Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications

Journal of Manufacturing Processes - Tập 36 - Trang 571-600 - 2018
Nikolai Kashaev1, Volker Ventzke1, G. Çam2
1Helmholtz-Zentrum Geesthacht, Zentrum für Material und Küstenforschung, Institute of Materials Research, Materials Mechanics, Department of Joining and Assessment, Max-Planck-Str. 1, 21502 Geesthacht, Germany
2Iskenderun Technical University, Faculty of Engineering and Natural Sciences, Department of Mechanical Engineering, 31200 Iskenderun-Hatay, Turkey

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chady, 2013

Murphy, 2007, The characterization of friction stir welding process effects on stiffened panel structures, Thin Wall Struct, 45, 339, 10.1016/j.tws.2007.02.007

Starke, 1996, Application of modern aluminum alloys to aircraft, Prog Aerosp Sci, 32, 131, 10.1016/0376-0421(95)00004-6

Wilson, 2012, A preliminary structural design procedure for laser beam welded airframe stiffened panels, Thin Wall Struct, 55, 37, 10.1016/j.tws.2012.03.003

Alexopoulos, 2016, Laser beam welded structures for a regional aircraft: weight, cost and carbon footprint savings, J Manuf Syst, 39, 38, 10.1016/j.jmsy.2016.02.002

Gialos, 2018, Investigating the impact of sustainability in the production of aeronautical subscale components, J Clean Prod, 176, 785, 10.1016/j.jclepro.2017.12.151

Pacchione, 2006

Cao, 2003, Research and progress in laser welding of wrought aluminum alloys. I. Laser welding processes, Mater Manuf Proc, 18, 1, 10.1081/AMP-120017586

Cao, 2003, Research and progress in laser welding of wrought aluminum alloys. II. Metallurgical microstructures, defects, and mechanical properties, Mater Manuf Proc, 18, 23, 10.1081/AMP-120017587

Ion, 2000, Laser beam welding of wrought aluminium alloys, Sci Technol Weld Join, 5, 265, 10.1179/136217100101538308

Sánchez Amaya, 2013, Laser welding of light metal alloys: aluminium and titanium alloys, 215

Oladimeji, 2016, Trend and innovations in laser beam welding of wrought aluminum alloys, Weld World, 60, 415, 10.1007/s40194-016-0317-9

Hong, 2017, Prospects of laser welding technology in the automotive industry: a review, J Mater Proc Technol, 245, 46, 10.1016/j.jmatprotec.2017.02.008

Threadgill, 2009, Friction stir welding of aluminium alloys, Int Mater Rev, 54, 49, 10.1179/174328009X411136

Çam, 2014, Recent developments in friction stir welding of Al-alloys, J Mater Eng Perform, 23, 1936, 10.1007/s11665-014-0968-x

Çam, 2017, Recent developments in joining of aluminum alloys, Int J Adv Manuf Technol, 91, 1851, 10.1007/s00170-016-9861-0

Schmidt, 2010

Eberl, 2006

Prasad, 2014

Aleris International Inc, 2015

Schubert, 2001, Light weight structures produced by laser beam joining for future applications in automobile and aerospace industry, J Mater Process Technol, 115, 2, 10.1016/S0924-0136(01)00756-7

Rath, 2009, CO2 laser-workhorse for industrial manufacturing, Laser Technol J, 6, 32, 10.1002/latj.200990037

Behler, 1997, Laser beam welding of low weight materials and structures, Mater Des, 18, 261, 10.1016/S0261-3069(97)00085-X

Quintino, 2012, Laser welding of structural aluminium, 33

Verhaeghe, 2000, Laser welding automotive steel and aluminium

Katayama, 2013

Badini, 2009, Laser beam welding of dissimilar aluminium alloys of 2000 and 7000 series: effect of post-welding thermal treatments on T joint strength, Sci Technol Weld Join, 14, 484, 10.1179/136217108X372559

Schmidt, 1999, Vol. 1, 537

Curcio, 2006, On the welding of different materials by diode laser, J Mater Process Technol, 175, 83, 10.1016/j.jmatprotec.2005.04.026

Giesen, 1994, Scalable concept for diode-pumped high-power solid-state lasers, Appl Phys B, 58, 365, 10.1007/BF01081875

Brockmann, 2009

Poprawe, 2005

www.trumpf.com [accessed 23 October 2017].

www.ipgphotonics.com [accessed 23 October 2017].

