Triển vọng quan sát và định vị các tín hiệu sóng hấp dẫn tạm thời với Advanced LIGO, Advanced Virgo và KAGRA

B. P. Abbott1, R. Abbott1, T. D. Abbott2, M. R. Abernathy3, F. Acernese4,5, K. Ackley6, C. Adams7, T. Adams8, P. Addesso9,10, R. X. Adhikari1, V. B. Adya11, C. Affeldt11, M. Agathos12, K. Agatsuma12, N. Aggarwal13, O. D. Aguiar14, L. Aiello15,16, A. Ain17, P. Ajith18, T. Akutsu19, B. Allen20,21,11, A. Allocca22,23, P. A. Altin24, A. Ananyeva1, S. B. Anderson1, W. G. Anderson20, M. Ando25,26,19, S. Appert1, K. Arai1, A. Araya27, M. C. Araya1, J. S. Areeda28, N. Arnaud29, K. G. Arun30, H. Asada31, S. Ascenzi32,15, G. Ashton11, Y. Aso19, M. Ast33, S. M. Aston7, P. Astone34, S. Atsuta35, P. Aufmuth21, C. Aulbert11, A. Avila-Alvarez28, K. Awai36, S. Babak37, P. Bacon38, M. K. M. Bader12, L. Baiotti39, P. T. Baker40,41, F. Baldaccini42,43, G. Ballardin44, S. W. Ballmer45, J. C. Barayoga1, S. E. Barclay46, B. C. Barish1, D. Barker47, F. Barone5,48, B. Barr46, L. Barsotti13, M. Barsuglia38, D. Barta49, J. Bartlett47, M. A. Barton19, I. Bartos50, R. Bassiri51, A. Basti22,23, J. C. Batch47, C. Baune11, V. Bavigadda44, M. Bazzan52,53, B. Bécsy54, C. Beer11, M. Bejger55, I. Belahcene29, M. Belgin56, A. S. Bell46, B. K. Berger1, G. Bergmann11, C. P. L. Berry57, D. Bersanetti58,59, A. Bertolini12, J. Betzwieser7, S. Bhagwat45, R. Bhandare60, I. A. Bilenko61, G. Billingsley1, C. R. Billman6, J. Birch7, R. Birney62, O. Birnholtz11, S. Biscans1,13, A. Bisht21, M. Bitossi44, C. Biwer45, M. A. Bizouard29, J. K. Blackburn1, J. Blackman63, C. D. Blair64, D. G. Blair64, R. M. Blair47, S. Bloemen65, O. Bock11, M. Boer66, G. Bogaert66, A. Bohe37, F. Bondu67, R. Bonnand8, B. A. Boom12, R. Bork1, V. Boschi22,23, S. Bose68,17, Y. Bouffanais38, A. Bozzi44, C. Bradaschia22, P. R. Brady20, V. B. Braginsky61, M. Branchesi69,70, J. E. Brau71, T. Briant72, A. Brillet66, M. Brinkmann11, V. Brisson29, P. Brockill20, J. E. Broida73, A. F. Brooks1, D. A. Brown45, D. D. Brown57, N. M. Brown13, S. Brunett1, C. C. Buchanan2, A. Buikema13, T. Bulik74, H. J. Bulten12,75, A. Buonanno76,37, D. Buskulic8, C. Buy38, R. L. Byer51, M. Cabero11, L. Cadonati56, G. Cagnoli77,78, C. Cahillane1, J. Calderón Bustillo56, T. A. Callister1, E. Calloni48,79, J. B. Camp80, K. C. Cannon25, H. Cao81, J. Cao82, C. D. Capano11, E. Capocasa38, F. Carbognani44, S. Caride83, J. Casanueva Diaz29, C. Casentini15,32, S. Caudill20, M. Cavaglià84, F. Cavalier29, R. Cavalieri44, G. Cella22, C. B. Cepeda1, L. Cerboni Baiardi69,70, G. Cerretani22,23, E. Cesarini15,32, S. J. Chamberlin85, M. Chan46, S. Chao86, P. Charlton87, E. Chassande-Mottin38, B. D. Cheeseboro40,41, H. Y. Chen88, Y. Chen63, H.-P. Cheng6, A. Chincarini59, A. Chiummo44, T. Chmiel89, H. S. Cho90, M. Cho76, J. H. Chow24, N. Christensen73, Q. Chu64, A. J. K. Chua91, S. Chua72, S. Chung, G. Ciani6, F. Clara47, J. A. Clark56, F. Cleva66, C. Cocchieri84, E. Coccia15,16, P.-F. Cohadon72, A. Colla92,34, C. G. Collette93, L. Cominsky94, M. Constancio14, L. Conti52, S. J. Cooper57, T. R. Corbitt2, N. Cornish95, A. Corsi83, S. Cortese44, C. A. Costa14, M. W. Coughlin73, S. B. Coughlin96, J.-P. Coulon66, S. T. Countryman97, P. Couvares1, P. B. Covas98, E. E. Cowan56, D. M. Coward64, M. J. Cowart7, D. C. Coyne1, R. Coyne83, J. D. E. Creighton20, T. D. Creighton99, J. Cripe2, S. G. Crowder100, T. J. Cullen28, A. Cumming46, L. Cunningham46, E. Cuoco44, T. Dal Canton80, S. L. Danilishin46, S. D’Antonio15, K. Danzmann21,11, A. Dasgupta101, C. F. Da Silva Costa6, V. Dattilo44, I. Dave60, M. Davier29, G. S. Davies46, D. Davis45, E. J. Daw102, B. Day56, R. Day44, S. De45, D. DeBra51, G. Debreczeni49, J. Degallaix78, M. De Laurentis48,79, S. Deléglise72, W. Del Pozzo57, T. Denker11, T. Dent11, V. Dergachev37, R. De Rosa48,79, R. T. DeRosa7, R. DeSalvo9,10,103, R. C. Devine40,41, S. Dhurandhar17, M. C. Díaz99, L. Di Fiore48, M. Di Giovanni104,105, T. Di Girolamo4,79, A. Di Lieto22,23, S. Di Pace92,34, I. Di Palma92,34,37, A. Di Virgilio22, Z. Doctor88, K. Doi106, V. Dolique78, F. Donovan13, K. L. Dooley84, S. Doravari11, I. Dorrington107, R. Douglas46, M. Dovale Álvarez57, T. P. Downes20, M. Drago11, R. W. P. Drever1, J. C. Driggers47, Z. Du82, M. Ducrot8, S. E. Dwyer47, K. Eda25, T. B. Edo102, M. C. Edwards73, A. Effler7, H.-B. Eggenstein11, P. Ehrens1, J. Eichholz1, S. S. Eikenberry6, R. A. Eisenstein13, R. C. Essick13, Z. Etienne40,41, T. Etzel1, M. Evans13, T. M. Evans7, R. Everett85, M. Factourovich50, V. Fafone15,32,16, H. Fair45, S. Fairhurst107, X. Fan82, S. Farinon59, B. Farr88, W. M. Farr57, E. J. Fauchon-Jones107, M. Favata108, M. Fays107, H. Fehrmann11, M. M. Fejer51, A. Fernández Galiana13, I. Ferrante22,23, E. C. Ferreira14, F. Ferrini44, F. Fidecaro22,23, I. Fiori44, D. Fiorucci38, R. P. Fisher45, R. Flaminio19,78, M. Fletcher46, H. Fong109, S. S. Forsyth56, J.-D. Fournier66, S. Frasca92,34, F. Frasconi22, Z. Frei54, A. Freise57, R. Frey71, V. Frey29, E. M. Fries1, P. Fritschel13, V. V. Frolov7, Y. Fujii19, M.-K. Fujimoto19, P. Fulda80,6, M. Fyffe7, H. Gabbard11, B. U. Gadre17, S. M. Gaebel57, J. R. Gair110, L. Gammaitoni42, S. G. Gaonkar17, F. Garufi48,79, G. Gaur111, V. Gayathri112, N. Gehrels80, G. Gemme59, E. Genin44, A. Gennai22, J. George60, L. Gergely113, V. Germain8, S. Ghonge18, Abhirup Ghosh18, Archisman Ghosh18,12, S. Ghosh12,65, J. A. Giaime7,2, K. D. Giardina7, A. Giazotto22, K. Gill114, A. Glaefke46, E. Goetz11, R. Goetz6, L. Gondan54, G. González2, J. M. Gonzalez Castro22,23, A. Gopakumar115, M. L. Gorodetsky61, S. E. Gossan1, M. Gosselin44, R. Gouaty8, A. Grado4,116, C. Graef46, M. Granata78, A. Grant46, S. Gras13, C. Gray47, G. Greco69,70, A. C. Green57, P. Groot65, H. Grote11, S. Grunewald37, G. M. Guidi69,70, X. Guo82, A. Gupta17, M. K. Gupta101, K. E. Gushwa1, E. K. Gustafson1, R. Gustafson117, J. J. Hacker28, A. Hagiwara118, B. R. Hall119, E. D. Hall1, G. Hammond46, M. Haney115, M. M. Hanke11, J. Hanks47, C. Hanna85, M. D. Hannam107, J. Hanson7, T. Hardwick2, J. Harms69,70, G. M. Harry3, I. W. Harry37, M. J. Hart46, M. T. Hartman6, C.-J. Haster57,109, K. Haughian46, K. Hayama36, J. Healy120, A. Heidmann72, M. C. Heintze7, H. Heitmann66, P. Hello29, G. Hemming44, M. Hendry46, I. S. Heng46, J. Hennig46, J. Henry120, A. W. Heptonstall1, M. Heurs21,11, S. Hild46, E. Hirose36, D. Hoak44, D. Hofman78, K. Holt7, D. E. Holz88, P. Hopkins107, J. Hough46, E. A. Houston46, E. J. Howell64, Y. M. Hu11, E. A. Huerta121, D. Huet29, B. Hughey114, S. Husa98, S. H. Huttner46, T. Huynh-Dinh7, N. Indik11, D. R. Ingram47, R. Inta83, K. Ioka122, H. N. Isa46, J.-M. Isac72, M. Isi1, T. Isogai13, Y. Itoh25, B. R. Iyer18, K. Izumi47, T. Jacqmin72, K. Jani56, P. Jaranowski123, S. Jawahar124, F. Jiménez-Forteza98, W. W. Johnson2, D. I. Jones125, R. Jones46, R. J. G. Jonker12, L. Ju64, J. Junker11, T. Kagawa106, T. Kajita36, M. Kakizaki106, C. V. Kalaghatgi107, V. Kalogera96, M. Kamiizumi36, N. Kanda126, S. Kandhasamy84, S. Kanemura106, M. Kaneyama126, G. Kang90, J. B. Kanner1, S. Karki71, K. S. Karvinen11, M. Kasprzack2, Y. Kataoka35, E. Katsavounidis13, W. Katzman7, S. Kaufer21, T. Kaur64, K. Kawabe47, N. Kawai35, S. Kawamura36, F. Kéfélian66, D. Keitel98, D. B. Kelley45, R. Kennedy102, J. S. Key127, F. Y. Khalili61, I. Khan16, S. Khan107, Z. Khan101, E. A. Khazanov128, N. Kijbunchoo47, C. Kim129, H. Kim130, J. C. Kim131, J. Kim132, W. Kim81, Y.