Triển vọng quan sát và định vị các tín hiệu sóng hấp dẫn tạm thời với Advanced LIGO, Advanced Virgo và KAGRA

B. P. Abbott1, R. Abbott1, T. D. Abbott2, S. Abraham3, F. Acernese4,5, K. Ackley6, C. Adams7, V. B. Adya8,9, C. Affeldt8,9, M. Agathos10, K. Agatsuma11, N. Aggarwal12, O. D. Aguiar13, L. Aiello14,15, A. Ain3, P. Ajith16, T. Akutsu17, G. Allen18, A. Allocca19,20, M. Á. Aloy21, P. A. Altin22, A. Amato23, A. Ananyeva1, S. B. Anderson1, W. G. Anderson24, Masaki Ando25,26, S. V. Angelova27, S. Antier28, S. Appert1, K. Arai1, K. Arai29, Y. Arai29, S. Araki30, Akito Araya31, M. C. Araya1, J. S. Areeda32, M. Arène33, N. Aritomi25, N. Arnaud28,34, K. G. Arun35, S. Ascenzi36,37, G. Ashton6, Y. Aso38,39, S. M. Aston7, P. Astone40, F. Aubin41, P. Aufmuth9, K. AultONeal42, C. Austin2, V. Avendano43, A. Avila-Alvarez32, S. Babak33,44, P. Bacon33, F. Badaracco15,14, M. K. M. Bader45, S. Bae46, Y. Bae47, Luca Baiotti48, R. Bajpai49, P. T. Baker50, F. Baldaccini51,52, G. Ballardin34, S. W. Ballmer53, S. Banagiri54, J. C. Barayoga1, S. E. Barclay55, B. C. Barish1, D. Barker56, Kevin Barkett57, S. Barnum12, F. Barone5,58, B. Barr55, L. Barsotti12, M. Barsuglia33, D. Bárta59, J. Bartlett56, M. A. Barton55,17, I. Bartos60, R. Bassiri61, A. Basti19,20, M. Bawaj62,52, J. C. Bayley55, M. Bazzan63,64, B. Bécsy65, M. Bejger33,66, I. Belahcene28, A. S. Bell55, D. Beniwal67, B. K. Berger61, G. Bergmann8,9, Sebastiano Bernuzzi68,69, J. J. Bero70, C. P. L. Berry71, D. Bersanetti72, A. Bertolini45, J. Betzwieser7, R. Bhandare73, J. Bidler32, I. A. Bilenko74, S. A. Bilgili50, G. Billingsley1, J. Birch7, R. Birney27, O. Birnholtz70, S. Biscans1,12, S. Biscoveanu6, A. Bisht9, M. Bitossi20,34, M. A. Bizouard28, J. K. Blackburn1, C. D. Blair7, D. G. Blair75, R. M. Blair56, S. Bloemen76, N. Bode8,9, M. Boër77, Y. Boetzel78, G. Bogaert77, F. Bondu79, E. Bonilla61, R. Bonnand41, P. Booker8,9, B. A. Boom45, C. D. Booth80, R. Bork1, V. Boschi34, S. Bose81,3, K. Bossie7, V. Bossilkov75, J. Bosveld75, Y. Bouffanais33, A. Bozzi34, C. Bradaschia20, P. R. Brady24, A. Bramley7, M. Branchesi15,14, J. E. Brau82, T. Briant83, J. H. Briggs55, F. Brighenti84,85, A. Brillet77, M. Brinkmann8,9, V. Brisson28, P. Brockill24, A. F. Brooks1, Duncan Brown53, D. D. Brown67, S. Brunett1, A. Buikema12, T. Bulik86, H. J. Bulten45,87, A. Buonanno44,88, D. Buskulic41, C. Buy33, R. L. Byer61, M. Cabero8,9, L. Cadonati89, G. Cagnoli90,23, C. Cahillane1, J. Calderón Bustillo6, T. A. Callister1, E. Calloni4,91, J. B. Camp92, William A. Campbell6, M. Canepa93,72, K. C. Cannon26, H. Cao67, Junwei Cao94, E. Capocasa33,17, F. Carbognani34, S. Caride95, M. F. Carney71, G. Carullo19, J. Casanueva Díaz20, C. Casentini36,37, S. Caudill45, M. Cavaglià96, F. Cavalier28, R. Cavalieri34, G. Cella20, P. Cerdá–Durán21, G. Cerretani19,20, E. Cesarini97,37, O. Chaibi77, K. Chakravarti3, S. J. Chamberlin98, M. Chan55, S. Chao99, P. Charlton100, E. A. Chase71, E. Chassande‐Mottin33, Deep Chatterjee24, M. Chaturvedi73, Katerina Chatziioannou101, B. D. Cheeseboro50, C. S. Chen102, H. Y. Chen103, K. H. Chen104, X. Chen75, Y. Chen57, Y. R. Chen105,106, H.-P. Cheng60, C. K. Cheong107, H. Y. Chia60, A. Chincarini72, A. Chiummo34, G. Cho108, H. S. Cho109, M. Cho88, N. Christensen110,77, Hong‐Yu Chu104, Q. Chu75, Y-K. Chu111, S. Chua83, K. W. Chung107, S. Chung75, G. Ciani63,64, A. A. Ciobanu67, R. Ciolfi112,113, F. Cipriano77, A. Cirone93,72, F. Clara56, J. A. Clark89, P. Clearwater114, F. Cleva77, C. Cocchieri96, E. Coccia15,14, P.-F. Cohadon83, D. Cohen28, R. Colgan115, M. Colleoni116, Christophe Collette117, Chris Collins11, L. Cominsky118, M. Constancio13, L. Conti64, S. J. Cooper11, P. Corban7, T. R. Corbitt2, I. Cordero-Carrión119, K. R. Corley120, N. Cornish65, A. Corsi95, S. Cortese34, C. A. Costa13, R. Cotesta44, M. W. Coughlin1, S. B. Coughlin80,71, J.‐P. Coulon77, S. T. Countryman115, P. Couvares1, P. B. Covas116, E. E. Cowan89, D. M. Coward75, M. J. Cowart7, D. C. Coyne1, R. Coyne121, J. D. E. Creighton24, T. D. Creighton122, J. Cripe2, M. Croquette83, S. G. Crowder123, T. J. Cullen2, A. Cumming55, L. Cunningham55, E. Cuoco34, T. Dal Canton92, G. Dálya124, S. L. Danilishin8,9, S. D’Antonio37, K. Danzmann8,9, Arnab Dasgupta125, C. F. Da Silva Costa60, L. E. H. Datrier55, V. Dattilo34, I. Dave73, M. Davier28, D. Davis53, E. J. Daw126, D. DeBra61, M. Deenadayalan3, J. Degallaix23, M. De Laurentis58,91, S. Deléglise83, W. Del Pozzo19,20, L. M. DeMarchi71, N. Demos12, T. Dent8,9,127, R. De Pietri69,128, J. Derby32, R. De Rosa91,4, C. De Rossi23,34, R. DeSalvo129, O. de Varona8,9, S. Dhurandhar3, M. C. Díaz122, Tim Dietrich45, L. Di Fiore58, M. Di Giovanni112,130, T. Di Girolamo58,91, A. Di Lieto19,20, B. Ding, S. Di Pace131,40, I. Di Palma131,40, F. Di Renzo19,20, A. Dmitriev11, Z. Doctor103, Kunio Doi132, F. Donovan12, K. L. Dooley96,80, S. Doravari8,9, I. Dorrington80, T. P. Downes24, M. Drago15,14, J. C. Driggers56, Z. Du94, J.-G. Ducoin28, P. Dupej55, S. E. Dwyer56, P. J. Easter6, T. B. Edo126, M. C. Edwards110, A. Effler7, S. Eguchi133, P. Ehrens, J. Eichholz, S. S. Eikenberry60, M. Eisenmann41, R. A. Eisenstein12, Yutaro Enomoto25, R. C. Essick103, H. Estellés116, D. Estevez41, Z. B. Etienne50, T. Etzel1, M. Evans12, T. M. Evans7, V. Fafone14,36,37, H. Fair53, S. Fairhurst80, X. Fan94, S. Farinon72, B. Farr82, W. M. Farr11, E. J. Fauchon‐Jones80, M. Favata43, M. Fays126, M. Fazio134, Conan J. Fee135, J. Feicht1, M. M. Fejer61, F. Feng33, A. Fernandez-Galiana12, I. Ferrante19,20, E. C. Ferreira13, T. A. Ferreira13, F. Ferrini34, F. Fidecaro19,20, I. Fiori34, D. Fiorucci33, M. Fishbach103, R. P. Fisher53,136, J. M. Fishner12, M. Fitz-Axen54, R. Flaminio17,41, M. Fletcher55, E. Flynn32, H. Fong101, José A. Font137,21, P. W. F. Forsyth22, J.