S. I. Il’chenko, A. N. Ponomarev, T. N. Kavun, O. A. Komarova, and A. E. Kopylov, RF Patent No. 2217320 (27.11.2003).

G. M. Gunyaev, L. V. Chursova, A. E. Raskutin, and A. G. Gunyaeva, “Lightning-proof of modern polymeric composites,” Aviats. Mater. Tekhnol., No. 2, 36–42 (2012).

G. M. Gunyaev, E. N. Kablov, and V. M. Aleksashin, “The way to modify carbon plastics by carbon nanotubes,” Ross. Khim. Zh. (Zh. Ross. Khim. Obsch. im. D. I. Mendeleeva) 54(1), 5–11 (2010).

G. Lubineau and A. Rahaman, “A Review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements,” Carbon 50, 2377–2395 (2012).

Z. Shen, H. Ching, S. Lehoczky, I. Muntele, and D. Ila, “Carbon nanotube growth on carbon fibers,” Diamond Relat. Mater. 12(10–11), 1825–1838 (2003).

K. Otsuka, Y. Abe, N. Kanai, Y. Kobayashi, S. Takenaka, and E. Tanabe, “Synthesis of carbon nanotubes on Ni/carbon-fiber catalysts under mild conditions,” Carbon 42(4), 727–736 (2004).

Z. R. Ismagilov, N. V. Shikina, V. N. Kruchinin, N. A. Rudina, V. A. Ushakov, N. T. Vasenin, and H. J. Veringa, “Development of methods of growing carbon nanofibers on silica glass fiber supports,” Catalysis Today 102–103, 85–93 (2005).

W. Down and R. Baker, “Modification of the surface properties of carbon fibers via the catalytic growth of carbon nanofibers,” J. Mater. Res. 10, 625–633 (1995).

H. Qian, A. Bismarck, E. S. Greenhalgh, and M. S. Shaffer, “Carbon nanotube grafted silica fibers: characterizing the interface at the single fiber level,” Compos. Sci. Technol. 70(2), 393–399 (2010).

R. J. Sager, P. J. Klein, D. C. Lagoudas, Q. Zhang, J. Liu, L. Dai, and L. W. Baur, “Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix,” Compos. Sci. Technol. 69, 898–904 (2009).

H. Qian, A. Bismarck, E. Greehalgh, G. Kalinka, and M. Shaffer, “Hierarchical composites reinforced with carbon nanotube grafted fibers: the potential assessed at the single fiber level,” Chem. Mater. 20, 1862–1869 (2008).

E. Bekyarova, E. T. Thostenson, A. Yu, H. Kim, J. Gao, J. Tang, H. T. Hahn, T.-W. Chou, M. E. Itkis, and R. C. Haddon, “Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites,” Langmuir 23, 3970–3974 (2007).

J. Zhang, R. Zhuang, J. Liu, E. Ma, G. Heinrich, and S. Gao, “Functional interphases with multi-walled carbon nanotubes in glass fibre/epoxy composites,” Carbon 48, 2273–2281 (2010).

A. Godara, L. Gorbatikh, G. Kalinka, A. Warrier, O. Rochez, L. Mezzo, F. Luizi, A. W. van Vuure, S. V. Lomov, and I. Verpoest, “Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes,” Composit. Sci. Technol. 70, 1346–1352 (2010).

S.-L. Gao, E. Ma, and R. Plonka, “Nanocomposite coatings for healing surface defects of glass fibers and improving interfacial adhesion,” Composit. Sci. Technol. 68, 2892–2901 (2008).

F. H. Gojny, J. Nastalczyk, Z. Roslaniec, and K. Schulte, “Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites,” Chem. Phys. Lett. 370, 820–824 (2003).

E. Bekyarova, E. T. Thostenson, A. Yu, M. E. Itkis, D. Fakhrutdinov, T.-W. Chou, and R. C. Haddon, “Functionalized single-walled carbon nanotubes for carbon fiber-epoxy composites,” J. Phys. Chem. C 111, 17865–17871 (2007).

J. Cho, J. Y. Chen, and I. M. Daniel, “Mechanical enhancement of carbon fiber/epoxy composites by graphite nanoplatelet reinforcement,” Scripta Mater. 56, 685–688 (2007).

F. H. Gojny, M. H. G. Wichmann, B. Fiedler, W. Bauhofer, and K. Schulte, “Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites,” Composites: Part A 36, 1525–1535 (2005).

J. Qiu, C. Zhang, B. Wang, and R. Liang, “Carbon nanotube integrated multifunctional multiscale composites,” Nanotecnol. 18, 275708–275718 (2007).

V. C. S. Chandrasekaran, S. G. Advani, and M. H. Santare, “Role of processing on interlaminar shear strength enhancement of epoxy/glass fiber/multi-walled carbon nanotube hybrid composites,” Carbon 48, 3692–3699 (2010).

Z. Fan, K.-T. Hsiao, and S. G. Advani, “Experimental investigation of dispersion during flow of multi-walled carbon nanotube/polymer suspension in fibrous porous media,” Carbon 42(4), 871–876 (2004).

Z. Fan, W. Tang, K.-T. Hsiao, and S. G. Advani, “Flow and dispersion of multiwalled carbon nanotubes in polymer and fiberglass reinforced polymer composites,” Proc. 2004 NSF Design, Service and Manufacturing Grantees and Research Conf. (Dallas, Jan. 5–8, 2004).

K.-T. Hsiao, “Manufacturing of functionally graded hybrid carbon nanotube/fiber glass composites,” Report at University of South Alabama Research Council (USARC) (June 30, 2005).

K.-T. Hsiao, S. Sadeghian, and G. Sudhir, “Manufacturing and characterization of hybrid carbon nanofibers-glass fibers polymer composites,” in Proc. 12th Annu. USA Research Forum (Univ. of South Alabama, Apr. 11–15, 2005).

R. Sadeghian, S. Gangireddy, B. Minaie, and K.-T. Hsiao, “Model delamination characterization for carbon nanofibers toughened polyester/glassfiber composites,” in Proc. 50th Int. Society for Advancement of Material and Process Engineering (SAMPE) Symp. and Exhibition (Long Beach, CA, May 1–5, 2005).

L. Gorbatikh, S. V. Lomov, and I. Verpoest, Nanoengineered composites: a multiscale approach for adding toughness to fibre reinforced composites,” Proc. Eng. 10, 3252–3258 (2011).

F. Inam, D. W. Y. Wong, M. Kuwata, and T. Peijs, “Multiscale hybrid micro-nanocomposites based on carbon nanotubes and carbon fibers,” J. Nanomater., 453420–453431 (2010).

E. J. Garcia, B. L. Wardle, and A. J. Hart, “Joining prepreg composite interfaces with aligned carbon nanotubes,” Composites Part A 39, 1065–1070 (2008).

Y. Huang, N. Li, Y. Ma, F. Du, F. Li, X. He, X. Lin, H. Gao, and Y. Chen, “The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites,” Carbon 45(8), 1614–1621 (2007).

Z. Wang, Z. Liang, B. Wang, C. Zhang, and L. Kramer, “Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites,” Composites Part A 35, 1225–1232 (2004).