-M. Kim133,134, S. J. Kimbrell56, N. Kimura118, E. J. King81, P. J. King47, R. Kirchhoff11, J. S. Kissel47, B. Klein96, L. Kleybolte33, S. Klimenko6, P. Koch11, S. M. Koehlenbeck11, Y. Kojima135, K. Kokeyama36, S. Koley12, K. Komori26, V. Kondrashov1, A. Kontos13, M. Korobko33, W. Z. Korth1, K. Kotake136, I. Kowalska74, D. B. Kozak1, C. Krämer11, V. Kringel11, B. Krishnan11, A. Królak137,138, G. Kuehn11, P. Kumar109, Rahul Kumar118, Rakesh Kumar101, L. Kuo86, K. Kuroda36, A. Kutynia138, Y. Kuwahara26, B. D. Lackey45,37, M. Landry47, R. N. Lang20, J. Lange120, B. Lantz51, R. K. Lanza13, A. Lartaux-Vollard29, P. D. Lasky139, M. Laxen7, A. Lazzarini1, C. Lazzaro52, P. Leaci92,34, S. Leavey46, E. O. Lebigot38, C. H. Lee133, H. K. Lee140, H. M. Lee134, H. W. Lee131, K. Lee46, J. Lehmann11, A. Lenon40,41, M. Leonardi105,104, J. R. Leong11, N. Leroy29, N. Letendre8, Y. Levin139, T. G. F. Li141, A. Libson13, T. B. Littenberg142, J. Liu64, N. A. Lockerbie124, A. L. Lombardi56, L. T. London107, J. E. Lord45, M. Lorenzini15,16, V. Loriette143, M. Lormand7, G. Losurdo22, J. D. Lough21,11, C. O. Lousto120, G. Lovelace28, H. Lück21,11, A. P. Lundgren11, R. Lynch13, Y. Ma63, S. Macfoy62, B. Machenschalk11, M. MacInnis13, D. M. Macleod2, F. Magaña-Sandoval45, E. Majorana34, I. Maksimovic143, V. Malvezzi32,15, N. Man66, V. Mandic144, V. Mangano46, S. Mano145, G. L. Mansell24, M. Manske20, M. Mantovani44, F. Marchesoni43,146, M. Marchio19, F. Marion8, S. Márka97, Z. Márka50, A. S. Markosyan51, E. Maros1, F. Martelli69,70, L. Martellini66, I. W. Martin46, D. V. Martynov13, K. Mason13, A. Masserot8, T. J. Massinger1, M. Masso-Reid46, S. Mastrogiovanni92,34, F. Matichard13, L. Matone97, N. Matsumoto147, F. Matsushima106, N. Mavalvala13, N. Mazumder68, R. McCarthy47, D. E. McClelland24, S. McCormick7, C. McGrath20, S. C. McGuire148, G. McIntyre, J. McIver1, D. J. McManus24, T. McRae24, S. T. McWilliams40,41, D. Meacher66,85, G. D. Meadors37,11, J. Meidam12, A. Melatos149, G. Mendell47, D. Mendoza-Gandara11, R. A. Mercer20, E. L. Merilh47, M. Merzougui66, S. Meshkov1, C. Messenger46, C. Messick85, R. Metzdorff72, P. M. Meyers144, F. Mezzani92,34, H. Miao57, C. Michel78, Y. Michimura26, H. Middleton57, E. E. Mikhailov150, L. Milano79,48, A. L. Miller92,34,6, A. Miller96, B. B. Miller96, J. Miller13, M. Millhouse95, Y. Minenkov15, J. Ming37, S. Mirshekari151, C. Mishra18, V. P. Mitrofanov61, G. Mitselmakher6, R. Mittleman13, O. Miyakawa36, A. Miyamoto126, T. Miyamoto36, S. Miyoki36, A. Moggi22, M. Mohan44, S. R. P. Mohapatra13, M. Montani69,70, B. C. Moore108, C. J. Moore91, D. Moraru47, G. Moreno47, W. Morii152, S. Morisaki25, Y. Moriwaki106, S. R. Morriss99, B. Mours8, C. M. Mow-Lowry57, G. Mueller6, A. W. Muir107, Arunava Mukherjee18, D. Mukherjee20, S. Mukherjee99, N. Mukund17, A. Mullavey7, J. Munch81, E. A. M. Muniz153, P. G. Murray46, A. Mytidis6, S. Nagano154, K. Nakamura19, T. Nakamura155, H. Nakano155, Masaya Nakano106, Masayuki Nakano36, K. Nakao126, K. Napier56, I. Nardecchia15,32, T. Narikawa126, L. Naticchioni92,34, G. Nelemans12,65, T. J. N. Nelson7, M. Neri58,59, M. Nery11, A. Neunzert117, J. M. Newport3, G. Newton46, T. T. Nguyen24, W.-T. Ni156,157, A. B. Nielsen11, S. Nissanke12,65, A. Nitz11, A. Noack11, F. Nocera44, D. Nolting7, M. E. N. Normandin99, L. K. Nuttall45, J. Oberling47, E. Ochsner20, E. Oelker13, G. H. Ogin158, J. J. Oh130, S. H. Oh130, M. Ohashi36, N. Ohishi19, M. Ohkawa159, F. Ohme107,11, K. Okutomi160, M. Oliver98, K. Ono36, Y. Ono106, K. Oohara161, P. Oppermann11, Richard J. Oram7, B. O’Reilly7, R. O’Shaughnessy120, D. J. Ottaway81, H. Overmier7, B. J. Owen83, A. E. Pace85, J. Page162, A. Pai112, S. A. Pai60, J. R. Palamos71, O. Palashov128, C. Palomba34, A. Pal-Singh33, H. Pan86, C. Pankow96, F. Pannarale107, B. C. Pant60, F. Paoletti22,44, A. Paoli44, M. A. Papa20,37,11, H. R. Paris51, W. Parker7, D. Pascucci46, A. Pasqualetti44, R. Passaquieti22,23, D. Passuello22, B. Patricelli22,23, B. L. Pearlstone46, M. Pedraza1, R. Pedurand163,78, L. Pekowsky45, A. Pele7, F. E. Peña Arellano19, S. Penn164, C. J. Perez47, A. Perreca1, L. M. Perri96, H. P. Pfeiffer109, M. Phelps46, O. J. Piccinni92,34, M. Pichot66, F. Piergiovanni69,70, V. Pierro10,9, G. Pillant44, L. Pinard78, I. M. Pinto9,10, M. Pitkin46, M. Poe20, R. Poggiani22,23, P. Popolizio44, A. Post11, J. Powell46, J. Prasad17, J. W. W. Pratt114, V. Predoi107, T. Prestegard144,20, M. Prijatelj44,11, M. Principe9,10, S. Privitera37, G. A. Prodi105,104, L. G. Prokhorov61, O. Puncken11, M. Punturo43, P. Puppo34, M. Pürrer37, H. Qi20, J. Qin64, S. Qiu139, V. Quetschke99, E. A. Quintero, R. Quitzow-James71, F. J. Raab47, D. S. Rabeling24, H. Radkins47, P. Raffai54, S. Raja60, C. Rajan60, M. Rakhmanov99, P. Rapagnani92,34, V. Raymond37, M. Razzano22,23, V. Re32, J. Read28, T. Regimbau66, L. Rei59, S. Reid62, D. H. Reitze6,1, H. Rew150, S. D. Reyes45, E. Rhoades114, F. Ricci92,34, K. Riles117, M. Rizzo120, N. A. Robertson46, R. Robie46, F. Robinet29, A. Rocchi15, L. Rolland8, J. G. Rollins1, V. J. Roma71, R. Romano4,5, J. H. Romie7, D. Rosińska165,55, S. Rowan46, A. Rüdiger11, P. Ruggi44, K. Ryan47, S. Sachdev1, T. Sadecki47, L. Sadeghian20, N. Sago166, M. Saijo167, Y. Saito36, K. Sakai168, M. Sakellariadou169, L. Salconi44, M. Saleem112, F. Salemi11, A. Samajdar170, L. Sammut139, L. M. Sampson96, E. J. Sanchez1, V. Sandberg47, J. R. Sanders45, Y. Sasaki171, B. Sassolas78, B. S. Sathyaprakash107,85, S. Sato172, T. Sato159, P. R. Saulson45, O. Sauter117, R. L. Savage47, A. Sawadsky21, P. Schale71, J. Scheuer96, E. Schmidt114, J. Schmidt11, P. Schmidt63,1, R. Schnabel33, R. M. S. Schofield71, A. Schönbeck33, E. Schreiber11, D. Schuette21,11, B. F. Schutz107,37, S. G. Schwalbe114, J. Scott46, S. M. Scott24, T. Sekiguchi36, Y. Sekiguchi173, D. Sellers7, A. S. Sengupta174, D. Sentenac44, V. Sequino15,32, A. Sergeev128, Y. Setyawati12,65, D. A. Shaddock24, T. J. Shaffer47, M. S. Shahriar96, B. Shapiro51, P. Shawhan76, A. Sheperd20, M. Shibata122, Y. Shikano175,176, T. Shimoda26, A. Shoda19, D. H. Shoemaker13, D. M. Shoemaker56, K. Siellez56, X. Siemens20, M. Sieniawska55, D. Sigg47, A. D. Silva14, A. Singer1, L. P. Singer80, A. Singh21,37,11, R. Singh2, A. Singhal16, A. M. Sintes98, B. J. J. Slagmolen24, B. Smith7, J. R. Smith28, R. J. E. Smith1, K. Somiya35, E. J. Son130, B. Sorazu46, F. Sorrentino59, T. Souradeep17, A. P. Spencer46, A. K. Srivastava101, A. Staley50, M. Steinke11, J. Steinlechner46, S. Steinlechner33,46, D. Steinmeyer21,11, B. C. Stephens20, S. P. Stevenson57, R. Stone99, K. A. Strain46, N. Straniero78, G. Stratta69,70, S. E. Strigin61, R. Sturani151, A. L. Stuver7, Y. Sugimoto106, T. Z. Summerscales177, L. Sun149, S. Sunil101, P. J. Sutton107, T. Suzuki118, B. L. Swinkels44, M. J. Szczepańczyk114, M. Tacca38, H. Tagoshi126, S. Takada178, H. Takahashi171, R. Takahashi19, A. Takamori27, D. Talukder71, H. Tanaka36, K. Tanaka126, T. Tanaka155, D. B. Tanner6, M. Tápai113, A. Taracchini37, D. Tatsumi19, R. Taylor1, S. Telada179, T. Theeg11, E. G. Thomas57, M. Thomas7, P. Thomas47, K. A. Thorne7, E. Thrane139, T. Tippens56, S. Tiwari104,16, V. Tiwari107, K. V. Tokmakov124, K. Toland46, T. Tomaru118, C. Tomlinson102, M. Tonelli22,23, Z. Tornasi46, C. I. Torrie1, D. Töyrä57, F. Travasso42,43, G. Traylor7, D. Trifirò84, J. Trinastic6, M. C. Tringali105,104, L. Trozzo22,180, M. Tse13, R. Tso1, K. Tsubono26, T. Tsuzuki19, M. Turconi66, D. Tuyenbayev99, T. Uchiyama36, T. Uehara6,181, S. Ueki171, K. Ueno20, D. Ugolini182, C. S. Unnikrishnan115, A. L. Urban1, T. Ushiba26, S. A. Usman107, H. Vahlbruch21, G. Vajente1, G. Valdes99, N. van Bakel12, M. van Beuzekom12, J. F. J. van den Brand12,75, C. Van Den Broeck12, D. C. Vander-Hyde45, L. van der Schaaf12, J. V. van Heijningen12, M. H. P. M. van Putten183, A. A. van Veggel46, M. Vardaro52,53, V. Varma63, S. Vass1, M. Vasúth49, A. Vecchio57, G. Vedovato52, J. Veitch57, P. J. Veitch81, K. Venkateswara184, G. Venugopalan1, D. Verkindt8, F. Vetrano69,70, A. Viceré69,70, A. D. Viets20, S. Vinciguerra57, D. J. Vine62, J.-Y. Vinet66, S. Vitale13, T. Vo45, H. Vocca42,43, C. Vorvick47, D. V. Voss6, W. D. Vousden57, S. P. Vyatchanin61, A. R. Wade1, L. E. Wade89, M. Wade89, T. Wakamatsu161, M. Walker2, L. Wallace1, S. Walsh37,11, G. Wang70,16, H. Wang57, M. Wang57, Y. Wang64, R. L. Ward24, J. Warner47, M. Was8, J. Watchi93, B. Weaver47, L.-W. Wei66, M. Weinert11, A. J. Weinstein1, R. Weiss13, L. Wen, P. Weßels11, T. Westphal11, K. Wette11, J. T. Whelan120, B. F. Whiting6, C. Whittle139, D. Williams46, R. D. Williams, A. R. Williamson107, J. L. Willis185, B. Willke21,11, M. H. Wimmer21,11, W. Winkler11, C. C. Wipf1, H. Wittel21,11, G. Woan46, J. Woehler11, J. Worden47, J. L. Wright46, D. S. Wu11, G. Wu7, W. Yam13, H. Yamamoto1, K. Yamamoto36, T. Yamamoto36, C. C. Yancey76, K. Yano35, M. J. Yap24, J. Yokoyama25, T. Yokozawa126, T. H. Yoon186, Hang Yu13, Haocun Yu13, H. Yuzurihara126, M. Yvert8, A. Zadrożny138, L. Zangrando52, M. Zanolin114, S. Zeidler19, J.-P. Zendri52, M. Zevin96, L. Zhang1, M. Zhang150, T. Zhang46, Y. Zhang120, C. Zhao64, M. Zhou96, Z. Zhou96, S. J. Zhu37,11, X. J. Zhu64, M. E. Zucker1,13, J. Zweizig1
1LIGO, California Institute of Technology, Pasadena, USA
2Louisiana State University, Baton Rouge, USA
3American University, Washington, USA.