Braun, 2006, Nd: YAG laser butt welding of AA6013 using silicon and magnesium containing filler powders, Mater Sci Eng A, A426, 250, 10.1016/j.msea.2006.04.033

Han, 2017, New technique of skin embedded wire double-sided laser beam welding, Opt Laser Technol, 91, 185, 10.1016/j.optlastec.2016.12.023

Dittrich, 2011, Laser beam welding of hard to weld Al alloys for a regional aircraft fuselage design – first results, Phys Procedia, 12, 113, 10.1016/j.phpro.2011.03.015

Enz, 2015, Single-sided laser beam welding of a dissimilar AA2024-AA7050 T-joint, Mater Des, 76, 110, 10.1016/j.matdes.2015.03.049

Enz, 2016, Laser weldability of high-strength Al-Zn alloys and its improvement by the use of an appropriate filler material, Metall Mater Trans A, 47A, 2830, 10.1007/s11661-016-3446-2

Enz, 2016, Fibre laser welding of high alloyed Al–Zn–Mg–Cu alloys, J Mater Process Technol, 237, 155, 10.1016/j.jmatprotec.2016.06.002

Enz, 2017, Mechanical properties of laser beam welded similar and dissimilar aluminum alloys, J Manuf Process, 29, 272, 10.1016/j.jmapro.2017.07.030

Ahn, 2017, Effect of filler metal feed rate and composition on microstructure and mechanical properties of fibre laser welded AA 2024-T3, J Manuf Process, 25, 26, 10.1016/j.jmapro.2016.10.006

Ahn, 2017, The effect of Ar and He shielding gas on fibre laser weld shape and microstructure in AA 2024-T3, J Manuf Process, 29, 62, 10.1016/j.jmapro.2017.07.011

Alfieri, 2015, Autogenous laser welding of AA 2024 aluminium alloy: process issues and bead features, Procedia CIRP, 33, 406, 10.1016/j.procir.2015.06.094

Wang, 2018, Effects of welding parameters on microstructures and mechanical properties of disk laser beam welded 2A14-T6 aluminum alloy joint, J Manuf Process, 31, 240, 10.1016/j.jmapro.2017.11.017

Daneshpour, 2009, Effect of overload on fatigue crack retardation of aerospace Al-alloy laser welds using crack-tip plasticity analysis, Int J Fatigue, 31, 1603, 10.1016/j.ijfatigue.2009.04.005

Carrarin, 2015

Janasekaran, 2017, Autogenous double-sided T-joint welding on aluminum alloys using low power fiber laser, Int J Adv Manuf Technol, 90, 3497, 10.1007/s00170-016-9677-y

Kutsuna, 1993, CO2 laser welding of A2219, A5083 and A6063 aluminium alloys, Weld World, 31, 126

Weston, 1998

Kimura, 1991

Haynes, 1997, Elevated temperature fracture toughness of Al-Cu-Mg-Ag sheet: characterization and modeling, Metall Mater Trans A, 28A, 1815, 10.1007/s11661-997-0112-8

Bakavos, 2008, The effect of silver on microstructural evolution in two 2XXX series Al-alloys with a high Cu:Mg ratio during aging to a T8 temper, Mater Sci Eng A, A491, 214, 10.1016/j.msea.2008.03.014

Kermanidis, 2010, Effects of temper condition and corrosion on the fatigue performance of a laser-welded Al-Cu-Mg-Ag (2139), alloy. Mater Des, 31, 42, 10.1016/j.matdes.2009.07.020

Zervaki, 2012, Trends in welding research 2012, Proc. of the 9th International Conference, 117

Viscusi, 2016, Laser beam welded joints of dissimilar heat treatable aluminium alloys, J Mater Process Technol, 236, 48, 10.1016/j.jmatprotec.2016.05.006

Kostrivas, 1999, Weldability of Li bearing aluminium alloys, Int Mater Rev, 44, 217, 10.1179/095066099101528289

Enz, 2012, Process optimisation for the laser beam welding of high-strength aluminium-lithium alloys (in German), Schweißen und Schneiden, 64, 482

Enz, 2012, Influence of the local chemical composition on the mechanical properties of laser beam welded Al-Li alloys, Phys. Procedia, 39, 51, 10.1016/j.phpro.2012.10.013

Lippold, 1996, Weldability of commercial Al-Cu-Li alloys, Mater Sci Forum, 217-222, 1685, 10.4028/www.scientific.net/MSF.217-222.1685

Jan, 1995, 329

Kashaev, 2014, Fatigue and fatigue crack propagation of laser beam-welded AA2198 joints and integral structures, Adv Mater Res, 891-892, 1457, 10.4028/www.scientific.net/AMR.891-892.1457

Kashaev, 2015, Fracture mechanical behaviour of laser beam-welded AA2198 butt joints and integral structures, Int J Struct Integr, 6, 787, 10.1108/IJSI-10-2014-0052

Zhang, 2016, Microstructure and mechanical properties of laser beam-welded AA2060 Al-Li alloy, J Mater Process Technol, 237, 301, 10.1016/j.jmatprotec.2016.06.021