-D. Fournier77, S. Frasca131,40, F. Frasconi20, Z. Frei124, A. Freise11, R. Frey82, V. Frey28, P. Fritschel12, V. V. Frolov7, Yoshinori Fujii138, Masataka Fukunaga29, Mitsuhiro Fukushima139, P. Fulda60, M. Fyffe7, H. A. Gabbard55, B. U. Gadre3, S. M. Gaebel11, J. R. Gair140, L. Gammaitoni51, M. R. Ganija67, S. G. Gaonkar3, A. García32, C. García-Quirós116, F. Garufi4,91, B. Gateley56, S. Gaudio42, G. Gaur141, V. Gayathri142, G. Ge143, G. Gemme72, É. Genin34, A. Gennai20, D. George18, J. George73, L. Gergely144, V. Germain41, S. Ghonge89, Abhirup Ghosh16, Archisman Ghosh45, S. Ghosh24, B. Giacomazzo112,130, J. A. Giaime7,2, K. D. Giardina7, A. Giazotto20, K. Gill42, G. Giordano5,58, L. Glover129, P. Godwin98, E. Goetz56, R. Goetz60, B. Goncharov6, Gabriela González2, J. M. Gonzalez Castro19,20, A. Gopakumar145, M. L. Gorodetsky74, S. E. Gossan, M. Gosselin34, R. Gouaty41, A. Grado4,146, C. Graef55, M. Granata23, A. Grant55, S. Gras12, P. Grassia1, C. Gray56, R. Gray55, G. Greco84,85, A. C. Green11,60, R. Green80, E. M. Gretarsson42, P. Groot76, H. Grote80, S. Grünewald44, P. Grüning28, G. M. Guidi84,85, H. K. Gulati125, Yuhong Guo45, Anuradha Gupta98, M. K. Gupta125, E. K. Gustafson1, R. Gustafson147, L. Haegel116, A. Hagiwara148, S. Haino149, O. Halim15,14, B. R. Hall81, E. D. Hall12, E. Z. Hamilton80, G. Hammond55, M. Haney78, M. M. Hanke8,9, J. Hanks56, C. Hanna98, M. D. Hannam80, O. A. Hannuksela107, J. Hanson7, T. Hardwick2, K. Haris16, J. Harms15,14, G. M. Harry150, I. W. Harry44, K. Hasegawa29, C.-J. Haster101, K. Haughian55, Hisao Hayakawa151, K. Hayama133, F. J. Hayes55, J. Healy70, A. Heidmann83, M. C. Heintze7, H. Heitmann77, P. Hello28, G. Hemming34, M. Hendry55, I. S. Heng55, J. Hennig8,9, A. W. Heptonstall1, M. Heurs8,9, S. Hild55, Y. Himemoto152, Tanja Hinderer153,154,45, Y. Hiranuma155, N. Hirata17, E. Hirose29, D. Hoak34, S. Hochheim8,9, D. Hofman23, A. M. Holgado18, N. A. Holland22, K. Holt7, D. E. Holz103, Hong Zhou111, P. Hopkins80, C. Horst24, J. Hough55, E. J. Howell75, C. G. Hoy80, A. Hreibi77, B-H. Hsieh156, G-Z. Huang111, P. Huang143, Y-C. Huang149, E. A. Huerta18, D. Huet28, B. Hughey42, M. Hulko1, S. Husa116, S. H. Huttner55, T. Huynh─Dinh7, B. Idźkowski86, A. Iess36,37, B. Ikenoue139, S. Imam111, Kohei Inayoshi157, C. Ingram67, Yuki Inoue104, R. Inta95, G. Intini131,40, Kunihito Ioka158, B. Irwin135, H. N. Isa55, J.-M. Isac83, M. Isi1, Y. Itoh159,160, B. R. Iyer16, K. Izumi56,161, T. Jacqmin83, S. J. Jadhav162, K. Jani89, N. N. Janthalur162, P. Jaranowski163, A. C. Jenkins164, Jun Jiang60, D. S. Johnson18, Aaron Jones11, D. I. Jones165, R. Jones55, R. J. G. Jonker45, Ju Li75, K. Jung166, P. Jung151, J. Junker8,9, T. Kajita29, C. V. Kalaghatgi80, V. Kalogera71, B. Kamai1, M. Kamiizumi151, Nobuyuki Kanda160,159, S. Kandhasamy96, G. Kang46, J. B. Kanner1, S. J. Kapadia24, S. Karki82, K. S. Karvinen8,9, R. Kashyap16, M. Kasprzack1, S. Katsanevas34, E. Katsavounidis12, W. Katzman7, S. Kaufer9, K. Kawabe56, Kyohei Kawaguchi29, N. Kawai167, T. Kawasaki25, N. V. Keerthana3, F. Kéfélian77, D. Keitel55, R. Kennedy126, J. S. Key168, F. Y. Khalili74, H. Khan32, I. Khan14,37, S. Khan8,9, Z. Khan125, Е. А. Хазанов169, M. Khursheed73, N. Kijbunchoo22, Chunglee Kim170, C. Kim171, J. C. Kim172, J. Kim173, K. Kim107, W. Kim67, W. S. Kim47, Y.-M. Kim166, C. Kimball71, N. Kimura148, E. J. King67, Peter King56, M. Kinley-Hanlon150, R. Kirchhoff8,9, J. S. Kissel56, Naoki Kita25, H. Kitazawa132, L. Kleybolte174, J. H. Klika24, S. Klimenko60, T. D. Knowles50, E. Knyazev12, P. Koch8,9, S. M. Koehlenbeck8,9, G. Koekoek45,175, Yasufumi Kojima176, K. Kokeyama151, S. Koley45, K. Komori25, V. Kondrashov, Albert Kong105,106, A. Kontos12, N. Koper8,9, M. Korobko174, W. Z. Korth, Kei Kotake133, I. Kowalska86, D. B. Kozak1, C. Kozakai148, R. Kozu177, V. Kringel8,9, N. V. Krishnendu35, A. Królak178,179, G. Kuehn8,9, Alan Prem Kumar162, P. Kumar180, Rahul Kumar1, Rakesh Kumar125, S. Kumar16, J. Kume26, C. Kuo104, H-S. Kuo111, L. Kuo99, Sachiko Kuroyanagi181, K. Kusayanagi167, A. Kutynia178, Kyujin Kwak166, S. Kwang24, B. D. Lackey44, K. H. Lai107, T. L. Lam107, M. Landry56, B. B. Lane12, R. N. Lang182, J. Lange70, B. Lantz61, R. K. Lanza12, A. Lartaux-Vollard28, P. D. Lasky6, M. Laxen7, A. Lazzarini1, C. Lazzaro64, P. Leaci131,40, S. Leavey8,9, Y. K. Lecoeuche56, C. H. Lee109, H. K. Lee183, H. M. Lee184, H. W. Lee172, J. Lee108, K. Lee55, R. K. Lee105,106, Johannes Lehmann8,9, A. Lenon50, M. Leonardi17, N. Leroy28, N. Letendre41, Y. Levin120,6, J. Li94, K. J. L. Li107, T. G. F. Li107, X. Li57, Chun Yu Lin185, F. Lin6, F-K. Lin111, L. Lin166, F. Linde45, S. D. Linker129, T. B. Littenberg186, G. C. Liu102, J. Liu75, X. Liu24, R. K. L. Lo107,1, N. A. Lockerbie27, L. T. London80, A. Longo187,188, M. Lorenzini15,14, V. Loriette189, M. Lormand7, G. Losurdo20, J. D. Lough8,9, C. O. Loustó70, Geoffrey Lovelace32, M. E. Lower190, H. Lück8,9, D. Lumaca36,37, A. P. Lundgren191, L.-W. Luo149, R. Lynch12, Y. Ma57, R. Macas80, S. Macfoy27, M. MacInnis12, D. M. Macleod80, A. Macquet77, F. Magaña-Sandoval53, L. Magaña Zertuche96, R. M. Magee98, E. Majorana40, I. Maksimovic189, A. Malik73, N. Man77, V. Mandic54, V. Mangano55, G. L. Mansell56,12, M. Manske24,22, M. Mantovani34, F. Marchesoni62,52, M. Marchio17, F. Marion41, S. Márka120, Z. Márka120, C. Markakis10,18, A. S. Markosyan61, A. Markowitz1, E. Maros, Antonio Marquina119, Sylvain Marsat44, F. Martelli84,85, I. W. Martin55, R. M. Martin43, Д. В. Мартынов11, K. Mason12, E. Massera126, A. Masserot41, T. J. Massinger1, M. Masso-Reid55, S. Mastrogiovanni131,40, A. Matas54,44, F. Matichard1,12, L. Matone115, N. Mavalvala12, N. Mazumder81, J. J. McCann75, R. McCarthy56, D. E. McClelland22, S. McCormick7, L. McCuller12, S. C. McGuire192, J. McIver1, D. J. McManus22, T. McRae22, S. T. McWilliams50, D. Meacher98, G. D. Meadors6, M. Mehmet8,9, A. K. Mehta16, J. Meidam45, A. Melatos114, G. Mendell56, R. A. Mercer24, L. Mereni23, E. L. Merilh56, M. Merzougui77, S. Meshkov1, C. Messenger55, C. Messick98, R. Metzdorff83, P. M. Meyers114, H. Miao11, C. Michel23, Yuta