4INFN—Sezione di Napoli—Complesso Universitario di Monte S. Angelo, Napoli, Italy
5Università di Salerno, Fisciano, Italy
6University of Florida, Gainesville, USA
7LIGO Livingston Observatory, Livingston, USA
8Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université Savoie Mont Blanc, CNRS/IN2P3, Annecy-le-Vieux, France
9University of Sannio at Benevento, Benevento, Italy
10INFN Sezione di Napoli, Napoli, Italy
11Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, Hannover, Germany
12NIKHEF, Amsterdam, The Netherlands
13LIGO, Massachusetts Institute of Technology, Cambridge, USA
14Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil
15INFN Sezione di Roma Tor Vergata, Roma, Italy
16INFN – Gran Sasso Science Institute, L’Aquila, Italy
17Inter-University Centre for Astronomy and Astrophysics, Pune, India
18International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, India
19National Astronomical Observatory of Japan, 2-21-1, Ohsawa, Mitaka-shi, Japan
20University of Wisconsin-Milwaukee, Milwaukee, USA
21Leibniz Universität Hannover, Hannover, Germany
22INFN, Pisa, Italy
23Università di Pisa, Pisa, Italy
24Australian National University, Canberra Australia
25The University of Tokyo, Research Center for the Early Universe, Bunkyo-ku, Japan
26The University of Tokyo, Department of Physics, Bunkyo-ku, Japan
27The University of Tokyo, Earthquake Research Institute, Bunkyo-ku, Japan
28California State University Fullerton, Fullerton, USA
29LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
30Chennai Mathematical Institute, Chennai, India
31Hirosaki University, Department of Advanced Physics, 3, Bunkyo-cho, Hirosaki-shi, Japan
32Università di Roma Tor Vergata, Roma, Italy
33Universität Hamburg, Hamburg, Germany
34INFN Sezione di Roma, Roma, Italy
35Tokyo Institute of Technology, Graduate School of Science and Technology, Meguro-ku, Japan
36The University of Tokyo, Institute for Cosmic Ray Research, Hida-shi, Japan
37Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, Potsdam-Golm, Germany
38APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, France
39Osaka University, Graduate School of Science, Physics, 1-1, Machikaneyama-cho, Toyonaka-shi, Japan
40West Virginia University, Morgantown, USA
41Center for Gravitational Waves and Cosmology, West Virginia University, Morgantown, USA
42Università di Perugia, Perugia, Italy
43INFN Sezione di Perugia, Perugia, Italy
44European Gravitational Observatory (EGO), Cascina, Italy
45Syracuse University, Syracuse, USA
46SUPA, University of Glasgow, Glasgow, United Kingdom
47LIGO Hanford Observatory, Richland, USA
48INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Napoli, Italy
49Wigner RCP, RMKI, Budapest, Hungary
50Columbia University, New York, USA
51Stanford University, Stanford, USA
52INFN Sezione di Padova, Padova, Italy
53Università di Padova, Dipartimento di Fisica e Astronomia, Padova, Italy
54MTA Eötvös University, “Lendulet” Astrophysics Research Group, Budapest, Hungary
55Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland
56Center for Relativistic Astrophysics and School of Physics, Georgia Institute of Technology, Atlanta, USA
57University of Birmingham, Birmingham, United Kingdom
58Università degli Studi di Genova, Genova, Italy
59INFN Sezione di Genova, Genova, Italy
60RRCAT, Indore, India
61Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
62SUPA, University of the West of Scotland, Paisley, United Kingdom
63Caltech CaRT, Pasadena, USA
64University of Western Australia, Crawley, Australia
65Department of Astrophysics/IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands
66Artemis, Université Côte d’Azur, CNRS, Observatoire Côte d’Azur, CS 34229, Nice Cedex 4, France
67Institut de Physique de Rennes, CNRS, Université de Rennes 1, Rennes, France
68Washington State University, Pullman, USA
69Università degli Studi di Urbino ‘Carlo Bo’, Urbino, Italy
70INFN, Sezione di Firenze, Sesto Fiorentino, Italy
71University of Oregon, Eugene, USA
72Laboratoire Kastler Brossel, UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, Collège de France, Paris, France
73Carleton College, Northfield, USA
74Astronomical Observatory Warsaw University, Warsaw, Poland
75VU University Amsterdam, Amsterdam, The Netherlands
76University of Maryland, College Park, USA
77Université Claude Bernard Lyon 1, Villeurbanne, France
78Laboratoire des Matériaux Avancés (LMA), CNRS/IN2P3, Villeurbanne, France
79Università di Napoli ’Federico II’, Complesso Universitario di Monte S.Angelo, Napoli, Italy
80NASA Goddard Space Flight Center, Greenbelt, USA
81University of Adelaide, Adelaide, Australia
82Tsinghua University, Beijing, China
83Texas Tech University, Lubbock, USA
84The University of Mississippi, University, USA
85The Pennsylvania State University, University Park, USA
86National Tsing Hua University, Hsinchu City, Republic of China
87Charles Sturt University, Wagga Wagga, Australia
88University of Chicago, Chicago, USA
89Kenyon College, Gambier, USA
90Korea Institute of Science and Technology Information, Daejeon, Korea
91University of Cambridge, Cambridge, United Kingdom
92Università di Roma La Sapienza, Roma, Italy
93Université Libre de Bruxelles, Brussels, Belgium
94Sonoma State University, Rohnert Park, USA
95Montana State University, Bozeman, USA
96Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Northwestern University, Evanston, USA
97Columbia University, New York, USA
98Universitat de les Illes Balears IAC3—IEEC, Palma de Mallorca, Spain
99The University of Texas Rio Grande Valley, Brownsville, USA
100Bellevue College, Bellevue, USA
101Institute for Plasma Research, Bhat, India
102The University of Sheffield, Sheffield, United Kingdom
103California State University, Los Angeles, 5154 State University Dr, Los Angeles, USA
104INFN, Trento Institute for Fundamental Physics and Applications, Povo, Italy
105Università di Trento, Dipartimento di Fisica, Povo, Italy
106University of Toyama, 3190 Gofuku, Toyama-shi, Japan
107Cardiff University, Cardiff, United Kingdom
108Montclair State University, Montclair, USA
109Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Canada
110School of Mathematics, University of Edinburgh, Edinburgh, United Kingdom
111University and Institute of Advanced Research, Gandhinagar, India
112IISER-TVM, CET Campus, Trivandrum Kerala, India
113University of Szeged, Szeged, Hungary
114Embry-Riddle Aeronautical University, Prescott, USA
115Tata Institute of Fundamental Research, Mumbai, India
116INAF, Osservatorio Astronomico di Capodimonte, Napoli, Italy
117University of Michigan, Ann Arbor, USA
118High Energy Accelerator Research Organization, 1-1, Oho, Tsukuba-shi, Japan
119Washington State University, , Pullman, USA
120Rochester Institute of Technology, Rochester, USA
121NCSA, University of Illinois at Urbana-Champaign, Urbana, USA
122Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan
123University of Białystok, Białystok, Poland
124SUPA, University of Strathclyde, Glasgow, United Kingdom
125University of Southampton, Southampton,United Kingdom
126Osaka City University, Department of Physics, 3-3-138, Sugimoto-cho, Sumiyosi-ku, Osaka-shi, Japan
127University of Washington Bothell Bothell USA
128Institute of Applied Physics, Nizhny Novgorod, Russia
129Korea Astronomy and Space Science Institute (KASI), Yuseong-gu, Republic of Korea
130National Institute for Mathematical Sciences, Daejeon, Korea
131Inje University, Gimhae-si, Korea
132Myongji University, Yongin, Korea
133Pusan National University, Busan, Korea
134Seoul National University, Seoul, Korea
135Hiroshima University, Department of Physical Science, 1-3-1, Kagamiyama, Higashihiroshima-shi, Japan
136Department of Applied Physics, Fukuoka University, Fukuoka, Jonan, Japan
137Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland
138NCBJ, Świerk-Otwock, Poland
139The School of Physics & Astronomy, Monash University, Clayton, Australia
140Hanyang University, Seoul, Korea
141The Chinese University of Hong Kong, Shatin, Hong Kong
142University of Alabama in Huntsville Huntsville USA
143ESPCI, CNRS, Paris, France
144University of Minnesota, Minneapolis, USA
145The Institute of Statistical Mathematics, Department of Mathematical Analysis and Statistical Inference, Tachikawa, Japan
146Università di Camerino, Dipartimento di Fisica, Camerino, Italy
147Tohoku University, Sendai, Japan
148Southern University and A &M College, Baton Rouge, USA
149The University of Melbourne, Parkville, Australia
150College of William and Mary, Williamsburg, USA
151Instituto de Física Teórica, University Estadual Paulista/ICTP South American Institute for Fundamental Research, São Paulo, Brazil
152The Kyoto University, Disaster Prevention Research Institute, Gokasho, Uji, Japan
153California State University-Fullerton, Fullerton, USA
154National Institute of Information and Communications Technology, The Applied Electromagnetic Research Institute , 4-2-1, Nukuikita-machi, Koganei-shi, Japan
155Kyoto University, Department of Physics, Astronomy, Oiwake-cho, KitaShirakawa, Sakyou-ku, Kyoto-shi, Japan
156National Tsing Hua University, Department of Physics, Hsinchu, ROC
157University of Shanghai for Science and Technology, School of Optical-Electrical and Computer Engineering, Shanghai, P. R. China
158Whitman College, Walla Walla, USA
159Niigata University, Faculty of Engineering, Niigata-shi, Japan
160Sokendai (The Graduate University for Advanced Studies), 2-21-1, Ohsawa, Mitaka-shi, Japan
161Niigata University Graduate School of Science and Technology, Niigata, Japan
162University of Alabama in Huntsville, Huntsville, USA
163Université de Lyon, Lyon, France
164Hobart and William Smith Colleges, Geneva, USA
165Janusz Gil Institute of Astronomy, University of Zielona Góra, Zielona Góra, Poland
166Kyushu University, Faculty of Arts and Science, 744, Motooka, Nishi-ku, Japan
167Waseda University, Department of Physics, Shinjuku, Japan
168Nagaoka University of Technology, Department of Information Science and Control Engineering, Nagaoka, Japan
169King’s College London, University of London, London, United Kingdom
170IISER-Kolkata, Mohanpur, India
171Nagaoka University of Technology, Department of Information & Management Systems Engineering, Nagaoka, Japan
172Hosei University, The Graduate School of Science and Engineering, Koganei-shi, Japan
173Toho University, Faculty of Science, Funabashi-shi, Japan
174Indian Institute of Technology Gandhinagar, Ahmedabad, India
175Institute for Quantum Studies, Chapman University, Orange, USA
176Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Japan
177Andrews University, Berrien Springs, USA
178National Institutes of Natural Sciences, The Device Engineering and Applied Physics Research Division, Toki city, Japan
179National Institute of Advanced Industrial Science and Technology, Metrology Institute of Japan, Tsukuba-shi, Japan
180Università di Siena, Siena, Italy
181National Defense Academy of Japan, Department of Communications Engineering, Yokosuka-shi, Japan
182Trinity University, San Antonio, USA
183Physics and Astronomy, Sejong University, Gwangjin-gu, South Korea
184University of Washington, Seattle, USA
185Abilene Christian University, Abilene, USA
186Department of Physics, Korea University, Seongbuk-gu, Korea

Tóm tắt

Chúng tôi trình bày các kịch bản quan sát khả thi cho các máy dò sóng hấp dẫn Advanced LIGO, Advanced Virgo và KAGRA trong thập kỷ tới, với mục đích cung cấp thông tin cho cộng đồng thiên văn nhằm tạo điều kiện lập kế hoạch cho thiên văn học đa thông điệp với sóng hấp dẫn. Chúng tôi ước lượng độ nhạy của mạng lưới đối với các tín hiệu sóng hấp dẫn tạm thời, và nghiên cứu khả năng của mạng lưới trong việc xác định vị trí trên bầu trời của nguồn phát. Chúng tôi báo cáo các phát hiện của mình về các tín hiệu sóng hấp dẫn tạm thời, đặc biệt tập trung vào các tín hiệu sóng hấp dẫn từ quá trình đồng tiến của hệ thống sao neutron nhị phân, những mục tiêu hứa hẹn nhất cho thiên văn học đa thông điệp. Khả năng định vị các nguồn phát của các tín hiệu đã phát hiện phụ thuộc vào phân bố địa lý của các máy dò và độ nhạy tương đối của chúng, và các vùng tin cậy $$90\%$$ có thể lớn tới hàng ngàn độ vuông khi chỉ có hai máy dò nhạy đang hoạt động. Xác định vị trí trên bầu trời của một phần đáng kể tín hiệu đã phát hiện đến các khu vực có diện tích 5–$$20~\mathrm {deg}^2$$ yêu cầu ít nhất ba máy dò có độ nhạy nằm trong một yếu tố $$\sim 2$$ so với nhau và có băng thông tần số rộng. Khi tất cả các máy dò, bao gồm KAGRA và máy dò LIGO thứ ba ở Ấn Độ, đạt độ nhạy thiết kế, một phần đáng kể các tín hiệu sóng hấp dẫn sẽ được định vị xuống vài độ vuông chỉ bằng quan sát sóng hấp dẫn.