Zhang, 2015, Microstructure and mechanical properties of laser beam welded Al–Li alloy 2060 with Al–Mg filler wire, Mater Des, 88, 446, 10.1016/j.matdes.2015.08.144

Tian, 2016, Process optimization of dual-laser beam welding of advanced Al-Li alloys through hot cracking susceptibility modeling, Metall Mater Trans A, 47A, 3533, 10.1007/s11661-016-3509-4

Han, 2017, Double-sided laser beam welded T-joints for aluminum-lithium alloy aircraft fuselage panels: effects of filler elements on microstructure and mechanical properties, Opt Laser Technol, 93, 99, 10.1016/j.optlastec.2017.02.004

Enz, 2018, Hot cracking behaviour of an autogenously laser welded Al-Cu-Li alloy, Int J Adv Manuf Technol, 95, 299, 10.1007/s00170-017-1197-x

Ning, 2017, Comparison of the microstructure and mechanical performance of 2A97 Al-Li alloy joints between autogenous and non-autogenous laser welding, Mater Des, 120, 144, 10.1016/j.matdes.2017.02.003

Fu, 2014, Microstructure and mechanical properties of newly developed aluminum-lithium alloy 2A97 welded by fiber laser, Mater Sci Eng A, A617, 1

Kashaev, 2013, 737

Tempus, 1999

Fridlyander, 2006

Melzer, 1997

Rendigs, 1997, Aluminium structures used in aerospace - Status and prospects, Mater Sci Forum, 242, 11, 10.4028/www.scientific.net/MSF.242.11

Ovsyannikov, 2008, Thermal and microstructural analysis of Al-Mg-Li alloys (in Russian), Alloys, 4, 22

https://viam.ru/en; (Accessed 30 October 2017).

Shi, 2007, Effect of laser beam welding on tear toughness of a 1420 aluminum alloy thin sheet, Mater Sci Eng A, A465, 153, 10.1016/j.msea.2007.02.079

Zhuang, 2016, Laser welding of 1420 aluminium-lithium alloys under the keyhole regime, Laser Eng, 35, 303

Yan, 2013, Microstructure and mechanical properties of laser-MIG hybrid welding of 1420 Al-Li alloy, Int J Adv Manuf Technol, 66, 1467, 10.1007/s00170-012-4431-6

Santos, 2011, Microstructural mapping of friction stir welded AA 7075-T6 and AlMgSc alloys using electrical conductivity, Sci Technol Weld Join, 16, 630, 10.1179/1362171811Y.0000000052

http://www.twi-global.com/industries/aerospace/joining-of-airframe-structures/laser-beam-welding-of-airframe-structures/; (Accessed 7 November 2017).

Lenczowski, 2016

Metallurgist, http://www.france-metallurgie.com/31923/; 2016 (Accessed 7 November 2017).

Palm, 2009

Polmear, 2005

Lampman, 1997, 283

Fabrègue, 2009, Influence of the silicon content on the mechanical properties of AA6xxx laser welds, Mater Sci Eng A, A506, 157, 10.1016/j.msea.2008.11.033

Pakdil, 2011, Microstructural and mechanical characterization of laser beam welded AA6056 Al-alloy, Mater Sci Eng A, A528, 7350, 10.1016/j.msea.2011.06.010

Ventzke, 2014, One-sided Nd:YAG laser beam welding for the manufacture of T-joints made of aluminium alloys for aircraft construction, Weld Cut, 13, 245

Wang, 2015, Experimental and numerical analysis of solidification cracking behaviour in fibre laser welding of 6013 aluminium alloy, Sci Technol Weld Join, 20, 58, 10.1179/1362171814Y.0000000254

Oliveira, 2015, One-sided laser beam welding of autogenous T-joints for 6013-T4 aluminium alloy, Mater Des, 65, 726, 10.1016/j.matdes.2014.09.055

Zhang, 2015, Microstructure and mechanical properties of a new Al–Zn–Mg–Cu alloy joints welded by laser beam, Mater Des, 83, 451, 10.1016/j.matdes.2015.06.070

Seib, 2006

Daneshpour, 2009, Damage tolerance analyses of laser welded “Skin-Clip” joints for aerospace applications, Weld World, 53, R90, 10.1007/BF03266707

Kou, 1986

Gutierrez, 1998, A proposed mechanism for equiaxed grain formation along the fusion boundary in aluminum-copper-lithium alloys, Weld Res Suppl, 77, 123s

Edwards, 1998, The precipitation sequence in Al–Mg–Si alloys, Acta Mater, 46, 3893, 10.1016/S1359-6454(98)00059-7

Esmaeili, 2003, On the precipitation-hardening behavior of the Al-Mg-Si-Cu alloy AA6111, Metall Mater Trans A, 34A, 751, 10.1007/s11661-003-0110-4