Michimura25,26, H. Middleton114, Е. Е. Михайлов193, L. Milano58,91, A. Miller60, M. Millhouse65, J. C. Mills80, M. C. Milovich-Goff129, O. Minazzoli194,77, Y. Minenkov37, Norikatsu Mio195, A. Mishkin60, C. Mishra196, T. Mistry126, S. Mitra3, V. P. Mitrofanov74, G. Mitselmakher60, R. Mittleman12, O. Miyakawa151, A. Miyamoto160, Yuki Miyazaki25, K. Miyo151, S. Miyoki151, Geoffrey Mo110, D. Moffa135, K. Mogushi96, S. R. P. Mohapatra12, M. Montani84,85, C. J. Moore10, D. Moraru56, G. Moreno56, S. Morisaki26, Y. Moriwaki132, B. Mours41, C. M. Mow–Lowry11, Arunava Mukherjee8,9, D. Mukherjee24, S. Mukherjee122, N. Mukund, A. Mullavey7, J. Münch67, E. A. Muñiz53, M. Muratore42, P. G. Murray55, Koji Nagano29, S. Nagano197, Alessandro Nagar97,198,199, Kouji Nakamura17, Hiroyuki Nakano200, Masayuki Nakano29, Ryosuke Nakashima167, I. Nardecchia36,37, T. Narikawa201, L. Naticchioni131,40, R. K. Nayak202, R. Negishi155, J. Neilson129, G. Nelemans45,76, T. J. N. Nelson7, M. Nery8,9, A. Neunzert147, K. Y. Ng12, S. Ng67, P. Nguyen82, Wei-Tou Ni106,143, David A. Nichols45,153, A. Nishizawa203,26, S. Nissanke153,45, F. Nocera34, C. North80, L. K. Nuttall191, M. Obergaulinger21, J. Oberling56, B. D. O’Brien60, Yasunari Obuchi139, G. D. O’Dea129, W. Ogaki29, G. H. Ogin204, J. J. Oh47, Sang Hoon Oh47, M. Ohashi151, N. Ohishi39, Masashi Ohkawa205, F. Ohme8,9, Hiroaki Ohta26, M. A. Okada13, K. Okutomi38, M. Oliver116, Ken–ichi Oohara155, C. Ooi25, P. Oppermann8,9, Richard J. Oram7, B. O’Reilly7, R. G. Ormiston54, L. F. Ortega60, R. O’Shaughnessy70, S. Oshino151, Serguei Ossokine44, D. J. Ottaway67, H. Overmier7, B. J. Owen95, A. E. Pace98, G. Pagano19,20, M. A. Page75, A. Pai142, S. A. Pai73, J. R. Palamos82, O. Palashov169, C. Palomba40, A. Pal-Singh174, H. Pan99, K. Pan105,106, B. Pang57, Huan Pang104, P. T. H. Pang107, C. Pankow71, F. Pannarale131,40, B. C. Pant73, F. Paoletti20, A. Paoli34, M. A. Papa8,24,44, A. Parida3, J. Park206, W. Parker7,192, D. Pascucci55, A. Pasqualetti34, R. Passaquieti19,20, D. Passuello20, M. Patil179, B. Patricelli19,20, B. L. Pearlstone55, C. Pedersen80, M. Pedraza, R. Pedurand207,23, A. Pele7, F. E. Peña Arellano151, S. Penn208, C. J. Perez56, A. Perreca112,130, H. P. Pfeiffer101,44, M. Phelps8,9, K. S. Phukon3, O. J. Piccinni131,40, M. Pichot77, F. Piergiovanni84,85, G. Pillant34, L. Pinard23, I. M. Pinto209, M. Pirello56, M. Pitkin55, R. Poggiani19,20, D. Y. T. Pong107, S. Ponrathnam3, P. Popolizio34, E. K. Porter33, J. Powell190, A. K. Prajapati125, J. Prasad3, K. Prasai61, R. Prasanna162, G. Pratten116, T. Prestegard24, S. Privitera44, G. A. Prodi130,112, L. Prokhorov74, O. Puncken8,9, M. Punturo52, P. Puppo40, M. Pürrer44, H. Qi24, V. Quetschke122, P. J. Quinonez42, E. A. Quintero1, R. Quitzow-James82, F. J. Raab56, H. Radkins56, N. Rădulescu77, P. Raffai124, S. Raja73, C. Rajan73, B. Rajbhandari95, M. Rakhmanov122, K. E. Ramirez122, A. Ramos-Buades116, Javed Rana3, K. Rao71, P. Rapagnani131,40, V. Raymond80, M. Razzano19,20, J. Read32, T. Regimbau41, L. Rei72, S. Reid27, D. H. Reitze60,1, Wei Ren18, F. Ricci131,40, C. J. Richardson42, J. W. Richardson1, P. M. Ricker18, K. Riles147, M. Rizzo71, N. A. Robertson55,1, R. Robie55, F. Robinet28, A. Rocchi37, L. Rolland41, J. G. Rollins1, V. J. Roma82, Marco Romanelli79, R. Romano5,4, C. L. Romel56, J. H. Romie7, K. Rose135, D. Rosińska210,66, S. G. Rosofsky18, M. P. Ross211, S. Rowan55, A. Rüdiger8,9, P. Ruggi34, G. Rutins212, K. Ryan56, S. Sachdev1, T. Sadecki56, Norichika Sago213, Shinya Saito139, Yoshio Saitō151, Kazuki Sakai214, Y. Sakai155, Hideji Sakamoto132, Mairi Sakellariadou164, Yuji Sakuno133, L. Salconi34, M. Saleem35, A. Samajdar45, L. Sammut6, E. J. Sanchez1, L. E. Sanchez1, N. Sanchis-Gual21, V. Sandberg56, J. R. Sanders53, K. A. Santiago43, N. Sarin6, B. Sassolas23, B. S. Sathyaprakash80,98, S. Sato215, Takashi Satō205, O. Sauter147, R. L. Savage56, T. Sawada160, P. Schale82, Mark Scheel57, Jacob Scheuer71, P. Schmidt76, R. Schnabel174, R. M. S. Schofield82, A. Schönbeck174, E. Schreiber8,9, B. W. Schulte8,9, B. F. Schutz80, S. G. Schwalbe42, J. Scott55, S. M. Scott22, E. Seidel18, T. Sekiguchi26, Y. Sekiguchi216, D. Sellers7, A. S. Sengupta217, N. Sennett44, D. Sentenac34, V. Sequino14,36,37, A. Sergeev169, Y. Setyawati8,9, D. A. Shaddock22, T. Shaffer56, M. S. Shahriar71, M. B. Shaner129, Lijing Shao44, Priyanka Sharma73, P. Shawhan88, H. Shen18, S. Shibagaki133, R. Shimizu139, T. Shimoda25, K. Shimode151, R. Shink218, H. Shinkai219, T. Shishido49, A. Shoda17, D. H. Shoemaker12, D. M. Shoemaker89, S. ShyamSundar73, K. Siellez89, M. Sieniawska66, D. Sigg56, A. D. Silva13, L. P. Singer92, Neha Singh86, A. Singhal14,40, A. M. Sintes116, S. Sitmukhambetov122, V. Skliris80, B. J. J. Slagmolen22, T. J. Slaven-Blair75, J. R. Smith220, R. J. E. Smith6, S. Somala221, K. Somiya167, E. J. Son47, B. Sorazu55, F. Sorrentino72, Hajime Sotani222, T. Souradeep3, E. Sowell95, A. P. Spencer55, A. K. Srivastava125, V. Srivastava53, K. Staats71, C. Stachie77, Mark Standke8,9, D. A. Steer33, M. Steinke8,9, J. Steinlechner55,174, S. Steinlechner174, D. Steinmeyer8,9, Simon Stevenson190, D. Stocks61, R. Stone122, D. J. Stops11, K. A. Strain55, G. Stratta84,85, S. Strigin74, A. Strunk56, R. Sturani223, A. L. Stuver224, V. Sudhir12, R. Sugimoto132, T. Z. Summerscales225, L. Sun, S. Sunil125, J. Suresh3, P. J. Sutton80, Takamasa Suzuki205, Toshikazu Suzuki29, B. L. Swinkels45, M. J. Szczepańczyk42, M. Tacca45, Hideyuki Tagoshi29, S. C. Tait55, Hideya Takahashi226, Ryutaro Takahashi17, A. Takamori31, S. Takano25, H. Takeda25, M. Takeda155, C. Talbot6, D. Talukder82, H. Tanaka156, Kazuyuki Tanaka160, K. Tanaka156, Taiki Tanaka29, Takahiro