Từ khóa

#sóng hấp dẫn #Advanced LIGO #Advanced Virgo #KAGRA #thiên văn học đa thông điệp #định vị tín hiệu #hệ thống sao neutron nhị phân

Tài liệu tham khảo

Aab A et al (2016) Ultrahigh-energy neutrino follow-up of gravitational wave events GW150914 and GW151226 with the Pierre Auger Observatory. Phys Rev D 94:122007. https://doi.org/10.1103/PhysRevD.94.122007. arXiv:1608.07378 Aasi J et al (2012) The characterization of Virgo data and its impact on gravitational-wave searches. Class Quantum Grav 29:155002. https://doi.org/10.1088/0264-9381/29/15/155002. arXiv:1203.5613 Aasi J et al (2013a) Enhancing the sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat Photon 7:613–619. https://doi.org/10.1038/nphoton.2013.177. arXiv:1310.0383 Aasi J et al (2013b) Open call for partnership for the EM identification and follow-up of GW candidate events. Technical report LIGO M1300550-v3 / VIR-0494E-13, LIGO, Pasadena, CA. https://dcc.ligo.org/LIGO-M1300550-v8/public Aasi J et al (2013c) Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Phys Rev D 88:062001. https://doi.org/10.1103/PhysRevD.88.062001. arXiv:1304.1775 Aasi J et al (2014a) First searches for optical counterparts to gravitational-wave candidate events. Astrophys J Suppl 211:7. https://doi.org/10.1088/0067-0049/211/1/7. arXiv:1310.2314 Aasi J et al (2014b) Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO600, LIGO, and Virgo detectors. Phys Rev D 89:122004. https://doi.org/10.1103/PhysRevD.89.122004. arXiv:1405.1053 Aasi J et al (2014c) Search for gravitational waves associated with \(\gamma \)-ray bursts detected by the Interplanetary Network. Phys Rev Lett 113:011102. https://doi.org/10.1103/PhysRevLett.113.011102. arXiv:1403.6639 Aasi J et al (2015a) Advanced LIGO. Class Quantum Grav 32:074001. https://doi.org/10.1088/0264-9381/32/7/074001. arXiv:1411.4547 Aasi J et al (2015b) Characterization of the LIGO detectors during their sixth science run. Class Quantum Grav 32:115012. https://doi.org/10.1088/0264-9381/32/11/115012. arXiv:1410.7764 Aasi J et al (2015c) Instrument science white paper. Technical report LIGO-T1400316-v4, LIGO, Pasadena, CA. https://dcc.ligo.org/LIGO-T1400316/public Aasi J et al (2016) Prospects for observing and localizing gravitational-wave transients with Advanced LIGO and Advanced Virgo. Living Rev Relativ 19:1. https://doi.org/10.1007/lrr-2016-1. arXiv:1304.0670v3 Abadie J et al (2010a) All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Phys Rev D 81:102001. https://doi.org/10.1103/PhysRevD.85.089905. arXiv:1002.1036 Abadie J et al (2010b) Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Class Quantum Grav 27:173001. https://doi.org/10.1088/0264-9381/27/17/173001. arXiv:1003.2480 Abadie J et al (2011) A gravitational wave observatory operating beyond the quantum shot-noise limit: squeezed light in application. Nat Phys 7:962–965. https://doi.org/10.1038/nphys2083. arXiv:1109.2295 Abadie J et al (2012a) All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Phys Rev D 85:122007. https://doi.org/10.1103/PhysRevD.85.122007. arXiv:1202.2788 Abadie J et al (2012b) First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astron Astrophys 541:A155. https://doi.org/10.1051/0004-6361/201218860. arXiv:1112.6005 Abadie J et al (2012c) Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts. Astron Astrophys 539:A124. https://doi.org/10.1051/0004-6361/201118219. arXiv:1109.3498 Abadie J et al (2012d) LSC and Virgo policy on releasing gravitational wave triggers to the public in the advanced detectors era. Technical report LIGO M1200055-v2 / VIR-0173A-12, LIGO, Pasadena, CA. https://dcc.ligo.org/LIGO-M1200055-v2/public Abadie J et al (2012e) Search for gravitational waves associated with gamma-ray bursts during LIGO science run 6 and Virgo science runs 2 and 3. Astrophys J 760:12. https://doi.org/10.1088/0004-637X/760/1/12. arXiv:1205.2216 Abadie J et al (2012f) Search for gravitational waves from low mass compact binary coalescence in LIGO’s sixth science run and Virgo’s science runs 2 and 3. Phys Rev D 85:082002. https://doi.org/10.1103/PhysRevD.85.082002. arXiv:1111.7314 Abadie J et al (2012g) Sensitivity achieved by the LIGO and Virgo gravitational wave detectors during LIGO’s sixth and Virgo’s second and third science runs. \(\text{ArXiv}\) e-prints arXiv:1203.2674 Abbott BP et al (2016a) All-sky search for long-duration gravitational wave transients with initial LIGO. Phys Rev D 93:042005. https://doi.org/10.1103/PhysRevD.93.042005. arXiv:1511.04398 Abbott BP et al (2016b) Astrophysical implications of the binary black-hole merger GW150914. Astrophys J Lett 818:L22. https://doi.org/10.3847/2041-8205/818/2/L22. arXiv:1602.03846 Abbott BP et al (2016c) Binary black hole mergers in the first Advanced LIGO observing run. Phys Rev X 6:041015. https://doi.org/10.1103/PhysRevX.6.041015. arXiv:1606.04856 Abbott BP et al (2016d) Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Class Quantum Grav 33:134001. https://doi.org/10.1088/0264-9381/33/13/134001. arXiv:1602.03844 Abbott BP et al (2016e) GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Phys Rev D 93:122003. https://doi.org/10.1103/PhysRevD.93.122003. arXiv:1602.03839 Abbott BP et al (2016f) GW150914: The Advanced LIGO detectors in the era of first discoveries. Phys Rev Lett 116:131103. https://doi.org/10.1103/PhysRevLett.116.131103. arXiv:1602.03838 Abbott BP et al (2016g) GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys Rev Lett 116:241103. https://doi.org/10.1103/PhysRevLett.116.241103. arXiv:1606.04855 Abbott BP et al (2016h) Improved analysis of GW150914 using a fully spin-precessing waveform model. Phys Rev X 6:041014. https://doi.org/10.1103/PhysRevX.6.041014. arXiv:1606.01210 Abbott BP et al (2016i) Localization and broadband follow-up of the gravitational-wave transient GW150914. Astrophys J Lett 826:L13. https://doi.org/10.3847/2041-8205/826/1/L13. arXiv:1602.08492 Abbott BP et al (2016j) The LSC–Virgo white paper on gravitational wave searches and astrophysics (2016–2017 edition). Technical report LIGO-T1600115-v6, LIGO, Pasadena, CA. https://dcc.ligo.org/LIGO-T1600115/public Abbott BP et al (2016k) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116:061102. https://doi.org/10.1103/PhysRevLett.116.061102. arXiv:1602.03837 Abbott BP et al (2016l) Observing gravitational-wave transient GW150914 with minimal assumptions. Phys Rev D 93:122004. https://doi.org/10.1103/PhysRevD.93.122004. arXiv:1602.03843 Abbott BP et al (2016m) Properties of the binary black hole merger GW150914. Phys Rev Lett 116:241102. https://doi.org/10.1103/PhysRevLett.116.241102. arXiv:1602.03840 Abbott BP et al (2016n) Supplement: localization and broadband follow-up of the gravitational-wave transient GW150914. Astrophys J Suppl 225:8. https://doi.org/10.3847/0067-0049/225/1/8. arXiv:1604.07864 Abbott BP et al (2016o) Supplement: the rate of binary black hole mergers inferred from Advanced LIGO observations surrounding GW150914. Astrophys J Suppl 227:14. https://doi.org/10.3847/0067-0049/227/2/14. arXiv:1606.03939 Abbott BP et al (2016p) The rate of binary black hole mergers inferred from Advanced LIGO observations surrounding GW150914. Astrophys J Lett 833:1. https://doi.org/10.3847/2041-8205/833/1/L1. arXiv:1602.03842 Abbott BP et al (2016q) Upper limits on the rates of binary neutron star and neutron-star-black-hole mergers from Advanced LIGO’s first observing run. Astrophys J Lett 832:L21. https://doi.org/10.3847/2041-8205/832/2/L21. arXiv:1607.07456 Abbott BP et al (2017a) A gravitational-wave standard siren measurement of the Hubble constant. Nature 551(7678):85–88. https://doi.org/10.1038/nature24471. arXiv:1710.05835 Abbott BP et al (2017b) All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Phys Rev D 95:042003. https://doi.org/10.1103/PhysRevD.95.042003. arXiv:1611.02972 Abbott BP et al (2017c) Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Phys Rev D 95:062003. https://doi.org/10.1103/PhysRevD.95.062003. arXiv:1602.03845 Abbott BP et al (2017d) Exploring the sensitivity of next generation gravitational wave detectors. Class Quantum Grav 34:044001. https://doi.org/10.1088/1361-6382/aa51f4. arXiv:1607.08697 Abbott BP et al (2017e) Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys J Lett 848:L13. https://doi.org/10.3847/2041-8213/aa920c. arXiv:1710.05834 Abbott BP et al (2017f) GW170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys Rev Lett 118:221101. https://doi.org/10.1103/PhysRevLett.118.221101. arXiv:1706.01812 Abbott BP et al (2017g) GW170608: Observation of a 19 solar-mass binary black hole coalescence. Astrophys J Lett 851:35. https://doi.org/10.3847/2041-8213/aa9f0c. arXiv:1711.05578 Abbott BP et al (2017h) GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence. Phys Rev Lett 119:141101. https://doi.org/10.1103/PhysRevLett.119.141101. arXiv:1709.09660 Abbott BP et al (2017i) GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys Rev Lett 119:161101. https://doi.org/10.1103/PhysRevLett.119.161101. arXiv:1710.05832 Abbott BP et al (2017j) The LSC–Virgo white paper on gravitational wave searches and astrophysics (2017–2018 edition). Technical report LIGO-T1700214-v4, LIGO, Pasadena, CA. https://dcc.ligo.org/LIGO-T1700214/public Abbott BP et al (2017k) Multi-messenger observations of a binary neutron star merger. Astrophys J Lett 848:L12. https://doi.org/10.3847/2041-8213/aa91c9. arXiv:1710.05833 Abbott BP et al (2017l) Search for gravitational waves associated with gamma-ray bursts during the first Advanced LIGO observing run and implications for the origin of GRB 150906B. Astrophys J 841:89. https://doi.org/10.3847/1538-4357/aa6c47. arXiv:1611.07947 Abbott BP et al (2017m) Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Phys Rev D 96:022001. https://doi.org/10.1103/PhysRevD.96.022001. arXiv:1704.04628 Abbott BP et al (2018) Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO’s first observing run. Class Quant Grav 35(6):065010. https://doi.org/10.1088/1361-6382/aaaafa. arXiv:1710.02185 Abdalla H et al (2017) TeV gamma-ray observations of the binary neutron star merger GW170817 with H.E.S.S. Astrophys J Lett 850:L22. https://doi.org/10.3847/2041-8213/aa97d2. arXiv:1710.05862 Abe K et al (2016) Search for Neutrinos in Super–Kamiokande associated with Gravitational Wave Events GW150914 and GW151226. Astrophys J Lett 830:L11. https://doi.org/10.3847/2041-8205/830/1/L11. arXiv:1608.08745 Accadia T et al (2012) Advanced Virgo technical design report. Technical report VIR-0128A-12, Virgo, Cascina. https://tds.ego-gw.it/ql/?c=8940 Acernese F et al (2009) Advanced Virgo baseline design. Technical report VIR-027A-09, Virgo, Cascina. https://tds.ego-gw.it/ql/?c=6589 Acernese F et al (2015) Advanced Virgo: a second-generation interferometric gravitational wave detector. Class Quantum Grav 32:024001. https://doi.org/10.1088/0264-9381/32/2/024001. arXiv:1408.3978 Ackermann M et al (2016) Fermi-LAT observations of the LIGO event GW150914. Astrophys J Lett 823:L2. https://doi.org/10.3847/2041-8205/823/1/L2. arXiv:1602.04488 Adams TS, Meacher D, Clark J, Sutton PJ, Jones G, Minot A (2013) Gravitational-wave detection using multivariate analysis. Phys Rev D 88:062006. https://doi.org/10.1103/PhysRevD.88.062006. arXiv:1305.5714 Ade PAR et al (2016) Planck 2015 results. XIII. Cosmological parameters. Astron Astrophys 594:A13. https://doi.org/10.1051/0004-6361/201525830. arXiv:1502.01589 Adrian-Martinez S et al (2016) High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Phys Rev D 93:122010. https://doi.org/10.1103/PhysRevD.93.122010. arXiv:1602.05411 Adriani O et al (2016) CALET Upper Limits on X-ray and Gamma-ray Counterparts of GW151226. Astrophys J Lett 829:L20. https://doi.org/10.3847/2041-8205/829/1/L20. arXiv:1607.00233 Affeldt C et al (2014) Advanced techniques in GEO 600. Class Quantum Grav 31:224002. https://doi.org/10.1088/0264-9381/31/22/224002 Agostini M et al (2017) A search for low-energy neutrinos correlated with gravitational wave events GW150914, GW151226 and GW170104 with the Borexino detector. Astrophys J 850:21. https://doi.org/10.3847/1538-4357/aa9521. arXiv:1706.10176 Ajith P, Fotopoulos N, Privitera S, Neunzert