Yang, 2011, Study of microstructural and mechanical properties of weld heat affected zones of 2024‐T3 aluminium using gleeble simulation, Mater Sci Technol, 27, 357, 10.1179/026708310X12668415533964

Kashaev, 2015

Çam, 2011, Friction stir welded structural materials: beyond Al-alloys, Int Mater Rev, 56, 1, 10.1179/095066010X12777205875750

Thomas, 1991

Çam, 2017, Applicability of friction stir welding to steels, J Achiev Mater Manuf Eng, 80, 65

Toumpis, 2014, Development of a process envelope for friction stir welding of DH36 steel - a step change, Mater Des, 62, 64, 10.1016/j.matdes.2014.04.066

Tavares, 2011

Li, 2015, Fatigue property of stationary shoulder friction stir welded additive and non-additive T joints, Sci Technol Weld Join, 20, 650, 10.1179/1362171815Y.0000000045

Yan, 2005, Process-structure-property relationships for nugget and heat affected zone regions of AA2524-T351 friction stir welds, Sci Technol Weld Join, 10, 725, 10.1179/174329305X68778

Wang, 2015, Effect of tool rotational speed on the microstructure and mechanical properties of bobbin tool friction stir welding of Al–Li alloy, Mater Des, 86, 933, 10.1016/j.matdes.2015.07.096

Cui, 2012, Characteristics of defects and tensile behaviors on friction stir welded AA6061-T4 T-joints, Mater Sci Eng A, A543, 58, 10.1016/j.msea.2012.02.045

Penalva, 2009, AIP Conf Proc, 118

Cui, 2013, Process parameter influence on defects and tensile properties of friction stir welded T-joints on AA6061-T4 sheets, Mater Des, 51, 161, 10.1016/j.matdes.2013.04.013

Donati, 2009, Structural T-joint produced by means of friction stir welding (FSW) with filling material, Int J Mater Form, 2, 295, 10.1007/s12289-009-0439-3

Xu, 2017, Effect of welding speed on joint features and lap shear properties of stationary shoulder FSLWed Alclad 2024 Al alloy, J Mater Eng Perform, 26, 1358, 10.1007/s11665-017-2527-8

Niu, 2017, Global and local constitutive behaviors of friction stir welded AA2024 joints, J Mater Sci Technol, 33, 987, 10.1016/j.jmst.2017.02.010

Dalle Donne, 1998, Mikrostrukturelle, mechanische und korrosive Eigenschaften reibrührgeschweißter Stumpfnähte in Aluminiumlegierungen (in German), Mat.-wiss u Werkstofftech, 29, 609, 10.1002/mawe.19980291012

Khodir, 2006, Microstructure and mechanical properties of friction stir welded AA2024-T3 aluminum alloy, Mater Trans, 47, 185, 10.2320/matertrans.47.185

Zhang, 2015, Microstructural characteristics and mechanical properties of bobbin tool friction stir welded 2A14-T6 aluminum alloy, Mater Des, 65, 559, 10.1016/j.matdes.2014.09.068

Li, 2013, Effects of tool rotation speed on microstructures and mechanical properties of AA2219-T6 welded by the external non-rotational shoulder assisted friction stir welding, Mater Des, 43, 299, 10.1016/j.matdes.2012.07.011

Liu, 2013, Friction stir welding characteristics of 2219-T6 aluminum alloy assisted by external non-rotational shoulder, Int J Adv Manuf Technol, 64, 1685, 10.1007/s00170-012-4132-1

Bala Srinivasan, 2010, Characterisation of microstructure, mechanical properties and corrosion behaviour of an AA2219 friction stir weldment, J Alloy Compd, 492, 631, 10.1016/j.jallcom.2009.11.198

Sree Sabari, 2016, Influences of tool traverse speed on tensile properties of air cooled and water cooled friction stir welded AA2519-T87 aluminium alloy joints, J Mater Process Technol, 237, 286, 10.1016/j.jmatprotec.2016.06.015

Xu, 2009, Microstructure and mechanical properties of friction stir welded joints in 2219-T6 aluminum alloy, Mater Des, 30, 3460, 10.1016/j.matdes.2009.03.018

Yang, 2004, Banded microstructure in AA2024-T351 and AA2524-T351 aluminum friction stir welds: part I. Metallurgical studies, Mater Sci Eng A, A364, 55, 10.1016/S0921-5093(03)00532-X

Liu, 2011, Effect of welding speed on microstructures and mechanical properties of underwater friction stir welded 2219 aluminum alloy, Mater Des, 32, 1548, 10.1016/j.matdes.2010.09.032

Hornbuckle, 2017, Property mapping of friction stir welded Al-2139 T8 plate using site specific shear punch testing, Mater Sci Eng A, A682, 192, 10.1016/j.msea.2016.11.032