Tanaka201, S. Tanioka38,17, D. B. Tanner60, M. Tápai144, E. N. Tapia San Martín17, A. Taracchini44, J. D. Tasson110, Robert W. Taylor1, S. Telada227, F. Thies8,9, M. Thomas7, P. Thomas56, S. R. Thondapu73, K. A. Thorne7, E. Thrane6, Shubhanshu Tiwari112,130, Srishti Tiwari145, V. Tiwari80, K. Toland55, T. Tomaru148, Y. Tomigami160, T. Tomura151, M. Tonelli19,20, Z. Tornasi55, A. Torres-Forné228, C. I. Torrie1, D. Töyrä11, F. Travasso62,52,34, G. Traylor7, M. C. Tringali86, A. Trovato33, L. Trozzo229,20,151, R. J. Trudeau1, K. W. Tsang45, T. Tsang107, M. Tse12, R. Tso57, K. Tsubono25, S. Tsuchida160, L. Tsukada26, D. Tsuna26, Toshihiro Tsuzuki139, D. Tuyenbayev149,122, N. Uchikata230, Takashi Uchiyama151, A. Ueda148, T. Uehara60,231, K. Ueno26, G. Ueshima226, D. Ugolini232, C. S. Unnikrishnan145, Fumihiro Uraguchi139, A. L. Urban2, T. Ushiba29, S. A. Usman80, H. Vahlbruch9, G. Vajente1, G. Valdes2, N. van Bakel45, M. van Beuzekom45, J. F. J. van den Brand45,87, C. Van Den Broeck45,233, D. C. Vander-Hyde53, L. van der Schaaf45, J. V. van Heijningen75, Maurice H. P. M. van Putten234, A. A. van Veggel55, M. Vardaro63,64, Vijay Varma57, S. Vass1, M. Vasúth59, A. Vecchio11, G. Vedovato64, J. Veitch55, P. J. Veitch67, K. Venkateswara211, G. Venugopalan1, D. Verkindt41, F. Vetrano84,85, A. Vicéré84,85, A. D. Viets24, D. J. Vine212, J.-Y. Vinet77, Salvatore Vitale12, F. Hernandez Vivanco6, T. Vo53, H. Vocca51,52, C. Vorvick56, S. P. Vyatchanin74, A. R. Wade1, L. E. Wade135, M. Wade135, R. Walet45, M. Walker235, L. Wallace1, S. Walsh24, G. Wang14,20, H. Wang11, J. Wang143, J. Z. Wang147, W. H. Wang122, Y. F. Wang107, R. L. Ward22, Z. A. Warden42, J. Warner56, M. Was41, J. Watchi117, B. Weaver56, L.-W. Wei8,9, M. Weinert8,9, A. J. Weinstein1, R. Weiss12, F. Wellmann8,9, L. Wen75, E. K. Wessel18, P. Weßels8,9, J. W. Westhouse42, K. Wette22, J. T. Whelan70, B. F. Whiting60, C. Whittle12, D. Wilken8,9, Daniel Williams55, A. R. Williamson153,45, J. L. Willis, B. Willke8,9, M. H. Wimmer8,9, W. Winkler8,9, C. C. Wipf1, H. Wittel8,9, G. Woan55, J. Woehler8,9, J. K. Wofford70, J. Worden56, John L. Wright55, C. Wu105,106, D. S. Wu8,9, H. Wu105,106, S. Wu105,106, D. M. Wysocki70, L. Xiao1, W-R. Xu111, Tomohiro Yamada156, H. Yamamoto1, K. Yamamoto132, Kohei Yamamoto156, Takahiro Yamamoto151, C. C. Yancey88, L. Yang134, M. J. Yap22, M. Yazback60, D. W. Yeeles80, K. Yokogawa132, Jun’ichi Yokoyama25,26, T. Yokozawa151, T. Yoshioka132, Hang Yu12, Haocun Yu12, S. H. R. Yuen107, H. Yuzurihara29, M. Yvert41, A. Zadrożny178,122, M. Zanolin42, S. Zeidler17, T. Zelenova34, J.-P. Zendri64, M. Zevin71, J. Zhang75, L. Zhang1, T. Zhang55, C. Zhao75, Yue Zhao17, M. Zhou71, Z. Zhou71, X. J. Zhu6, Zong-Hong Zhu236, Aaron Zimmerman237, M. E. Zucker1,12, J. Zweizig1
1LIGO, California Institute of Technology, Pasadena, USA
2Louisiana State University, Baton Rouge, USA
3Inter-University Centre for Astronomy and Astrophysics, Pune, India
4INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Napoli, Italy
5Università di Salerno, Fisciano, Salerno, Italy
6OzGrav, School of Physics and Astronomy, Monash University, Clayton, Australia
7LIGO Livingston Observatory, Livingston, USA
8Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Hannover, Germany
9Leibniz Universität Hannover, Hannover, Germany
10University of Cambridge, Cambridge, UK
11University of Birmingham, Birmingham, UK
12LIGO, Massachusetts Institute of Technology, Cambridge, USA
13Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil
14Gran Sasso Science Institute (GSSI), L’Aquila, Italy
15INFN Laboratori Nazionali del Gran Sasso, Assergi, Italy
16International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, India
17National Astronomical Observatory of Japan (NAOJ), Mitaka-shi, Japan
18NCSA, University of Illinois at Urbana-Champaign, Urbana, USA
19Università di Pisa, Pisa, Italy
20INFN Sezione di Pisa, Pisa, Italy
21Departamento de Astronomía y Astrofísica, Universitat de València, Burjassot, Spain
22OzGrav, Australian National University, Canberra, Australia
23Laboratoire des Matériaux Avancés (LMA), CNRS/IN2P3, Villeurbanne, France
24University of Wisconsin-Milwaukee, Milwaukee, USA
25Department of Physics, The University of Tokyo, Bunkyo-ku, Japan
26Research Center for the Early Universe (RESCEU), The University of Tokyo, Bunkyo-ku, Japan
27SUPA, University of Strathclyde, Glasgow, UK
28LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
29Institute for Cosmic Ray Research (ICRR), The University of Tokyo, Kashiwa City, Japan
30Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), Tsukuba-shi, Japan
31Earthquake Research Institute, The University of Tokyo, Bunkyo-ku, Japan
32California State University Fullerton, Fullerton, USA
33APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité, Paris Cedex 13, France
34European Gravitational Observatory (EGO), Cascina, Pisa, Italy
35Chennai Mathematical Institute, Chennai, India
36Università di Roma Tor Vergata, Rome, Italy
37INFN Sezione di Roma Tor Vergata, Rome, Italy
38The Graduate University for Advanced Studies (SOKENDAI), Mitaka-shi, Japan
39National Astronomical Observatory of Japan (NAOJ), Kamioka Branch, Hida-shi, Japan
40INFN Sezione di Roma, Rome, Italy
41Laboratoire d’Annecy de Physique des Particules (LAPP), CNRS/IN2P3, Univ. Grenoble Alpes, Université Savoie Mont Blanc, Annecy, France
42Embry-Riddle Aeronautical University, Prescott, USA
43Montclair State University, Montclair, USA
44Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Potsdam-Golm, Germany
45NIKHEF, Amsterdam, The Netherlands
46Korea Institute of Science and Technology Information (KISTI), Daejeon, Korea
47National Institute for Mathematical Sciences, Daejeon, Korea
48Graduate School of Science, Osaka University, Toyonaka-shi, Japan
49School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Tsukuba-shi, Japan