A, Weinstein AJ (2014) Effectual template bank for the detection of gravitational waves from inspiralling compact binaries with generic spins. Phys Rev D 89:084041. https://doi.org/10.1103/PhysRevD.89.084041. arXiv:1210.6666 Akutsu T et al (2018) Construction of KAGRA: an underground gravitational wave observatory. PTEP 2018(1):013F01. https://doi.org/10.1093/ptep/ptx180. arXiv:1712.00148 Albert A et al (2017a) All-sky search for high-energy neutrinos from gravitational wave event GW170104 with the ANTARES neutrino telescope. Eur Phys J C 77:911. https://doi.org/10.1140/epjc/s10052-017-5451-z. arXiv:1710.03020 Albert A et al (2017b) Search for high-energy neutrinos from binary neutron star merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophys J Lett 850:L35. https://doi.org/10.3847/2041-8213/aa9aed. arXiv:1710.05839 Albert A et al (2017c) Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Phys Rev D 96:022005. https://doi.org/10.1103/PhysRevD.96.022005. arXiv:1703.06298 Alexander KD et al (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/VIRGO GW170817. VI. Radio constraints on a relativistic jet and predictions for late-time emission from the kilonova ejecta. Astrophys J Lett 848:L21. https://doi.org/10.3847/2041-8213/aa905d. arXiv:1710.05457 Allen B (2005) A \(\chi ^2\) time-frequency discriminator for gravitational wave detection. Phys Rev D 71:062001. https://doi.org/10.1103/PhysRevD.71.062001. arXiv:gr-qc/0405045 Amaro-Seoane P et al (2012) Low-frequency gravitational-wave science with eLISA/NGO. Class Quantum Grav 29:124016. https://doi.org/10.1088/0264-9381/29/12/124016. arXiv:1202.0839 Amaro-Seoane P et al (2013) eLISA/NGO: Astrophysics and cosmology in the gravitational-wave millihertz regime. GW Notes 6:4–110. arXiv:1201.3621 Annis J et al (2016) A dark energy camera search for missing supergiants in the LMC after the Advanced LIGO gravitational-wave event GW150914. Astrophys J Lett 823:L34. https://doi.org/10.3847/2041-8205/823/2/L34. arXiv:1602.04199 Arai S, Nishizawa A (2017) Generalized framework for testing gravity with gravitational-wave propagation. II. Constraints on Horndeski theory. \(\text{ ArXiv }\) e-prints arXiv:1711.03776 Arcavi I et al (2017a) Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. Nature 551:64. https://doi.org/10.1038/nature24291. arXiv:1710.05843 Arcavi I et al (2017b) Optical follow-up of gravitational-wave events with Las Cumbres observatory. Astrophys J Lett 848:L33. https://doi.org/10.3847/2041-8213/aa910f. arXiv:1710.05842 Aso Y et al (2013) Interferometer design of the KAGRA gravitational wave detector. Phys Rev D 88:043007. https://doi.org/10.1103/PhysRevD.88.043007. arXiv:1306.6747 Babak S, Balasubramanian R, Churches D, Cokelaer T, Sathyaprakash BS (2006) A template bank to search for gravitational waves from inspiralling compact binaries: I. Physical models. Class Quantum Grav 23:5477–5504. https://doi.org/10.1088/0264-9381/23/18/002. arXiv:gr-qc/0604037 Babak S et al (2013) Searching for gravitational waves from binary coalescence. Phys Rev D 87:024033. https://doi.org/10.1103/PhysRevD.87.024033. arXiv:1208.3491 Bagoly Z et al (2016) Searching for electromagnetic counterpart of LIGO gravitational waves in the Fermi GBM data with ADWO. Astron Astrophys 593:L10. https://doi.org/10.1051/0004-6361/201628569. arXiv:1603.06611 Baker T, Bellini E, Ferreira PG, Lagos M, Noller J, Sawicki I (2017) Strong constraints on cosmological gravity from GW170817 and GRB 170817A. Phys Rev Lett 119:251301. https://doi.org/10.1103/PhysRevLett.119.251301. arXiv:1710.06394 Barausse E, Yunes N, Chamberlain K (2016) Theory-agnostic constraints on black-hole dipole radiation with multiband gravitational-wave astrophysics. Phys Rev Lett 116:241104. https://doi.org/10.1103/PhysRevLett.116.241104. arXiv:1603.04075 Barsotti L, Fritschel P (2012) Early aLIGO configurations: example scenarios toward design sensitivity. Technical report LIGO-T1200307-v4, LIGO, Pasadena, CA. https://dcc.ligo.org/LIGO-T1200307/public Bartos I, Kocsis B, Haiman Z, Márka S (2017) Rapid and bright stellar-mass binary black hole mergers in active galactic nuclei. Astrophys J 835:165. https://doi.org/10.3847/1538-4357/835/2/165. arXiv:1602.03831 Bécsy B, Raffai P, Cornish NJ, Essick R, Kanner J, Katsavounidis E, Littenberg TB, Millhouse M, Vitale S (2016) Parameter estimation for gravitational-wave bursts with the BayesWave pipeline. Astrophys J 839:1. https://doi.org/10.3847/1538-4357/aa63ef. arXiv:1612.02003 Belczynski K et al (2017) The origin of the first neutron star–neutron star merger. \(\text{ ArXiv }\) e-prints arXiv:1712.00632 Berry CPL et al (2015) Parameter estimation for binary neutron-star coalescences with realistic noise during the Advanced LIGO era. Astrophys J 804:114. https://doi.org/10.1088/0004-637X/804/2/114. arXiv:1411.6934 Bhalerao V et al (2017) A tale of two transients: GW170104 and GRB170105A. Astrophys J 845:152. https://doi.org/10.3847/1538-4357/aa81d2. arXiv:1706.00024 Blackburn L, Briggs MS, Camp J, Christensen N, Connaughton V, Jenke P, Remillard RA, Veitch J (2015) High-energy electromagnetic offline follow-up of LIGO-Virgo gravitational-wave binary coalescence candidate events. Astrophys J Suppl 217:8. https://doi.org/10.1088/0067-0049/217/1/8. arXiv:1410.0929 Blanchet L (2014) Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev Relativ 17:2. https://doi.org/10.12942/lrr-2014-2. arXiv:1310.1528 Boran S, Desai S, Kahya EO, Woodard RP (2018) GW170817 falsifies dark matter emulators. Phys Rev D 97(4):041501. https://doi.org/10.1103/PhysRevD.97.041501. arXiv:1710.06168 Breivik K et al (2016) Distinguishing between formation channels for binary black holes with LISA. Astrophys J Lett 830:L18. https://doi.org/10.3847/2041-8205/830/1/L18. arXiv:1606.09558 Brocato E et al (2017) GRAWITA: VLT Survey Telescope observations of the gravitational wave sources GW150914 and GW151226. \(\text{ ArXiv }\) e-prints arXiv:1710.05915 Brown DA, Harry I, Lundgren A, Nitz AH (2012) Detecting binary neutron star systems with spin in advanced gravitational-wave detectors. Phys Rev D 86:084017. https://doi.org/10.1103/PhysRevD.86.084017. arXiv:1207.6406 Brown DD, Miao H, Collins C, Mow-Lowry C, Töyra D, Freise A (2017) Broadband sensitivity enhancement of detuned dual-recycled Michelson interferometers with EPR entanglement. Phys Rev D 96:062003. https://doi.org/10.1103/PhysRevD.96.062003. arXiv:1704.07173 Buonanno A, Iyer B, Ochsner E, Pan Y, Sathyaprakash BS (2009) Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors. Phys Rev D 80:084043. https://doi.org/10.1103/PhysRevD.80.084043. arXiv:0907.0700 Bustillo JC, Laguna P, Shoemaker D (2017) Detectability of gravitational waves from binary black holes: Impact of precession and higher modes. Phys Rev D 95:104038. https://doi.org/10.1103/PhysRevD.95.104038. arXiv:1612.02340 Canizares P, Field SE, Gair JR, Tiglio M (2013) Gravitational wave parameter estimation with compressed likelihood evaluations. Phys Rev D 87:124005. https://doi.org/10.1103/PhysRevD.87.124005. arXiv:1304.0462 Canizares P, Field SE, Gair J, Raymond V, Smith R, Tiglio M (2015) Accelerated gravitational-wave parameter estimation with reduced order modeling. Phys Rev Lett 114:071104. https://doi.org/10.1103/PhysRevLett.114.071104. arXiv:1404.6284 Cannon K, Cariou R, Chapman A, Crispin-Ortuzar M, Fotopoulos N et al (2012) Toward early-warning detection of gravitational waves from compact binary coalescence. Astrophys J 748:136. https://doi.org/10.1088/0004-637X/748/2/136. arXiv:1107.2665 Cannon K, Hanna C, Peoples J (2015) Likelihood-ratio ranking statistic for compact binary coalescence candidates with rate estimation. \(\text{ ArXiv }\) e-prints arXiv:1504.04632 Capano C, Harry I, Privitera S, Buonanno A (2016) Implementing a search for gravitational waves from binary black holes with nonprecessing spin. Phys Rev D 93:124007. https://doi.org/10.1103/PhysRevD.93.124007. arXiv:1602.03509 Capano C, Dent T, Hanna C, Hendry M, Hu YM, Messenger C, Veitch J (2017) Systematic errors in estimation of gravitational-wave candidate significance. Phys Rev D 96:082002. https://doi.org/10.1103/PhysRevD.96.082002. arXiv:1708.06710 Centrella J et al (2010) Black-hole binaries, gravitational waves, and numerical relativity. Rev Mod Phys 82:3069. https://doi.org/10.1103/RevModPhys.82.3069. arXiv:1010.5260 Chan ML, Hu YM, Messenger C, Hendry M, Heng IS (2017) Maximising the detection probability of kilonovae associated with gravitational wave observations. Astrophys J 834:84. https://doi.org/10.3847/1538-4357/834/1/84. arXiv:1506.04035 Chassande-Mottin E, Miele M, Mohapatra S, Cadonati L (2010) Detection of gravitational-wave bursts with chirplet-like template families. Class Quantum Grav 27:194017. https://doi.org/10.1088/0264-9381/27/19/194017. arXiv:1005.2876 Chatterji S, Lazzarini A, Stein L, Sutton P, Searle A, Tinto M (2006) Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise. Phys Rev D 74:082005. https://doi.org/10.1103/PhysRevD.74.082005. arXiv:gr-qc/0605002 Chen HY, Holz DE (2015) Facilitating follow-up of LIGO–Virgo events using rapid sky localization. \(\text{ ArXiv }\) e-prints arXiv:1509.00055 Chen HY, Holz DE, Miller J, Evans M, Vitale S, Creighton J (2017) Distance measures in gravitational-wave astrophysics and cosmology. \(\text{ ArXiv }\) e-prints arXiv:1709.08079 Chornock R et al (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/VIRGO GW170817. IV. Detection of near-infrared signatures of r-process nucleosynthesis with Gemini-south. Astrophys J Lett 848:L19. https://doi.org/10.3847/2041-8213/aa905c. arXiv:1710.05454 Cokelaer T (2007) Gravitational waves from inspiralling compact binaries: hexagonal template placement and its efficiency in detecting physical signals. Phys Rev D 76:102004. https://doi.org/10.1103/PhysRevD.76.102004. arXiv:0706.4437 Connaughton V et al (2016) Fermi GBM observations of LIGO gravitational wave event GW150914. Astrophys J Lett 826:L6. https://doi.org/10.3847/2041-8205/826/1/L6. arXiv:1602.03920 Copperwheat CM et al (2016) Liverpool Telescope follow-up of candidate electromagnetic counterparts during the first run of Advanced LIGO. Mon Not R Astron Soc 462:3528. https://doi.org/10.1093/mnras/stw1849. arXiv:1606.04574 Cornish NJ, Littenberg TB (2015) BayesWave: Bayesian Inference for Gravitational Wave Bursts and Instrument Glitches. Class Quantum Grav 32:135012. https://doi.org/10.1088/0264-9381/32/13/135012. arXiv:1410.3835 Corsi A et al (2017) iPTF17cw: An engine-driven supernova candidate discovered independent of a gamma-ray trigger. Astrophys J 847:54. https://doi.org/10.3847/1538-4357/aa85e5. arXiv:1706.00045 Coulter DA et al (2017) Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358(6370):1556–1558. https://doi.org/10.1126/science.aap9811. arXiv:1710.05452 Cowperthwaite PS et al (2016) A DECam search for an optical counterpart to the LIGO gravitational wave event GW151226. Astrophys J Lett 826:L29. https://doi.org/10.3847/2041-8205/826/2/L29. arXiv:1606.04538 Creminelli P, Vernizzi F (2017) Dark energy after GW170817 and GRB170817A. Phys Rev Lett 119:251302. https://doi.org/10.1103/PhysRevLett.119.251302. arXiv:1710.05877 Cutler C, Flanagan EE (1994) Gravitational waves from merging compact binaries: how accurately can one extract the binary’s parameters from the inspiral wave form? Phys Rev D 49:2658–2697. https://doi.org/10.1103/PhysRevD.49.2658. arXiv:gr-qc/9402014 Dai L, McKinney JC, Miller MC (2017) Energetic constraints on electromagnetic signals from double black hole mergers. Mon Not R Astron Soc Lett 470:L92. https://doi.org/10.1093/mnrasl/slx086. arXiv:1611.00764 Dal Canton T, Harry IW (2017) Designing a template bank to observe compact binary coalescences in Advanced LIGO’s second observing run. \(\text{ ArXiv }\) e-prints arXiv:1705.01845 Dal Canton T, Lundgren AP, Nielsen AB (2015) Impact of precession on aligned-spin searches for neutron-star-black-hole binaries. Phys Rev D 91:062010. https://doi.org/10.1103/PhysRevD.91.062010. arXiv:1411.6815 Dal Canton T et al (2014) Implementing a search for aligned-spin neutron star-black hole systems with advanced ground based gravitational wave detectors. Phys Rev D 