Grujicic, 2011, Computational investigation of hardness evolution during friction-stir welding of AA5083 and AA2139 aluminum alloys, J Mater Eng Perform, 20, 1097, 10.1007/s11665-010-9741-y

Grujicic, 2016, Experimental characterization and numerical analysis of the weld-region material in friction stir welded thick AA2139-T8 plates, Int J Struct Integr, 7, 429, 10.1108/IJSI-06-2015-0017

Campanile, 2011, FSW of AA2139-T8 butt joints for aeronautical applications, Proc Ins Mech Eng L-J Mater Des Appl, 225, 87

Velotti, 2013, FSW of AA 2139 plates: influence of the temper state on the mechanical properties, Key Eng Mater, 554-557, 1065, 10.4028/www.scientific.net/KEM.554-557.1065

Nikulin, 2012, Effect of SPD and friction stir welding on microstructure and mechanical properties of Al-Cu-Mg-Ag sheets, Mater Lett, 66, 311, 10.1016/j.matlet.2011.08.104

Li, 2013, Effect of rotation speed to welding speed ratio on microstructure and mechanical behavior of friction stir welded aluminum-lithium alloy joints, Adv Eng Mater, 15, 1051, 10.1002/adem.201300147

Ma, 2013, Effect of welding parameters on mechanical and fatigue properties of friction stir welded 2198 T8 aluminum–lithium alloy joints, Eng Fract Mech, 114, 1, 10.1016/j.engfracmech.2013.10.010

Shukla, 2009, Study of process/structure/property relationships in friction stir welded thin sheet Al-Cu-Li alloy, Sci Technol Weld Join, 14, 376, 10.1179/136217109X412409

Steuwer, 2011, A combined approach to microstructure mapping of an Al-Li AA2199 friction stir weld, Acta Mater, 59, 3002, 10.1016/j.actamat.2011.01.040

Tavares, 2013, Friction stir welded joints of Al-Li alloys for aeronautical applications: butt-joints and tailor welded blanks, Teor Apl Fract Mech, 65, 8, 10.1016/j.tafmec.2013.05.002

Le Jolu, 2010, Effect of joint line remnant on fatigue lifetime of friction stir welded Al-Cu-Li alloy, Sci Technol Weld Join, 15, 694, 10.1179/136217110X12813393169453

Le Jolu, 2014, Microstructural characterization of internal welding defects and their effect on the tensile behavior of FSW joints of AA2198 Al-Cu-Li alloy, Metall Mater Trans A, 45A, 5531, 10.1007/s11661-014-2537-1

Gao, 2015, Correlation of microstructure and mechanical properties in friction stir welded 2198-T8 Al–Li alloy, Mater Sci Eng A, A639, 489, 10.1016/j.msea.2015.05.038

Rao, 2010, Where does the lithium go? A study of the precipitates in the stir zone of a friction stir weld in a Li-containing 2xxx series Al alloy, Adv Eng Mater, 12, 298, 10.1002/adem.200900284

Goebel, 2017, Semi-stationary shoulder bobbin tool friction stir welding of AA2198-T851, J Mater Process Technol, 245, 37, 10.1016/j.jmatprotec.2017.02.011

Sidhar, 2017, Impact of thermal management on post weld heat treatment efficacy in friction stir welded 2050-T3 alloy, J Alloy Compd, 722, 330, 10.1016/j.jallcom.2017.06.141

Pouget, 2008, Residual stress and microstructure effects on fatigue crack growth in AA2050 friction stir welds, Int J Fatigue, 30, 463, 10.1016/j.ijfatigue.2007.04.016

Cai, 2015, Friction stir weld of 2060 Al-Cu-Li alloy: microstructure and mechanical properties, J Alloy Compd, 649, 19, 10.1016/j.jallcom.2015.02.124

Wei, 2007, Study of friction stir welding of 01420 aluminum-lithium alloy, Mater Sci Eng A, 452-453, 170, 10.1016/j.msea.2006.10.081

Sidhar, 2016, Friction stir welding of Al-Mg-Li 1424 alloy, Mater Des, 106, 146, 10.1016/j.matdes.2016.05.111

Lapasset, 2003, Investigation of the microstructure and properties of a friction stir welded Al-Mg-Sc alloy, Mater Sci Forum, 426-432, 2987, 10.4028/www.scientific.net/MSF.426-432.2987

Cabello Muñoz, 2008, Comparison of TIG welded and friction stir welded Al-4.5Mg-0.26Sc alloy, J Mater Process Technol, 197, 337, 10.1016/j.jmatprotec.2007.06.035

Besel, 2017, Influence of local fatigue damage evolution on crack initiation behavior in a friction stir welded Al-Mg-Sc alloy, Int J Fatigue, 99, 151, 10.1016/j.ijfatigue.2017.02.024