50West Virginia University, Morgantown, USA
51Università di Perugia, Perugia, Italy
52INFN Sezione di Perugia, Perugia, Italy
53Syracuse University, Syracuse, USA
54University of Minnesota, Minneapolis, MN 55455 USA
55SUPA, University of Glasgow, Glasgow, UK
56LIGO Hanford Observatory, Richland, USA
57Caltech CaRT, Pasadena, USA
58INFN—Sezione di Napoli—Complesso Universitario di Monte S. Angelo, Napoli, Italy
59Wigner RCP, RMKI, Budapest, Hungary
60University of Florida, Gainesville, USA
61Stanford University, Stanford, USA
62Università di Camerino, Dipartimento di Fisica, Camerino, Italy
63Dipartimento di Fisica e Astronomia, Università di Padova, Padova, Italy
64INFN Sezione di Padova, Padova, Italy
65Montana State University, Bozeman, USA
66Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland
67OzGrav, University of Adelaide, Adelaide, Australia
68Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Jena, Germany
69INFN, Sezione di Milano Bicocca, Gruppo Collegato di Parma, Parma, Italy
70Rochester Institute of Technology, Rochester, USA
71Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, USA
72INFN Sezione di Genova, Genova, Italy
73RRCAT, Indore, India
74Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
75OzGrav, University of Western Australia, Crawley, Australia
76Department of Astrophysics/IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands
77Artemis, Observatoire Côte d’Azur, CNRS, Université Côte d’Azur, Nice Cedex 4, France
78Physik-Institut, University of Zurich, Zurich, Switzerland
79Univ Rennes, CNRS, Institut FOTON - UMR6082, Rennes, France
80Cardiff University, Cardiff, UK
81Washington State University, Pullman, USA
82University of Oregon, Eugene, USA
83Laboratoire Kastler Brossel, Sorbonne Université, CNRS,ENS-Université PSL, Collège de France, Paris, France
84Università degli Studi di Urbino ‘Carlo Bo’, Urbino, Italy
85INFN, Sezione di Firenze, Sesto Fiorentino, Italy
86Astronomical Observatory Warsaw University, Warsaw, Poland
87VU University Amsterdam, Amsterdam, The Netherlands
88University of Maryland, College Park, USA
89School of Physics, Georgia Institute of Technology, Atlanta, USA
90Université Claude Bernard Lyon 1, Villeurbanne, France
91Università di Napoli ’Federico II’, Complesso Universitario di Monte S.Angelo, Napoli, Italy
92NASA Goddard Space Flight Center, Greenbelt, USA
93Dipartimento di Fisica, Università degli Studi di Genova, Genoa, Italy
94Tsinghua University, Beijing, China
95Texas Tech University, Lubbock, USA
96The University of Mississippi, University, USA
97Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Rome, Italy
98The Pennsylvania State University, University Park, USA
99National Tsing Hua University, Hsinchu City, Taiwan, ROC
100Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
101Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario M5S 3H8, Canada
102Tamkang University, New Taipei City, Taiwan
103University of Chicago, Chicago, USA
104Department of Physics, The Center for High Energy and High Field Physics, National Central University, Taiyuan City, Taiwan
105Institute of Astronomy, National Tsing Hua University, Hsinchu, Taiwan
106Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
107The Chinese University of Hong Kong, Shatin, Hong Kong
108Seoul National University, Seoul, South Korea
109Pusan National University, Busan, South Korea
110Carleton College, Northfield, USA
111Department of Physics, National Taiwan Normal University, Taipei, Taiwan
112INFN, Trento Institute for Fundamental Physics and Applications, Povo, Trento, Italy
113INAF, Osservatorio Astronomico di Padova, Padova, Italy
114OzGrav, University of Melbourne, Parkville, Australia
115Columbia University, New York, USA
116Universitat de les Illes Balears IAC3—IEEC, Palma de Mallorca, Spain
117Université Libre de Bruxelles, Brussels, Belgium
118Sonoma State University, Rohnert Park, USA
119Departamento de Matemáticas, Universitat de València, Burjassot, Spain
120Columbia University, New York, USA
121University of Rhode Island, Kingston, USA
122The University of Texas Rio Grande Valley, Brownsville, USA
123Bellevue College, Bellevue, USA
124MTA-ELTE Astrophysics Research Group, Institute of Physics, Eötvös University, Budapest, Hungary
125Institute for Plasma Research, Bhat, Gandhinagar, India
126The University of Sheffield, Sheffield, UK
127IGFAE, Campus Sur, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
128Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parma, Italy
129California State University, Los Angeles, Los Angeles, USA
130Dipartimento di Fisica, Università di Trento, Povo, Trento, Italy
131Università di Roma La Sapienza, Roma, Italy
132Department of Physics, University of Toyama, Toyama-shi, Japan
133Department of Applied Physics, Fukuoka University, Jonan, Japan
134Colorado State University, Fort Collins, USA
135Kenyon College, Gambier, USA
136Christopher Newport University, Newport News, USA
137Observatori Astronòmic, Universitat de València, Paterna, Spain
138Department of Astronomy, The University of Tokyo, Mitaka-shi, Japan
139Advanced Technology Center, National Astronomical Observatory of Japan (NAOJ), Mitaka-shi, Japan
140School of Mathematics, University of Edinburgh, Edinburgh, UK
141Institute Of Advanced Research, Gandhinagar, India
142Indian Institute of Technology Bombay, Powai, Mumbai, India
143Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
144University of Szeged, Szeged, Hungary
145Tata Institute of Fundamental Research, Mumbai, India
146INAF-Osservatorio Astronomico di Capodimonte, Napoli, Italy
147University of Michigan, Ann Arbor, USA
148Applied Research Laboratory, High Energy Accelerator Research Organization (KEK), Tsukuba-shi, Japan
149Academia Sinica, Institute of Physics,, Taipei, Taiwan
150American University, Washington, USA.
151Institute for Cosmic Ray Research (ICRR), The University of Tokyo, Hida-shi, Japan