90:082004. https://doi.org/10.1103/PhysRevD.90.082004. arXiv:1405.6731 D’Avanzo P et al (2018) Evidence for a decreasing X-ray afterglow emission of GW170817A and GRB 170817A in XMM-Newton. \(\text{ ArXiv }\) e-prints arXiv:1801.06164 Daw EJ, Giaime JA, Lormand D, Lubinski M, Zweizig J (2004) Long term study of the seismic environment at LIGO. Class Quantum Grav 21:2255–2273. https://doi.org/10.1088/0264-9381/21/9/003. arXiv:gr-qc/0403046 de Mink SE, Belczynski K (2015) Merger rates of double neutron stars and stellar origin black holes: the impact of initial conditions on binary evolution predictions. Astrophys J 814:58. https://doi.org/10.1088/0004-637X/814/1/58. arXiv:1506.03573 de Mink SE, King A (2017) Electromagnetic signals following stellar-mass black hole mergers. Astrophys J Lett 839:L7. https://doi.org/10.3847/2041-8213/aa67f3. arXiv:1703.07794 Díaz MC et al (2016) GW150914: First search for the electromagnetic counterpart of a gravitational-wave event by the TOROS collaboration. Astrophys J Lett 828:L16. https://doi.org/10.3847/2041-8205/828/2/L16. arXiv:1607.07850 Dimmelmeier H, Ott C, Marek A, Janka HT (2008) The gravitational wave burst signal from core collapse of rotating stars. Phys Rev D 78:064056. https://doi.org/10.1103/PhysRevD.78.064056. arXiv:0806.4953 Dominik M, Berti E, O’Shaughnessy R, Mandel I, Belczynski K, Fryer C, Holz DE, Bulik T, Pannarale F (2015) Double compact objects III: gravitational wave detection rates. Astrophys J 806:263. https://doi.org/10.1088/0004-637X/806/2/263. arXiv:1405.7016 Dooley KL et al (2016) GEO 600 and the GEO-HF upgrade program: successes and challenges. Class Quantum Grav 33:075009. https://doi.org/10.1088/0264-9381/33/7/075009. arXiv:1510.00317 Effler A, Schofield RMS, Frolov VV, González G, Kawabe K, Smith JR, Birch J, McCarthy R (2015) Environmental Influences on the LIGO gravitational wave detectors during the 6th science run. Class Quantum Grav 32:035017. https://doi.org/10.1088/0264-9381/32/3/035017. arXiv:1409.5160 Eldridge JJ, Stanway ER, Xiao L, McClelland LAS, Taylor G, Ng M, Greis SML, Bray JC (2017) Binary population and spectral synthesis version 2.1: construction, observational verification, and new results. Publ Astron Soc Austral 34:e058. https://doi.org/10.1017/pasa.2017.51. arXiv:1710.02154 Essick R, Vitale S, Katsavounidis E, Vedovato G, Klimenko S (2015) Localization of short duration gravitational-wave transients with the early Advanced LIGO and Virgo detectors. Astrophys J 800:81. https://doi.org/10.1088/0004-637X/800/2/81. arXiv:1409.2435 Evans P et al (2012) Swift follow-up observations of candidate gravitational-wave transient events. Astrophys J Suppl 203:28. https://doi.org/10.1088/0067-0049/203/2/28. arXiv:1205.1124 Evans PA, Osborne JP, Kennea JA, Campana S, O’Brien PT, Tanvir NR, Racusin JL, Burrows DN, Cenko SB, Gehrels N (2016a) Optimisation of the Swift X-ray follow-up of Advanced LIGO and Virgo gravitational wave triggers in 2015–16. Mon Not R Astron Soc 455:1522–1537. https://doi.org/10.1093/mnras/stv2213. arXiv:1506.01624 Evans PA et al (2016b) Swift follow-up of gravitational wave triggers: results from the first aLIGO run and optimisation for the future. Mon Not R Astron Soc 462:1591–1602. https://doi.org/10.1093/mnras/stw1746. arXiv:1606.05001 Evans PA et al (2016c) Swift follow-up of the gravitational wave source GW150914. Mon Not R Astron Soc Lett 460:L40. https://doi.org/10.1093/mnrasl/slw065. arXiv:1602.03868 Ezquiaga JM, Zumalacárregui M (2017) Dark Energy After GW170817: dead ends and the road ahead. Phys Rev Lett 119:251304. https://doi.org/10.1103/PhysRevLett.119.251304. arXiv:1710.05901 Fairhurst S (2009) Triangulation of gravitational wave sources with a network of detectors. New J Phys 11:123006. https://doi.org/10.1088/1367-2630/11/12/123006, [Erratum: New J. Phys. 13:069602(2011)]. arXiv:0908.2356 Fairhurst S (2011) Source localization with an advanced gravitational wave detector network. Class Quantum Grav 28:105021. https://doi.org/10.1088/0264-9381/28/10/105021. arXiv:1010.6192 Fairhurst S (2017) Localization of transient gravitational wave sources: beyond triangulation. \(\text{ ArXiv }\) e-prints arXiv:1712.04724 Fan X, Messenger C, Heng IS (2014) A Bayesian approach to multi-messenger astronomy: Identification of gravitational-wave host galaxies. Astrophys J 795:43. https://doi.org/10.1088/0004-637X/795/1/43. arXiv:1406.1544 Farr B et al (2016) Parameter estimation on gravitational waves from neutron-star binaries with spinning components. Astrophys J 825:116. https://doi.org/10.3847/0004-637X/825/2/116. arXiv:1508.05336 Finn L, Chernoff D (1993) Observing binary inspiral in gravitational radiation: one interferometer. Phys Rev D 47:2198–2219. https://doi.org/10.1103/PhysRevD.47.2198. arXiv:gr-qc/9301003 Gaebel SM, Veitch J (2017) How would GW150914 look with future gravitational wave detector networks? Class Quant Grav 34:174003. https://doi.org/10.1088/1361-6382/aa82d9. arXiv:1703.08988 Gando A et al (2016) Search for electron antineutrinos associated with gravitational wave events GW150914 and GW151226 using KamLAND. Astrophys J Lett 829:L34. https://doi.org/10.3847/2041-8205/829/2/L34. arXiv:1606.07155 Gehrels N, Cannizzo JK, Kanner J, Kasliwal MM, Nissanke S, Singer LP (2016) Galaxy strategy for LIGO-Virgo gravitational wave counterpart searches. Astrophys J 820:136. https://doi.org/10.3847/0004-637X/820/2/136. arXiv:1508.03608 Ghosh S, Bloemen S, Nelemans G, Groot PJ, Price LR (2016) Tiling strategies for optical follow-up of gravitational-wave triggers by telescopes with a wide field of view. Astron Astrophys 592:A82. https://doi.org/10.1051/0004-6361/201527712. arXiv:1511.02673 Goldstein A et al (2017a) An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A. Astrophys J Lett 848:L14. https://doi.org/10.3847/2041-8213/aa8f41. arXiv:1710.05446 Goldstein A et al (2017b) Fermi observations of the LIGO event GW170104. Astrophys J Lett 846:L5. https://doi.org/10.3847/2041-8213/aa8319. arXiv:1706.00199 Grote H et al (2013) First long-term application of squeezed states of light in a gravitational-wave observatory. Phys Rev Lett 110:181101. https://doi.org/10.1103/PhysRevLett.110.181101. arXiv:1302.2188 Grover K, Fairhurst S, Farr BF, Mandel I, Rodriguez C, Sidery T, Vecchio A (2014) Comparison of gravitational wave detector network sky localization approximations. Phys Rev D 89:042004. https://doi.org/10.1103/PhysRevD.89.042004. arXiv:1310.7454 Haggard D, Nynka M, Ruan JJ, Kalogera V, Bradley Cenko S, Evans P, Kennea JA (2017) A deep Chandra X-ray study of neutron star coalescence GW170817. Astrophys J Lett 848:L25. https://doi.org/10.3847/2041-8213/aa8ede. arXiv:1710.05852 Hallinan G et al (2017) A radio counterpart to a neutron star merger. Science 358(6370):1579–1583. https://doi.org/10.1126/science.aap9855. arXiv:1710.05435 Hanna C, Mandel I, Vousden W (2014) Utility of galaxy catalogs for following up gravitational waves from binary neutron star mergers with wide-field telescopes. Astrophys J 784:8. https://doi.org/10.1088/0004-637X/784/1/8. arXiv:1312.2077 Harry GM (2010) Advanced LIGO: the next generation of gravitational wave detectors. Class Quantum Grav 27:084006. https://doi.org/10.1088/0264-9381/27/8/084006 Harry I, Privitera S, Bohé A, Buonanno A (2016) Searching for gravitational waves from compact binaries with precessing spins. Phys Rev D 94:024012. https://doi.org/10.1103/PhysRevD.94.024012. arXiv:1603.02444 Harry IW, Allen B, Sathyaprakash BS (2009) A stochastic template placement algorithm for gravitational wave data analysis. Phys Rev D 80:104014. https://doi.org/10.1103/PhysRevD.80.104014. arXiv:0908.2090 Harry IW et al (2014) Investigating the effect of precession on searches for neutron-star-black-hole binaries with Advanced LIGO. Phys Rev D 89:024010. https://doi.org/10.1103/PhysRevD.89.024010. arXiv:1307.3562 Hild S et al (2011) Sensitivity studies for third-generation gravitational wave observatories. Class Quantum Grav 28:094013. https://doi.org/10.1088/0264-9381/28/9/094013. arXiv:1012.0908 Hild S et al (2012) LIGO 3 Strawman Design, Team Red. Tech. Rep. LIGO-T1200046-v1, LIGO, Pasadena, CA. https://dcc.ligo.org/LIGO-T1200046/public Hurley K et al (2016) The interplanetary network response to LIGO GW150914. Astrophys J Lett 829:L12. https://doi.org/10.3847/2041-8205/829/1/L12 Iyer B et al (2011) LIGO-India. Technical report M1100296-v2, IndIGO, India. https://dcc.ligo.org/LIGO-M1100296/public Janiuk A, Bejger M, Charzyński S, Sukova P (2017) On the possible gamma-ray burst-gravitational wave association in GW150914. New Astron 51:7–14. https://doi.org/10.1016/j.newast.2016.08.002. arXiv:1604.07132 Jaranowski P, Królak A (2012) Gravitational-wave data analysis. Formalism and sample applications: the Gaussian case. Living Rev Relativ 15:4. https://doi.org/10.12942/lrr-2012-4. arXiv:0711.1115 Kanner JB et al (2016) Leveraging waveform complexity for confident detection of gravitational waves. Phys Rev D 93:022002. https://doi.org/10.1103/PhysRevD.93.022002. arXiv:1509.06423 Kasliwal MM, Nissanke S (2014) On discovering electromagnetic emission from neutron star mergers: the early years of two gravitational wave detectors. Astrophys J Lett 789:L5. https://doi.org/10.1088/2041-8205/789/1/L5. arXiv:1309.1554 Kasliwal MM et al (2016) iPTF Search for an Optical Counterpart to Gravitational Wave Trigger GW150914. Astrophys J Lett 824:L24. https://doi.org/10.3847/2041-8205/824/2/L24. arXiv:1602.08764 Kasliwal MM et al (2017) Illuminating gravitational waves: a concordant picture of photons from a neutron star merger. Science https://doi.org/10.1126/science.aap9455. arXiv:1710.05436 Kawai N, Negoro H, Serino M, Mihara T, Tanaka K, Masumitsu T, Nakahira S (2017) X-ray upper limits of GW150914 with MAXI. Publ Astron Soc Jpn 69:84. https://doi.org/10.1093/pasj/psx085. arXiv:1708.01342 Khan S et al (2016) Frequency-domain gravitational waves from non-precessing black-hole binaries. II. A phenomenological model for the advanced detector era. Phys Rev D 93:044007. https://doi.org/10.1103/PhysRevD.93.044007. arXiv:1508.07253 Kim C, Perera BBP, McLaughlin MA (2013) Implications of PSR J0737–3039B for the Galactic NS-NS binary merger rate. Mon Not R Astron Soc 448:928–938. https://doi.org/10.1093/mnras/stu2729. arXiv:1308.4676 Klimenko S, Mohanty S, Rakhmanov M, Mitselmakher G (2005) Constraint likelihood analysis for a network of gravitational wave detectors. Phys Rev D 72:122002. https://doi.org/10.1103/PhysRevD.72.122002. arXiv:gr-qc/0508068 Klimenko S, Yakushin I, Mercer A, Mitselmakher G (2008) Coherent method for detection of gravitational wave bursts. Class Quantum Grav 25:114029. https://doi.org/10.1088/0264-9381/25/11/114029. arXiv:0802.3232 Klimenko S, Vedovato G, Drago M, Mazzolo G, Mitselmakher G, Pankow C, Prodi G, Re V, Salemi F, Yakushin I (2011) Localization of gravitational wave sources with networks of advanced detectors. Phys Rev D 83:102001. https://doi.org/10.1103/PhysRevD.83.102001. arXiv:1101.5408 Klimenko S et al (2016) Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors. Phys Rev D 93:042004. https://doi.org/10.1103/PhysRevD.93.042004. arXiv:1511.05999 Kruckow MU, Tauris TM, Langer N, Kramer M, Izzard RG (2018) Progenitors of gravitational wave mergers: binary evolution with the stellar grid based code ComBinE. \(\text{ ArXiv }\) e-prints arXiv:1801.05433 Li X, Zhang FW, Yuan Q, Jin ZP, Fan YZ, Liu SM, Wei DM (2016) Implications of the tentative association between GW150914 and a Fermi-GBM transient. Astrophys J Lett 827:L16. https://doi.org/10.3847/2041-8205/827/1/L16. arXiv:1602.04460 Li X, Hu YM, Jin ZP, Fan YZ, Wei DM (2017) Neutron star-black hole coalescence rate inferred from macronova/kilonova observations. Astrophys J Lett 844:L22. https://doi.org/10.3847/2041-8213/aa7fb2. arXiv:1611.01760 Lindblom L, Owen BJ, Brown DA (2008) Model waveform accuracy standards for gravitational wave data analysis. Phys Rev D 78:124020. https://doi.org/10.1103/PhysRevD.78.124020. arXiv:0809.3844 Lipunov VM et al (2017a) First gravitational-wave burst GW150914: MASTER optical follow-up observations. Mon Not R Astron Soc 465:3656. https://doi.org/10.1093/mnras/stw2669. arXiv:1605.01607 