Sauvage, 2008, Precipitate stability and recrystallisation in the weld nuggets of friction stir welded Al-Mg-Si and Al-Mg-Sc alloys, Mater Sci Eng A, A491, 364, 10.1016/j.msea.2008.02.006

Malopheyev, 2014, Friction-stir welding of an Al-Mg-Sc-Zr alloy in as-fabricated and work-hardened conditions, Mater Sci Eng A, A600, 159, 10.1016/j.msea.2014.02.018

Malopheyev, 2015, Friction-stir welding of ultra-fine grained sheets of Al-Mg-Sc-Zr alloy, Mater Sci Eng A, A624, 132, 10.1016/j.msea.2014.11.079

Peng, 2011, Microstructure and properties of friction stir welded joints of Al-Mg-Sc alloy plates, Rare Metal Mater Eng, 40, 201, 10.1016/S1875-5372(11)60015-5

Zhemchuzhnikova, 2014, Cryogenic properties of Al-Mg-Sc-Zr friction-stir welds, Mater Sci Eng A, A598, 387, 10.1016/j.msea.2014.01.060

Zhemchuzhnikova, 2017, Fatigue performance of friction-stir-welded Al-Mg-Sc alloy, Metall Mater Trans A, A48, 150, 10.1007/s11661-016-3843-6

Zhao, 2010, Comparative investigation of tungsten inert gas and friction stir welding characteristics of Al-Mg-Sc alloy plates, Mater Des, 31, 306, 10.1016/j.matdes.2009.06.012

Moreira, 2009, Mechanical and metallurgical characterization of friction stir welding joints of AA6061-T6 with AA6082-T6, Mater Des, 30, 180, 10.1016/j.matdes.2008.04.042

Trueba, 2015, Effect of tool shoulder features on defects and tensile properties of friction stir welded aluminum 6061-T6, J Mater Process Technol, 219, 271, 10.1016/j.jmatprotec.2014.12.027

İpekoğlu, 2013, Investigation into the effect of temper condition on friction stir weldability of AA6061 Al-alloy plates, Kovove Mater, 51, 155, 10.4149/km_2013_3_155

İpekoğlu, 2014, Investigation into the influence of post-weld heat treatment on the friction stir welded AA6061 Al-alloy plates with different temper conditions, Metall Mater Trans A, 45A, 864, 10.1007/s11661-013-2026-y

Lim, 2005, Mechanical properties of friction stir welded Al alloys with different hardening mechanisms, Metal Mater Int, 11, 113, 10.1007/BF03027454

Chandu, 2013, The strength of friction stir welded aluminium alloy 6061, Int J Res Mech Eng Technol, 4, 119

Kumar, 2013, Mechanical properties of friction stir welded 6061 aluminium alloy, Int J Eng Res Technol, 2, 74

Malopheyev, 2016, Optimization of processing-microstructure-properties relationship in friction-stir welded 6061-T6 aluminum alloy, Mater Sci Eng A, A662, 136, 10.1016/j.msea.2016.03.063

Zhou, 2017, Effect of rotating speed on joint morphology and lap shear properties of stationary shoulder friction stir lap welded 6061-T6 aluminum alloy, Int J Adv Manuf Technol, 88, 2135, 10.1007/s00170-016-8924-6

Braun, 2000, Laser beam welding and friction stir welding of 6013-T6 aluminium alloy sheet, Mat-wiss u Werkstofftech, 31, 1017, 10.1002/1521-4052(200012)31:12<1017::AID-MAWE1017>3.0.CO;2-P

Heinz, 2002, Characterization of a friction-stir-welded aluminum alloy 6013, Metall Mater Trans B, B33, 489, 10.1007/s11663-002-0059-5

Leitao, 2009, Mechanical behaviour of similar and dissimilar AA5182-H111 and AA6016-T4 thin friction stir welds, Mater Des, 30, 101, 10.1016/j.matdes.2008.04.045

Zhao, 2014, Defects and tensile properties of 6013 aluminum alloy T-joints by friction stir welding, Mater Des, 57, 146, 10.1016/j.matdes.2013.12.021

Jata, 2000, Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451, Metall Mater Trans A, A31, 2181, 10.1007/s11661-000-0136-9

Pao, 2001, Corrosion-fatigue crack growth in friction stir welded Al 7050, Scr Mater, 45, 605, 10.1016/S1359-6462(01)01070-3

Su, 2003, Microstructural investigation of friction stir welded 7050-T651 aluminium, Acta Mater, 51, 713, 10.1016/S1359-6454(02)00449-4

Reynolds, 2005, Relationships between weld parameters, hardness distribution and temperature history in alloy 7050 friction stir welds, Sci Technol Weld Join, 10, 190, 10.1179/174329305X37024