152College of Industrial Technology, Nihon University, Narashino-shi, Japan
153GRAPPA, Anton Pannekoek Institute for Astronomy and Institute of High-Energy Physics, University of Amsterdam, Amsterdam, The Netherlands
154Delta Institute for Theoretical Physics, Amsterdam, the Netherlands
155Graduate School of Science and Technology, Niigata University, Niigata-shi, Japan
156Institute for Cosmic Ray Research (ICRR), Research Center for Cosmic Neutrinos (RCCN), The University of Tokyo, Kashiwa City, Japan
157Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, China
158Yukawa Institute for Theoretical Physics (YITP), Kyoto University, Kyoto-shi, Japan
159Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), Osaka City University, Osaka-shi, Japan
160Graduate School of Science, Osaka City University, Osaka-shi, Japan
161JAXA Institute of Space and Astronautical Science, Sagamihara, Japan
162Directorate of Construction, Services and Estate Management, Mumbai, India
163University of Białystok, Białystok, Poland
164King’s College London, University of London, London, UK
165University of Southampton, Southampton, UK
166Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
167Graduate School of Science and Technology, Tokyo Institute of Technology, Meguro-ku, Japan
168University of Washington Bothell Bothell USA
169Institute of Applied Physics, Nizhny Novgorod, Russia
170EWHA Womans University, Seoul, South Korea
171Department of Physics, Ewha Womans University, Seoul, Korea
172Inje University, Gimhae, South Korea
173Department of Computer Simulation, Inje University, Gimhae, Korea
174Universität Hamburg, Hamburg, Germany
175Maastricht University, Maastricht, The Netherlands
176Department of Physical Science, Hiroshima University, Higashihiroshima-shi, Japan
177Institute for Cosmic Ray Research (ICRR), Research Center for Cosmic Neutrinos (RCCN), The University of Tokyo, Hida-shi, Japan
178NCBJ, Świerk-Otwock, Poland
179Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland
180Cornell University, Ithaca, USA
181Institute for Advanced Research, Nagoya University, Nagoya, Japan
182Hillsdale College, Hillsdale, USA
183Hanyang University, Seoul, South Korea
184Korea Astronomy and Space Science Institute, Daejeon, South Korea
185National Applied Research Laboratories, National Center for High-performance computing, Hsinchu City, Taiwan
186NASA/Marshall Space Flight Center, Huntsville, USA
187INFN Sezione di Roma Tre, Rome, Italy
188Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Rome, Italy
189ESPCI, CNRS, Paris, France
190OzGrav, Swinburne University of Technology, Hawthorn, Australia
191University of Portsmouth, Portsmouth, UK
192Southern University and A &M College, Baton Rouge, USA
193College of William and Mary, Williamsburg, USA
194Centre Scientifique de Monaco, Monaco, Monaco
195Institute for Photon Science and Technology, The University of Tokyo, Bunkyo-ku, Japan
196Indian Institute of Technology Madras, Chennai, India
197The Applied Electromagnetic Research Institute, National Institute of Information and Communications Technology (NICT), Koganei-shi, Japan
198Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, France
199INFN Sezione di Torino, Torino, Italy
200Faculty of Law, Ryukoku University, Fushimi-ku, Japan
201Department of Physics, Kyoto University, Kyoto-shi, Japan
202IISER-Kolkata, Mohanpur, India
203Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya, Japan
204Whitman College, Walla Walla, USA
205Faculty of Engineering, Niigata University, Niigata-shi, Japan
206Department of Physics, Sogang University, Seoul, Korea
207Université de Lyon, Lyon, France
208Hobart and William Smith Colleges, Geneva, USA
209Department of Engineering, University of Sannio, Benevento, Italy
210Janusz Gil Institute of Astronomy, University of Zielona Góra, Zielona Góra, Poland
211University of Washington SEATTLE USA
212SUPA, University of the West of Scotland, Paisley, UK
213Faculty of Arts and Science, Kyushu University, Nishi-ku, Japan
214Department of Electronic Control Engineering, Nagaoka College, National Institute of Technology, Nagaoka, Japan
215Graduate School of Science and Engineering, Hosei University, Koganei-shi, Japan
216Faculty of Science, Toho University, Funabashi-shi, Japan
217Indian Institute of Technology Gandhinagar, Ahmedabad, India
218Université de Montréal/Polytechnique, Montreal, Canada
219Faculty of Information Science and Technology, Osaka Institute of Technology, Hirakata, Japan
220California State University-Fullerton, Fullerton, USA
221Indian Institute of Technology Hyderabad, Sangareddy, Khandi, India
222Division of Theoretical Astronomy, National Astronomical Observatory of Japan (NAOJ), Mitaka-shi, Japan
223International Institute of Physics, Universidade Federal do Rio Grande do Norte, Natal, Brazil
224Villanova University, Villanova, USA
225Andrews University, Berrien Springs, USA
226Department of Information and Management Systems Engineering, Nagaoka University of Technology, Nagaoka, Japan
227National Institute of Advanced Industrial Science and Technology, National Metrology Institute of Japan, Tsukuba-shi, Japan
228Max Planck Institute for Gravitational physik (Albert Einstein Institute), Potsdam-Golm, Germany
229Università di Siena, Siena, Italy
230Faculty of Science, Niigata University, Niigata-shi, Japan
231Department of Communications, National Defense Academy of Japan, Yokosuka-shi, Japan
232Trinity University, San Antonio, USA
233Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Groningen, The Netherlands
234Department of Physics and Astronomy, Sejong University, Seoul, South Korea
235California State University- Fullerton, Fullerton, USA
236Department of Astronomy, Beijing Normal University, Beijing, China
237Department of Physics, University of Texas, Austin, USA