Lipunov VM et al (2017b) MASTER optical detection of the first LIGO/Virgo neutron star binary merger GW170817. Astrophys J 850:L1. https://doi.org/10.3847/2041-8213/aa92c0. arXiv:1710.05461 Littenberg TB, Cornish NJ (2015) Bayesian inference for spectral estimation of gravitational wave detector noise. Phys Rev D 91:084034. https://doi.org/10.1103/PhysRevD.91.084034. arXiv:1410.3852 Loeb A (2016) Electromagnetic counterparts to black hole mergers detected by LIGO. Astrophys J Lett 819:L21. https://doi.org/10.3847/2041-8205/819/2/L21. arXiv:1602.04735 Lück H et al (2010) The upgrade of GEO600. J Phys Conf Ser 228:012012. https://doi.org/10.1088/1742-6596/228/1/012012. arXiv:1004.0339 Lyman JD et al (2018) The optical afterglow of the short gamma-ray burst associated with GW170817. \(\text{ ArXiv }\) e-prints arXiv:1801.02669 Lynch R, Vitale S, Essick R, Katsavounidis E, Robinet F (2017) Information-theoretic approach to the gravitational-wave burst detection problem. Phys Rev D 95:104046. https://doi.org/10.1103/PhysRevD.95.104046. arXiv:1511.05955 Lyutikov M (2016) Fermi GBM signal contemporaneous with GW150914 – an unlikely association. \(\text{ ArXiv }\) e-prints arXiv:1602.07352 Mandel I, O’Shaughnessy R (2010) Compact binary coalescences in the band of ground-based gravitational-wave detectors. Class Quantum Grav 27:114007. https://doi.org/10.1088/0264-9381/27/11/114007. arXiv:0912.1074 Margutti R et al (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/VIRGO GW170817. V. Rising X-ray emission from an off-axis jet. Astrophys J Lett 848:L20. https://doi.org/10.3847/2041-8213/aa9057. arXiv:1710.05431 Margutti R et al (2018) The Binary Neutron Star event LIGO/VIRGO GW170817 a hundred days after merger: synchrotron emission across the electromagnetic spectrum. \(\text{ ArXiv }\) e-prints arXiv:1801.03531 McCully C et al (2017) The rapid reddening and featureless optical spectra of the optical counterpart of GW170817, AT 2017gfo, during the first four days. Astrophys J Lett 848:L32. https://doi.org/10.3847/2041-8213/aa9111. arXiv:1710.05853 Messick C et al (2017) Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data. Phys Rev D 95:042001. https://doi.org/10.1103/PhysRevD.95.042001. arXiv:1604.04324 Metzger BD (2017) Kilonovae. Living Rev Relativ 20:3. https://doi.org/10.1007/s41114-017-0006-z. arXiv:1610.09381 Metzger BD, Berger E (2012) What is the most promising electromagnetic counterpart of a neutron star binary merger? Astrophys J 746:48. https://doi.org/10.1088/0004-637X/746/1/48. arXiv:1108.6056 Miller J et al (2015) Prospects for doubling the range of Advanced LIGO. Phys Rev D 91:062005. https://doi.org/10.1103/PhysRevD.91.062005. arXiv:1410.5882 Mooley KP et al (2018) A mildly relativistic wide-angle outflow in the neutron star merger GW170817. Nature 554(7691):207. https://doi.org/10.1038/nature25452. arXiv:1711.11573 Morokuma T et al (2016) J-GEM follow-up observations to search for an optical counterpart of the first gravitational wave source GW150914. Publ Astron Soc Jpn 68:L9. https://doi.org/10.1093/pasj/psw061. arXiv:1605.03216 Morsony BJ, Workman JC, Ryan DM (2016) Modeling the afterglow of the possible Fermi-GBM event associated with GW150914. Astrophys J Lett 825:L24. https://doi.org/10.3847/2041-8205/825/2/L24. arXiv:1602.05529 Murase K, Kashiyama K, Mészáros P, Shoemaker I, Senno N (2016) Ultrafast outflows from black hole mergers with a minidisk. Astrophys J Lett 822:L9. https://doi.org/10.3847/2041-8205/822/1/L9. arXiv:1602.06938 Nicholl M et al (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/VIRGO GW170817 III. Optical and UV spectra of a blue kilonova from fast polar ejecta. Astrophys J Lett 848:L18. https://doi.org/10.3847/2041-8213/aa9029. arXiv:1710.05456 Nishizawa A, Berti E, Klein A, Sesana A (2016a) eLISA eccentricity measurements as tracers of binary black hole formation. Phys Rev D 94:064020. https://doi.org/10.1103/PhysRevD.94.064020. arXiv:1605.01341 Nishizawa A, Sesana A, Berti E, Klein A (2016b) Constraining stellar binary black hole formation scenarios with eLISA eccentricity measurements. Mon Not R Astron Soc 465:4375. https://doi.org/10.1093/mnras/stw2993. arXiv:1606.09295 Nissanke S, Holz DE, Hughes SA, Dalal N, Sievers JL (2010) Exploring short gamma-ray bursts as gravitational-wave standard sirens. Astrophys J 725:496–514. https://doi.org/10.1088/0004-637X/725/1/496. arXiv:0904.1017 Nissanke S, Sievers J, Dalal N, Holz D (2011) Localizing compact binary inspirals on the sky using ground-based gravitational wave interferometers. Astrophys J 739:99. https://doi.org/10.1088/0004-637X/739/2/99. arXiv:1105.3184 Nissanke S, Kasliwal M, Georgieva A (2013) Identifying elusive electromagnetic counterparts to gravitational wave mergers: an end-to-end simulation. Astrophys J 767:124. https://doi.org/10.1088/0004-637X/767/2/124. arXiv:1210.6362 Nitz AH, Dent T, Dal Canton T, Fairhurst S, Brown DA (2017) Detecting binary compact-object mergers with gravitational waves: Understanding and Improving the sensitivity of the PyCBC search. Astrophys J 849:118. https://doi.org/10.3847/1538-4357/aa8f50. arXiv:1705.01513 Nitz AH et al (2013) Accuracy of gravitational waveform models for observing neutron-star-black-hole binaries in Advanced LIGO. Phys Rev D 88:124039. https://doi.org/10.1103/PhysRevD.88.124039. arXiv:1307.1757 Ott C (2009) The gravitational wave signature of core-collapse supernovae. Class Quantum Grav 26:063001. https://doi.org/10.1088/0264-9381/26/6/063001. arXiv:0809.0695 Ott C, Reisswig C, Schnetter E, O’Connor E, Sperhake U, Löffler F, Diener P, Abdikamalov E, Hawke I, Burrows A (2011) Dynamics and gravitational wave signature of collapsar formation. Phys Rev Lett 106:161103. https://doi.org/10.1103/PhysRevLett.106.161103. arXiv:1012.1853 Owen BJ (1996) Search templates for gravitational waves from inspiraling binaries: choice of template spacing. Phys Rev D 53:6749–6761. https://doi.org/10.1103/PhysRevD.53.6749. arXiv:gr-qc/9511032 Owen BJ, Sathyaprakash B (1999) Matched filtering of gravitational waves from inspiraling compact binaries: computational cost and template placement. Phys Rev D 60:022002. https://doi.org/10.1103/PhysRevD.60.022002. arXiv:gr-qc/9808076 Palliyaguru NT et al (2016) Radio follow-up of gravitational wave triggers during advanced LIGO O1. Astrophys J Lett 829:L28. https://doi.org/10.3847/2041-8205/829/2/L28. arXiv:1608.06518 Pan Y et al (2014) Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism. Phys Rev D 89:084006. https://doi.org/10.1103/PhysRevD.89.084006. arXiv:1307.6232 Pankow C, Chase EA, Coughlin S, Zevin M, Kalogera V (2018) Improvements in gravitational-wave sky localization with expanded networks of interferometers. Astrophys J Lett 854(2):L25. https://doi.org/10.3847/2041-8213/aaacd4. arXiv:1801.02674 Paschalidis V (2017) General relativistic simulations of compact binary mergers as engines of short gamma-ray bursts. Class Quantum Grav 34:084002. https://doi.org/10.1088/1361-6382/aa61ce. arXiv:1611.01519 Patricelli B, Stamerra A, Razzano M, Pian E, Cella G (2018) Searching for Gamma-Ray counterparts to Gravitational Waves from merging binary neutron stars with the Cherenkov telescope array. \(\text{ ArXiv }\) e-prints arXiv:1801.05167 Patricelli B et al (2016) Prospects for joint observations of gravitational waves and gamma rays from merging neutron star binaries. J Cosmol Astropart Phys 1611:056. https://doi.org/10.1088/1475-7516/2016/11/056. arXiv:1606.06124 Perna R, Lazzati D, Giacomazzo B (2016) Short gamma-ray bursts from the merger of two black holes. Astrophys J Lett 821:L18. https://doi.org/10.3847/2041-8205/821/1/L18. arXiv:1602.05140 Pian E et al (2017) Spectroscopic identification of r-process nucleosynthesis in a double neutron star merger. Nature 551:67–70. https://doi.org/10.1038/nature24298. arXiv:1710.05858 Pitkin M, Reid S, Rowan S, Hough J (2011) Gravitational wave detection by interferometry (ground and space). Living Rev Relativ 14:5. https://doi.org/10.12942/lrr-2011-5. arXiv:1102.3355 Pooley D, Kumar P, Wheeler JC (2017) GW170817 most likely made a black hole. \(\text{ ArXiv }\) e-prints arXiv:1712.03240 Privitera S, Mohapatra SRP, Ajith P, Cannon K, Fotopoulos N, Frei MA, Hanna C, Weinstein AJ, Whelan JT (2014) Improving the sensitivity of a search for coalescing binary black holes with nonprecessing spins in gravitational wave data. Phys Rev D 89:024003. https://doi.org/10.1103/PhysRevD.89.024003. arXiv:1310.5633 Prix R (2007) Template-based searches for gravitational waves: efficient lattice covering of flat parameter spaces. Class Quantum Grav 24:S481–S490. https://doi.org/10.1088/0264-9381/24/19/S11. arXiv:0707.0428 Punturo M et al (2010) The Einstein telescope: a third-generation gravitational wave observatory. Class Quantum Grav 27:194002. https://doi.org/10.1088/0264-9381/27/19/194002 Pürrer M (2014) Frequency domain reduced order models for gravitational waves from aligned-spin compact binaries. Class Quantum Grav 31:195010. https://doi.org/10.1088/0264-9381/31/19/195010. arXiv:1402.4146 Racusin JL et al (2017) Searching the gamma-ray sky for counterparts to gravitational wave sources: Fermi GBM and LAT observations of LVT151012 and GW151226. Astrophys J 835:82. https://doi.org/10.3847/1538-4357/835/1/82. arXiv:1606.04901 Rana J, Singhal A, Gadre B, Bhalerao V, Bose S (2017) An enhanced method for scheduling observations of large sky error regions for finding optical counterparts to transients. Astrophys J 838:108. https://doi.org/10.3847/1538-4357/838/2/108. arXiv:1603.01689 Read JS et al (2013) Matter effects on binary neutron star waveforms. Phys Rev D 88:044042. https://doi.org/10.1103/PhysRevD.88.044042. arXiv:1306.4065 Riess AG et al (2016) A 2.4% determination of the local value of the hubble constant. Astrophys J 826:56. https://doi.org/10.3847/0004-637X/826/1/56. arXiv:1604.01424 Rodriguez CL, Morscher M, Pattabiraman B, Chatterjee S, Haster CJ, Rasio FA (2015) Binary black hole mergers from globular clusters: implications for Advanced LIGO. Phys Rev Lett 115:051101. https://doi.org/10.1103/PhysRevLett.115.051101. arXiv:1505.00792 Rodriguez CL et al (2014) Basic parameter estimation of binary neutron star systems by the Advanced LIGO/Virgo network. Astrophys J 784:119. https://doi.org/10.1088/0004-637X/784/2/119. arXiv:1309.3273 Rosswog S et al (2017) Detectability of compact binary merger macronovae. Class Quantum Grav 34:104001. https://doi.org/10.1088/1361-6382/aa68a9. arXiv:1611.09822 Ruan JJ, Nynka M, Haggard D, Kalogera V, Evans P (2018) Brightening X-ray emission from GW170817/GRB170817A: further evidence for an outflow. Astrophys J Lett 853(1):L4. https://doi.org/10.3847/2041-8213/aaa4f3. arXiv:1712.02809 Ryan G, MacFadyen A (2017) Minidisks in binary black hole accretion. Astrophys J 835:199. https://doi.org/10.3847/1538-4357/835/2/199. arXiv:1611.00341 Sakstein J, Jain B (2017) Implications of the neutron star merger GW170817 for cosmological scalar-tensor theories. Phys Rev Lett 119:251303. https://doi.org/10.1103/PhysRevLett.119.251303. arXiv:1710.05893 Salafia OS, Colpi M, Branchesi M, Chassande-Mottin E, Ghirlanda G, Ghisellini G, Vergani S (2017) Where and when: optimal scheduling of the electromagnetic follow-up of gravitational-wave events based on counterpart lightcurve models. Astrophys J 846:62. https://doi.org/10.3847/1538-4357/aa850e. arXiv:1704.05851 Sathyaprakash B, Schutz BF (2009) Physics, astrophysics and cosmology with gravitational waves. Living Rev Relativ 12:2. https://doi.org/10.12942/lrr-2009-2. arXiv:0903.0338 Sathyaprakash B et al (2012) Scientific objectives of Einstein telescope. Class Quantum Grav 29:124013. https://doi.org/10.1088/0264-9381/29/12/124013. arXiv:1206.0331 Sathyaprakash BS, Dhurandhar SV (1991) Choice of filters for the detection of gravitational waves from coalescing binaries. Phys Rev D 44:3819–3834. https://doi.org/10.1103/PhysRevD.44.3819 Savchenko V et al (2016) INTEGRAL upper limits on gamma-ray emission associated with the gravitational wave event GW150914. Astrophys J Lett 820:L36. https://doi.org/10.3847/2041-8205/820/2/L36. arXiv:1602.04180 Savchenko V et al (2017a) INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817. Astrophys