Zhou, 2016, Microstructural characteristics and mechanical properties of 7050-T7451 aluminum alloy friction stir-welded joints, J Mater Eng Perform, 25, 2542, 10.1007/s11665-016-2106-4

Wu, 2015, Stationary shoulder FSW for joining high strength aluminum alloys, J Mater Process Technol, 221, 187, 10.1016/j.jmatprotec.2015.02.015

Zhang, 2015, Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of a super high strength Al-Zn-Mg-Cu aluminum alloy, Mater Des, 67, 483, 10.1016/j.matdes.2014.10.055

Rajakumar, 2011, Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminium alloy joints, Mater Des, 32, 535, 10.1016/j.matdes.2010.08.025

Ipekoǧlu, 2012, Investigation of the effect of temper condition on friction stir weldability of AA7075 Al-alloy plates, Mater Technol, 46, 627

Ipekoǧlu, 2014, Effects of temper condition and post weld heat treatment on the microstructure and mechanical properties of friction stir butt-welded AA7075 Al alloy plates, Int J Adv Manuf Technol, 70, 201, 10.1007/s00170-013-5255-8

İpekoğlu, 2014, Effects of initial temper condition and postweld heat treatment on the properties of dissimilar friction-stir-welded joints between AA7075 and AA6061 aluminum alloys, Metall Mater Trans A, 45A, 3074, 10.1007/s11661-014-2248-7

Bayazid, 2016, Effect of cyclic solution treatment on microstructure and mechanical properties of friction stir welded 7075 Al alloy, Mater Sci Eng A, A649, 293, 10.1016/j.msea.2015.10.010

Fratini, 2010, Mechanical and metallurgical effects of in process cooling during friction stir welding of AA7075-T6 butt joints, Acta Mater, 58, 2056, 10.1016/j.actamat.2009.11.048

Lotfi, 2014, Effect of welding parameters on microstructure, thermal, and mechanical properties of friction-stir welded joints of AA7075-T6 aluminum alloy, Metall Mater Trans A, 45A, 2792, 10.1007/s11661-014-2235-z

Fuller, 2010, Evolution of microstructure and mechanical properties in naturally aged 7050 and 7075 Al friction stir welds, Mater Sci Eng A, A527, 2233, 10.1016/j.msea.2009.11.057

Li, 2015, Investigation of stationary shoulder friction stir welding of aluminum alloy 7075-T651, J Mater Process Technol, 222, 391, 10.1016/j.jmatprotec.2015.03.036

Barbini, 2018, Influence of a non-rotating shoulder on heat generation, microstructure and mechanical properties of dissimilar AA2024/AA7050 FSW joints, J Mater Sci Technol, 34, 119, 10.1016/j.jmst.2017.10.017

Azimzadegan, 2010, An investigation into microstructures and mechanical properties of AA7075-T6 during friction stir welding at relatively high rotational speeds, J Mater Eng Perform, 19, 1256, 10.1007/s11665-010-9625-1

Srinivasa Rao, 2015, Microstructure and mechanical properties of friction stir welded AA7075-T651 aluminum alloy thick plates, Trans Nonferrous Met Soc China, 25, 1770, 10.1016/S1003-6326(15)63782-7

Bozkurt, 2013, Effect of welding parameters on lap shear tensile properties of dissimilar friction stir spot welded AA 5754-H22/2024-T3 joints, Sci Technol Weld Join, 18, 337, 10.1179/1362171813Y.0000000111

Çam, 2014, Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061-T6 joints, Sci Technol Weld Join, 19, 715, 10.1179/1362171814Y.0000000247

Mallard, 2015, Microstructure distribution in an AA2050 T34 friction stir weld and its evolution during post-welding heat treatment, Acta Mater, 101, 90, 10.1016/j.actamat.2015.08.068

Çam, 2009, Mechanical properties of friction stir butt-welded Al-5086 H32 plate, Mat-wiss u Werkstofftech, 40, 638, 10.1002/mawe.200800455

Franchim, 2011, Microstructural aspects and mechanical properties of friction stir welded AA2024-T3 aluminium alloy sheet, Mater Des, 32, 4684, 10.1016/j.matdes.2011.06.055

Groth, 2015, 477

Prisco, 2008, LBW of similar and dissimilar skin-stringer joints part I: process optimization and mechanical characterization, Adv Mater Res, 38, 306, 10.4028/www.scientific.net/AMR.38.306

Smith, 2001, 175

Schultz, 2014, Gap bridging ability in laser beam welding of thin aluminum sheets, Phys Proc, 56, 545, 10.1016/j.phpro.2014.08.037

Vaidya, 2006, Assessment of fracture and fatigue crack propagation of laser beam and friction stir welded aluminium and magnesium alloys, Adv Eng Mater, 8, 399, 10.1002/adem.200600015