Tóm tắt

Tóm tắt

Chúng tôi trình bày ước lượng tốt nhất hiện tại của các kịch bản quan sát khả thi cho các máy phát hiện sóng hấp dẫn Advanced LIGO, Advanced Virgo và KAGRA trong vài năm tới, với mục đích cung cấp thông tin để hỗ trợ kế hoạch cho thiên văn học đa thông điệp với sóng hấp dẫn. Chúng tôi ước lượng độ nhạy của mạng lưới đối với các tín hiệu sóng hấp dẫn tạm thời cho các đợt quan sát thứ ba (O3), thứ tư (O4) và thứ năm (O5), bao gồm các nâng cấp dự kiến của các thiết bị Advanced LIGO và Advanced Virgo. Chúng tôi nghiên cứu khả năng của mạng lưới trong việc xác định vị trí bầu trời của nguồn sóng hấp dẫn từ sự bắt chước của các hệ thống nhị phân của các đối tượng cô đặc, tức là các hệ sao neutron nhị phân, sao neutron - hố đen, và các hệ hố đen nhị phân. Khả năng định vị các nguồn được đưa ra dưới dạng diện tích bầu trời, khoảng cách độ sáng và thể tích đồng chuyển. Diện tích định vị bầu trời trung bình (vùng tin cậy 90%) dự kiến sẽ rơi vào vài trăm độ vuông cho tất cả các loại hệ nhị phân trong O3 với mạng lưới Advanced LIGO và Virgo (HLV). Diện tích định vị bầu trời trung bình sẽ cải thiện xuống còn vài chục độ vuông trong O4 với mạng lưới Advanced LIGO, Virgo và KAGRA (HLVK). Trong O3, thể tích định vị trung bình (vùng tin cậy 90%) dự kiến sẽ ở khoảng $$10^{5}, 10^{6}, 10^{7}\mathrm {\ Mpc}^3$$ 10 5 , 10 6 , 10 7 Mpc 3 cho các vụ va chạm giữa sao neutron, giữa sao neutron và hố đen, và các vụ va chạm giữa hai hố đen, tương ứng. Thể tích định vị trong O4 dự kiến sẽ nhỏ hơn khoảng hai lần so với O3. Chúng tôi dự đoán số lượng phát hiện là $$1^{+12}_{-1}$$ 1 - 1 + 12 ($$10^{+52}_{-10}$$ 10 - 10 + 52 ) cho các vụ va chạm giữa sao neutron, $$0^{+19}_{-0}$$ 0 - 0 + 19 ($$1^{+91}_{-1}$$ 1 - 1 + 91 ) cho các vụ va chạm giữa sao neutron và hố đen, và $$17^{+22}_{-11}$$ 17 - 11 + 22 ($$79^{+89}_{-44}$$ 79 - 44 + 89 ) cho các vụ va chạm giữa hai hố đen trong một đợt quan sát kéo dài một năm dương lịch của mạng lưới HLV trong O3 (mạng lưới HLVK trong O4). Chúng tôi đánh giá độ nhạy và kỳ vọng định vị cho các tìm kiếm tín hiệu chưa mô hình hóa, bao gồm tìm kiếm các vụ va chạm giữa các hố đen có khối lượng trung gian.

Từ khóa


Tài liệu tham khảo

Aasi J et al (2012) The characterization of Virgo data and its impact on gravitational-wave searches. Class Quantum Grav 29:155002. https://doi.org/10.1088/0264-9381/29/15/155002. arxiv:1203.5613

Aasi J et al (2013a) Enhancing the sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photon 7:613–619. https://doi.org/10.1038/nphoton.2013.177. arxiv:1310.0383

Aasi J et al (2013b) Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Phys Rev D 88:062001. https://doi.org/10.1103/PhysRevD.88.062001. arxiv:1304.1775

Aasi J et al (2014a) First searches for optical counterparts to gravitational-wave candidate events. Astrophys J Suppl 211:7. https://doi.org/10.1088/0067-0049/211/1/7. arxiv:1310.2314

Aasi J et al (2014b) Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO600, LIGO, and Virgo detectors. Phys Rev D 89:122004. https://doi.org/10.1103/PhysRevD.89.122004. arxiv:1405.1053

Aasi J et al (2014c) Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Phys Rev D 89:122003. https://doi.org/10.1103/PhysRevD.89.122003. arxiv:1404.2199

Aasi J et al (2014d) Search for gravitational waves associated with $$\gamma $$-ray bursts detected by the interplanetary network. Phys Rev Lett 113:011102. https://doi.org/10.1103/PhysRevLett.113.011102. arxiv:1403.6639

Aasi J et al (2015a) Advanced LIGO. Class Quantum Grav 32:074001. https://doi.org/10.1088/0264-9381/32/7/074001. arxiv:1411.4547

Aasi J et al (2015b) Characterization of the LIGO detectors during their sixth science run. Class Quantum Grav 32:115012. https://doi.org/10.1088/0264-9381/32/11/115012. arxiv:1410.7764

Aasi J et al (2016) Prospects for observing and localizing gravitational-wave transients with Advanced LIGO and Advanced Virgo. Living Rev Relativ 19:1. https://doi.org/10.1007/lrr-2016-1. arxiv:1304.0670v3

Abadie J et al (2008) Search for gravitational-wave bursts from soft gamma repeaters. Phys Rev Lett 101:211102. https://doi.org/10.1103/PhysRevLett.101.211102. arxiv:0808.2050

Abadie J et al (2010a) All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Phys Rev D 81:102001. https://doi.org/10.1103/PhysRevD.85.089905. arxiv:1002.1036

Abadie J et al (2010b) Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Class Quantum Grav 27:173001. https://doi.org/10.1088/0264-9381/27/17/173001. arxiv:1003.2480

Abadie J et al (2011a) A gravitational wave observatory operating beyond the quantum shot-noise limit: squeezed light in application. Nature Phys 7:962–965. https://doi.org/10.1038/nphys2083. arxiv:1109.2295

Abadie J et al (2011b) Search for gravitational wave bursts from six magnetars. Astrophys J Lett 734:L35. https://doi.org/10.1088/2041-8205/734/2/L35. arxiv:1011.4079

Abadie J et al (2012a) All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Phys Rev D 85:122007. https://doi.org/10.1103/PhysRevD.85.122007. arxiv:1202.2788

Abadie J et al (2012b) First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astron Astrophys 541:A155. https://doi.org/10.1051/0004-6361/201218860. arxiv:1112.6005

Abadie J et al (2012c) Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts. Astron Astrophys 539:A124. https://doi.org/10.1051/0004-6361/201118219. arxiv:1109.3498

Abadie J et al (2012d) Search for gravitational waves associated with gamma-ray bursts during LIGO science run 6 and Virgo science runs 2 and 3. Astrophys J 760:12. https://doi.org/10.1088/0004-637X/760/1/12. arxiv:1205.2216

Abadie J et al (2012e) Search for gravitational waves from intermediate mass binary black holes. Phys Rev D 85:102004. https://doi.org/10.1103/PhysRevD.85.102004. arxiv:1201.5999

Abbott BP et al (2016a) All-sky search for long-duration gravitational wave transients with initial LIGO. Phys Rev D 93:042005. https://doi.org/10.1103/PhysRevD.93.042005. arxiv:1511.04398

Abbott BP et al (2016b) Binary black hole mergers in the first Advanced LIGO observing run. Phys Rev X 6:041015. https://doi.org/10.1103/PhysRevX.6.041015. arxiv:1606.04856

Abbott BP et al (2016c) Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Class Quantum Grav 33:134001. https://doi.org/10.1088/0264-9381/33/13/134001. arxiv:1602.03844

Abbott BP et al (2016d) GW150914: first results from the search for binary black hole coalescence with Advanced LIGO. Phys Rev D 93:122003. https://doi.org/10.1103/PhysRevD.93.122003. arxiv:1602.03839

Abbott BP et al (2016e) GW150914: the Advanced LIGO detectors in the era of first discoveries. Phys Rev Lett 116:131103. https://doi.org/10.1103/PhysRevLett.116.131103. arxiv:1602.03838

Abbott BP et al (2016f) GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys Rev Lett 116:241103. https://doi.org/10.1103/PhysRevLett.116.241103. arxiv:1606.04855

Abbott BP et al (2016g) Improved analysis of GW150914 using a fully spin-precessing waveform model. Phys Rev X 6:041014. https://doi.org/10.1103/PhysRevX.6.041014. arxiv:1606.01210

Abbott BP et al (2016h) Localization and broadband follow-up of the gravitational-wave transient GW150914. Astrophys J Lett 826:L13. https://doi.org/10.3847/2041-8205/826/1/L13. arxiv:1602.08492

Abbott BP et al (2016i) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116:061102. https://doi.org/10.1103/PhysRevLett.116.061102. arxiv:1602.03837