J Lett 848:L15. https://doi.org/10.3847/2041-8213/aa8f94. arXiv:1710.05449 Savchenko V et al (2017b) INTEGRAL observations of GW170104. Astrophys J Lett 846:L23. https://doi.org/10.3847/2041-8213/aa87ae. arXiv:1707.03719 Schmidt P, Ohme F, Hannam M (2015) Towards models of gravitational waveforms from generic binaries II: Modelling precession effects with a single effective precession parameter. Phys Rev D 91:024043. https://doi.org/10.1103/PhysRevD.91.024043. arXiv:1408.1810 Schnittman JD (2013) Astrophysics of super-massive black hole mergers. Class Quantum Grav 30:244007. https://doi.org/10.1088/0264-9381/30/24/244007. arXiv:1307.3542 Schutz BF (1986) Determining the Hubble constant from gravitational wave observations. Nature 323:310–311. https://doi.org/10.1038/323310a0 Schutz BF (2011) Networks of gravitational wave detectors and three figures of merit. Class Quantum Grav 28:125023. https://doi.org/10.1088/0264-9381/28/12/125023. arXiv:1102.5421 Serino M, Kawai N, Negoro H, Mihara T, Masumitsu T, Nakahira S (2017) X-ray upper limits of GW151226 with MAXI. Publ Astron Soc Jpn 69:85. https://doi.org/10.1093/pasj/psx086. arXiv:1708.01352 Sesana A (2016) Prospects for multiband gravitational-wave astronomy after GW150914. Phys Rev Lett 116:231102. https://doi.org/10.1103/PhysRevLett.116.231102. arXiv:1602.06951 Shappee BJ et al (2017) Early spectra of the gravitational wave source GW170817: evolution of a neutron star merger. Science. https://doi.org/10.1126/science.aaq0186, arXiv:1710.05432 Sidery T et al (2014) Reconstructing the sky location of gravitational-wave detected compact binary systems: methodology for testing and comparison. Phys Rev D 89:084060. https://doi.org/10.1103/PhysRevD.89.084060. arXiv:1312.6013 Siebert MR et al (2017) The unprecedented properties of the first electromagnetic counterpart to a gravitational wave source. Astrophys J Lett 848:L26. https://doi.org/10.3847/2041-8213/aa905e. arXiv:1710.05440 Singer LP, Price LR (2016) Rapid Bayesian position reconstruction for gravitational-wave transients. Phys Rev D 93:024013. https://doi.org/10.1103/PhysRevD.93.024013. arXiv:1508.03634 Singer LP et al (2014) The first two years of electromagnetic follow-up with Advanced LIGO and Virgo. Astrophys J 795:105. https://doi.org/10.1088/0004-637X/795/2/105. arXiv:1404.5623 Singer LP et al (2016a) Going the distance: mapping host galaxies of LIGO and Virgo sources in three dimensions using local cosmography and targeted follow-up. Astrophys J Lett 829:L15. https://doi.org/10.3847/2041-8205/829/1/L15. arXiv:1603.07333 Singer LP et al (2016b) Supplement: going the distance: mapping host galaxies of LIGO and Virgo sources in three dimensions using local cosmography and targeted follow-up. Astrophys J Suppl 226:10. https://doi.org/10.3847/0067-0049/226/1/10. arXiv:1605.04242 Smartt SJ et al (2016a) A search for an optical counterpart to the gravitational wave event GW151226. Astrophys J Lett 827:L40. https://doi.org/10.3847/2041-8205/827/2/L40. arXiv:1606.04795 Smartt SJ et al (2016b) Pan-STARRS and PESSTO search for an optical counterpart to the LIGO gravitational wave source GW150914. Mon Not R Astron Soc 462:4094. https://doi.org/10.1093/mnras/stw1893. arXiv:1602.04156 Smartt SJ et al (2017) A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 551(7678):75–79. https://doi.org/10.1038/nature24303. arXiv:1710.05841 Smith R, Field SE, Blackburn K, Haster CJ, Pürrer M, Raymond V, Schmidt P (2016) Fast and accurate inference on gravitational waves from precessing compact binaries. Phys Rev D 94:044031. https://doi.org/10.1103/PhysRevD.94.044031. arXiv:1604.08253 Soares-Santos M et al (2016) A dark energy camera search for an optical counterpart to the first Advanced LIGO gravitational wave event GW150914. Astrophys J Lett 823:L33. https://doi.org/10.3847/2041-8205/823/2/L33. arXiv:1602.04198 Soares-Santos M et al (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817 I. Discovery of the optical counterpart using the dark energy camera. Astrophys J Lett 848:L16. https://doi.org/10.3847/2041-8213/aa9059. arXiv:1710.05459 Somiya K (2012) Detector configuration of KAGRA: the Japanese cryogenic gravitational-wave detector. Class Quantum Grav 29:124007. https://doi.org/10.1088/0264-9381/29/12/124007. arXiv:1111.7185 Stalder B et al (2017) Observations of the GRB afterglow ATLAS17aeu and its possible association with GW170104. Astrophys J 850:149. https://doi.org/10.3847/1538-4357/aa95c1. arXiv:1706.00175 Staley A et al (2014) Achieving resonance in the Advanced LIGO gravitational-wave interferometer. Class Quantum Grav 31:245010. https://doi.org/10.1088/0264-9381/31/24/245010 Stone NC, Metzger BD, Haiman Z (2017) Assisted inspirals of stellar mass black holes embedded in AGN disks. Mon Not R Astron Soc 464:946–954. https://doi.org/10.1093/mnras/stw2260. arXiv:1602.04226 Sutton P (2013) A rule of thumb for the detectability of gravitational-wave bursts. \(\text{ ArXiv }\) e-prints arXiv:1304.0210 Sutton PJ et al (2010) X-pipeline: an analysis package for autonomous gravitational-wave burst searches. New J Phys 12:053034. https://doi.org/10.1088/1367-2630/12/5/053034. arXiv:0908.3665 Tanvir NR et al (2017) The emergence of a lanthanide-rich kilonova following the merger of two neutron stars. Astrophys J Lett 848:L27. https://doi.org/10.3847/2041-8213/aa90b6. arXiv:1710.05455 Taracchini A et al (2014) Effective-one-body model for black-hole binaries with generic mass ratios and spins. Phys Rev D 89:061502. https://doi.org/10.1103/PhysRevD.89.061502. arXiv:1311.2544 Tavani M et al (2016) AGILE observations of the gravitational wave event GW150914. Astrophys J Lett 825:L4. https://doi.org/10.3847/2041-8205/825/1/L4. arXiv:1604.00955 Thrane E, Coughlin M (2013) Searching for gravitational-wave transients with a qualitative signal model: seedless clustering strategies. Phys Rev D 88:083010. https://doi.org/10.1103/PhysRevD.88.083010. arXiv:1308.5292 Thrane E et al (2011) Long gravitational-wave transients and associated detection strategies for a network of terrestrial interferometers. Phys Rev D 83:083004. https://doi.org/10.1103/PhysRevD.83.083004. arXiv:1012.2150 Thrane E, Mandic V, Christensen N (2015) Detecting very long-lived gravitational-wave transients lasting hours to weeks. Phys Rev S 91:104021. https://doi.org/10.1103/PhysRevD.91.104021. arXiv:1501.06648 Troja E, Read AM, Tiengo A, Salvaterra R (2016) XMM-Newton Slew Survey observations of the gravitational wave event GW150914. Astrophys J Lett 822:L8. https://doi.org/10.3847/2041-8205/822/1/L8. arXiv:1603.06585 Troja E et al (2017) The X-ray counterpart to the gravitational wave event GW 170817. Nature 551:71–74. https://doi.org/10.1038/nature24290. arXiv:1710.05433 Usman SA, Nitz AH, Harry IW, Biwer CM, Brown DA, Cabero M, Capano CD, Dal Canton T, Dent T, Fairhurst S, Kehl MS, Keppel D, Krishnan B, Lenon A, Lundgren A, Nielsen AB, Pekowsky LP, Pfeiffer HP, Saulson PR, West M, Willis JL (2016) An improved pipeline to search for gravitational waves from compact binary coalescence. Class Quantum Grav 33:215004. https://doi.org/10.1088/0264-9381/33/21/215004. arXiv:1508.02357 van der Sluys MV, Roever C, Stroeer A, Christensen N, Kalogera V, Meyer R, Vecchio A (2008) Gravitational-wave astronomy with inspiral signals of spinning compact-object binaries. Astrophys J Lett 688:L61. https://doi.org/10.1086/595279. arXiv:0710.1897 Valenti S, Sand DJ, Yang S, Cappellaro E, Tartaglia L, Corsi A, Jha SW, Reichart DE, Haislip J, Kouprianov V (2017) The discovery of the electromagnetic counterpart of GW170817: Kilonova AT 2017gfo/DLT17ck. Astrophys J Lett 848:L24. https://doi.org/10.3847/2041-8213/aa8edf. arXiv:1710.05854 Vallisneri M, Kanner J, Williams R, Weinstein A, Stephens B (2015) The LIGO open science center. J Phys Conf Ser 610:012021. https://doi.org/10.1088/1742-6596/610/1/012021. arXiv:1410.4839 Vangioni E, Goriely S, Daigne F, François P, Belczynski K (2016) Cosmic neutron star merger rate and gravitational waves constrained by the r-process nucleosynthesis. Mon Not R Astron Soc 455:17–34. https://doi.org/10.1093/mnras/stv2296. arXiv:1501.01115 Vecchio A (2004) LISA observations of rapidly spinning massive black hole binary systems. Phys Rev D 70:042001. https://doi.org/10.1103/PhysRevD.70.042001. arXiv:astro-ph/0304051 Veitch J, Mandel I, Aylott B, Farr B, Raymond V, Rodriguez C, van der Sluys M, Kalogera V, Vecchio A (2012) Estimating parameters of coalescing compact binaries with proposed advanced detector networks. Phys Rev D 85:104045. https://doi.org/10.1103/PhysRevD.85.104045. arXiv:1201.1195 Veitch J, Raymond V, Farr B, Farr W, Graff P, Vitale S, Aylott B, Blackburn K, Christensen N, Coughlin M, Del Pozzo W, Feroz F, Gair J, Haster CJ, Kalogera V, Littenberg T, Mandel I, O’Shaughnessy R, Pitkin M, Rodriguez C, Röver C, Sidery T, Smith R, Van Der Sluys M, Vecchio A, Vousden W, Wade L (2015) Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library. Phys Rev D 91:042003. https://doi.org/10.1103/PhysRevD.91.042003. arXiv:1409.7215 Verrecchia F et al (2017) AGILE observations of the gravitational-wave source GW170104. Astrophys J Lett 847:L20. https://doi.org/10.3847/2041-8213/aa8224. arXiv:1706.00029 Villar VA et al (2017) The combined ultraviolet, optical, and near-infrared light curves of the kilonova associated with the binary neutron star merger GW170817: unified data set, analytic models, and physical implications. Astrophys J Lett 851:L21. https://doi.org/10.3847/2041-8213/aa9c84. arXiv:1710.11576 Vinciguerra S, Veitch J, Mandel I (2017) Accelerating gravitational wave parameter estimation with multi-band template interpolation. Class Quantum Grav 34:115006. https://doi.org/10.1088/1361-6382/aa6d44. arXiv:1703.02062 Vitale S (2016) Multiband gravitational-wave astronomy: parameter estimation and tests of general relativity with space- and ground-based detectors. Phys Rev Lett 117:051102. https://doi.org/10.1103/PhysRevLett.117.051102. arXiv:1605.01037 Vitale S, Zanolin M (2011) Application of asymptotic expansions for maximum likelihood estimators’ errors to gravitational waves from binary mergers: the network case. Phys Rev D 84:104020. https://doi.org/10.1103/PhysRevD.84.104020. arXiv:1108.2410 Vitale S, Del Pozzo W, Li TG, Van Den Broeck C, Mandel I, Aylott B, Veitch J (2012) Effect of calibration errors on Bayesian parameter estimation for gravitational wave signals from inspiral binary systems in the advanced detectors era. Phys Rev D 85:064034. https://doi.org/10.1103/PhysRevD.85.064034. arXiv:1111.3044 Vitale S, Lynch R, Veitch J, Raymond V, Sturani R (2014) Measuring the spin of black holes in binary systems using gravitational waves. Phys Rev Lett 112:251101. https://doi.org/10.1103/PhysRevLett.112.251101. arXiv:1403.0129 Vitale S et al (2016) On similarity of binary black hole gravitational-wave skymaps: to observe or to wait? Mon Not R Astron Lett 466:L78. https://doi.org/10.1093/mnrasl/slw239. arXiv:1611.02438 Woosley SE (2016) The progenitor of GW150914. Astrophys J Lett 824:L10. https://doi.org/10.3847/2041-8205/824/1/L10. arXiv:1603.00511 Yakumin K et al (2010) Gravitational waves from core collapse supernovae. Class Quantum Grav 27:194005. https://doi.org/10.1088/0264-9381/27/19/194005. arXiv:1005.0779 Yamazaki R, Asano K, Ohira Y (2016) Electromagnetic afterglows associated with gamma-ray emission coincident with binary black hole merger event GW150914. Progr Theor Exp Phys 2016:051E01. https://doi.org/10.1093/ptep/ptw042. arXiv:1602.05050 Yang S, Valenti S, Cappellaro E, Sand DJ, Tartaglia L, Corsi A, Reichart DE, Haislip J, Kouprianov V (2017) An empirical limit on the kilonova rate from the DLT40 one day cadence Supernova Survey. Astrophys J Lett 851:L48. https://doi.org/10.3847/2041-8213/aaa07d. arXiv:1710.05864 Yoshida M et al (2017) J-GEM follow-up observations of the gravitational wave source GW151226. Publ Astron Soc Jpn 69:12. https://doi.org/10.1093/pasj/psw113. arXiv:1611.01588 Zhang BB et al (2018) A peculiar low-luminosity short gamma-ray burst from a double neutron star merger progenitor. Nature Commun 9:447. https://doi.org/10.1038/s41467-018-02847-3. arXiv:1710.05851