Lanciotti, 2011, Fatigue crack growth in stiffened panels, integrally machined or welded (LBW or FSW): the DaToN project common testing program, SDHM Struct Durab Hlth Monit, 7, 211

Murray, 2010, Hampshire, UKCost Effective Integral Metallic Structure (COINS), Final Report, European Commission, Cordis, Projects & Results Service2010, Cost Effective Integral Metallic Structure (COINS), Final Report, European Commission, Cordis, Projects & Results Service

Irving, 2009, 387

Ma, 2011, Residual stress effects and fatigue behavior of friction-stir-welded 2198-T8 Al-Li alloy joints, J Aircraft, 48, 1238, 10.2514/1.C031242

Ma, 2011, Damage tolerance properties of 2198-T8 integral fuselage panel between double friction stir weld joints, Appl Mech Mater, 138-139, 651, 10.4028/www.scientific.net/AMM.138-139.651

Cavaliere, 2008, Effect of anisotropy on fatigue properties of AA2198 Al-Li plates joined by friction stir welding, Metall Sci Technol, 26, 21

Harris, 1991, 141

Alexopoulos, 2013, Fatigue behavior of the aeronautical Al–Li (2198) aluminum alloy under constant amplitude loading, Int J Fatigue, 56, 95, 10.1016/j.ijfatigue.2013.07.009

Le Jolu, 2015, Fatigue lifetime and tearing resistance of AA2198 Al-Cu-Li alloy friction stir welds: effect of defects, Int J Fatigue, 70, 463, 10.1016/j.ijfatigue.2014.07.001

Steglich, 2010, Interaction between anisotropic plastic deformation and damage evolution in Al 2198 sheet metal, Eng Fract Mech, 77, 3501, 10.1016/j.engfracmech.2010.08.021

Chen, 2011

Webster, 2000, Structural integrity assessment procedure for Europe – of the SINTAP programme overview, Eng Fract Mech, 67, 481, 10.1016/S0013-7944(00)00070-9

Vaidya, 2012, Fatigue crack propagation into the residual stress field along and perpendicular to laser beam butt-weld in aluminium alloy AA6056, Fatigue Fract Eng Mater Struct, 35, 399, 10.1111/j.1460-2695.2011.01631.x

Liu, 2014, Fatigue crack growth property of laser beam welded 6156 aluminium alloy, Fatigue Fract Eng Mater Struct, 37, 937, 10.1111/ffe.12176

de Siqueira, 2017, A crack propagation study on T-joints of AA6013-T4 aluminum alloy welded by an Yb:fiber laser, Int J Adv Manuf Technol, 92, 2831, 10.1007/s00170-017-0377-z

Akhtar, 2017, Macromechanics study of stable fatigue crack growth in Al-Cu-Li-Mg-Ag alloy, Fatigue Fract Eng Mater Struct, 40, 233, 10.1111/ffe.12489

Richter-Trummer, 2016, Fatigue crack growth behaviour in friction stir welded aluminium-lithium alloy subjected to biaxial loads, Exp Techniques, 40, 921, 10.1007/s40799-016-0091-z

Nesterenko, 2000, 441.1

Ivetic, 2008, Electric strain gauge measurement of residual stress in welded panels, J Strain Anal Eng Des, 44, 117, 10.1243/03093247JSA456

Sticchi, 2014, Review of residual stress modification techniques for extending the fatigue life of metallic aircraft components, Appl Mech Rev, 67, 10.1115/1.4028160

Uz, 2009, Improvement of damage tolerance of laser beam welded stiffened panels for airframes via local engineering, Int J Fatigue, 31, 916, 10.1016/j.ijfatigue.2008.10.003

Schnubel, 2012, Retardation of fatigue crack growth in aircraft aluminium alloys via laser heating - experimental proof of concept, Mater Sci Eng A, A546, 8, 10.1016/j.msea.2012.02.094

Groth, 2015, Design of local heat treatment for crack retardation in aluminium alloys, Proc Eng, 114, 271, 10.1016/j.proeng.2015.08.068

Kashaev, 2017, Effects of laser shock peening on the microstructure and fatigue crack propagation behaviour of thin AA2024 specimens, Int J Fatigue, 98, 223, 10.1016/j.ijfatigue.2017.01.042

Zhang, 2009, Fail-safe design of integral metallic aircraft structures reinforced by bonded crack retarders, Eng Fract Mech, 76, 114, 10.1016/j.engfracmech.2008.02.003

Lu, 2018, Improving the fatigue performance of airframe structures by combining geometrical modifications and laser heating, Fatigue Fract Eng Mater Struct, 41, 1183, 10.1111/ffe.12762

Kashaev, 2018, Fatigue life extension of AA2024 specimens and integral structures by laser shock peening, MATEC Web Conf, 165, 18001, 10.1051/matecconf/201816518001

2011