Abbott BP et al (2016j) Observing gravitational-wave transient GW150914 with minimal assumptions. Phys Rev D 93:122004. https://doi.org/10.1103/PhysRevD.93.122004. arxiv:1602.03843

Abbott BP et al (2016k) Properties of the binary black hole merger GW150914. Phys Rev Lett 116:241102. https://doi.org/10.1103/PhysRevLett.116.241102. arxiv:1602.03840

Abbott BP et al (2016l) Supplement: localization and broadband follow-up of the gravitational-wave transient GW150914. Astrophys J Suppl 225:8. https://doi.org/10.3847/0067-0049/225/1/8. arxiv:1604.07864

Abbott BP et al (2016m) Supplement: the rate of binary black hole mergers inferred from Advanced LIGO observations surrounding GW150914. Astrophys J Suppl 227:14. https://doi.org/10.3847/0067-0049/227/2/14. arxiv:1606.03939

Abbott BP et al (2016n) The rate of binary black hole mergers inferred from Advanced LIGO observations surrounding GW150914. Astrophys J Lett 833:1. https://doi.org/10.3847/2041-8205/833/1/L1. arxiv:1602.03842

Abbott BP et al (2016o) Upper limits on the rates of binary neutron star and neutron-star–black-hole mergers from Advanced LIGO’s first observing run. Astrophys J Lett 832:L21. https://doi.org/10.3847/2041-8205/832/2/L21. arxiv:1607.07456

Abbott BP et al (2017a) A gravitational-wave standard siren measurement of the Hubble constant. Nature 551:85–88. https://doi.org/10.1038/nature24471. arxiv:1710.05835

Abbott BP et al (2017b) All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Phys Rev D 95:042003. https://doi.org/10.1103/PhysRevD.95.042003. arxiv:1611.02972

Abbott BP et al (2017c) Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Phys Rev D 95:062003. https://doi.org/10.1103/PhysRevD.95.062003. arxiv:1602.03845

Abbott BP et al (2017d) Exploring the sensitivity of next generation gravitational wave detectors. Class Quantum Grav 34:044001. https://doi.org/10.1088/1361-6382/aa51f4. arxiv:1607.08697

Abbott BP et al (2017e) Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys J Lett 848:L13. https://doi.org/10.3847/2041-8213/aa920c. arxiv:1710.05834

Abbott BP et al (2017f) GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys Rev Lett 118:221101. https://doi.org/10.1103/PhysRevLett.118.221101. arxiv:1706.01812

Abbott BP et al (2017g) GW170608: observation of a 19 solar-mass binary black hole coalescence. Astrophys J Lett 851:35. https://doi.org/10.3847/2041-8213/aa9f0c. arxiv:1711.05578

Abbott BP et al (2017h) GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys Rev Lett 119:141101. https://doi.org/10.1103/PhysRevLett.119.141101. arxiv:1709.09660

Abbott BP et al (2017i) GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys Rev Lett 119:161101. https://doi.org/10.1103/PhysRevLett.119.161101. arxiv:1710.05832

Abbott BP et al (2017j) Multi-messenger observations of a binary neutron star merger. Astrophys J Lett 848:L12. https://doi.org/10.3847/2041-8213/aa91c9. arxiv:1710.05833

Abbott BP et al (2017k) Search for gravitational waves associated with gamma-ray bursts during the first Advanced LIGO observing run and implications for the origin of GRB 150906B. Astrophys J 841:89. https://doi.org/10.3847/1538-4357/aa6c47. arxiv:1611.07947

Abbott BP et al (2017l) Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Phys Rev D 96:022001. https://doi.org/10.1103/PhysRevD.96.022001. arxiv:1704.04628

Abbott BP et al (2018a) Binary black hole population properties inferred from the first and second observing runs of Advanced LIGO and Advanced Virgo. Astrophys J arxiv:1811.12940

Abbott BP et al (2018b) Constraints on cosmic strings using data from the first Advanced LIGO observing run. Phys Rev D 97:102002. https://doi.org/10.1103/PhysRevD.97.102002. arxiv:1712.01168

Abbott BP et al (2018c) GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. arXiv e-prints arxiv:1811.12907

Abbott BP et al (2018d) Instrument science white paper. Technical Report LIGO-T1800133-v3, LIGO, Pasadena, CA. https://dcc.ligo.org/LIGO-T1800133/public

Abbott BP et al (2018e) The LSC–Virgo white paper on gravitational wave searches and astrophysics (2018–2019 edition). Technical Report LIGO-T1800058-v2, LIGO, Pasadena, CA. https://dcc.ligo.org/LIGO-T1800058/public

Abbott BP et al (2018f) Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev Relativ 21:3. https://doi.org/10.1007/s41114-018-0012-9. arxiv:1304.0670

Abbott BP et al (2018g) Search for subsolar-mass ultracompact binaries in Advanced LIGO’s first observing run. Phys Rev Lett 121:231103. https://doi.org/10.1103/PhysRevLett.121.231103. arxiv:1808.04771

Abbott BP et al (2019a) All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. arXiv e-prints arxiv:1903.12015

Abbott BP et al (2019b) All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. arXiv e-prints arXiv:1905.03457

Abbott BP et al (2019c) An optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of Advanced LIGO and Advanced Virgo. arXiv e-prints arxiv:1908.03584

Abbott BP et al (2019d) Low-latency gravitational wave alerts for multi-messenger astronomy during the second Advanced LIGO and Virgo observing run. arXiv e-prints arxiv:1901.03310

Abbott BP et al (2019e) Search for eccentric binary black hole mergers with Advanced LIGO and Advanced Virgo during their first and second observing runs. arXiv e-prints arXiv:1907.09384

Abbott BP et al (2019f) Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. arXiv e-prints arXiv:1906.08000

Abbott BP et al (2019g) Search for transient gravitational-wave signals associated with magnetar bursts during Advanced LIGO’s second observing run. Astrophys J 874:163. https://doi.org/10.3847/1538-4357/ab0e15

Acernese F et al (2015) Advanced Virgo: a second-generation interferometric gravitational wave detector. Class Quantum Grav 32:024001. https://doi.org/10.1088/0264-9381/32/2/024001. arxiv:1408.3978

Adams TS, Meacher D, Clark J, Sutton PJ, Jones G, Minot A (2013) Gravitational-wave detection using multivariate analysis. Phys Rev D 88:062006. https://doi.org/10.1103/PhysRevD.88.062006. arxiv:1305.5714

Ade PAR et al (2016) Planck 2015 results. XIII. Cosmological parameters. Astron Astrophys 594:A13. https://doi.org/10.1051/0004-6361/201525830. arxiv:1502.01589

Adrian-Martinez S et al (2016) High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Phys Rev D 93:122010. https://doi.org/10.1103/PhysRevD.93.122010. arxiv:1602.05411

Affeldt C et al (2014) Advanced techniques in GEO 600. Class Quantum Grav 31:224002. https://doi.org/10.1088/0264-9381/31/22/224002

Ajith P, Fotopoulos N, Privitera S, Neunzert A, Weinstein AJ (2014) Effectual template bank for the detection of gravitational waves from inspiralling compact binaries with generic spins. Phys Rev D 89:084041. https://doi.org/10.1103/PhysRevD.89.084041. arxiv:1210.6666

Akutsu T et al (2018) Construction of KAGRA: an underground gravitational wave observatory. Prog Theor Exp Phys 2018:013F01. https://doi.org/10.1093/ptep/ptx180. arxiv:1712.00148

Albert A et al (2017a) Search for high-energy neutrinos from binary neutron star merger GW170817 with ANTARES, IceCube, and the Pierre Auger observatory. Astrophys J Lett 850:L35. https://doi.org/10.3847/2041-8213/aa9aed. arxiv:1710.05839

Albert A et al (2017b) Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Phys Rev D 96:022005. https://doi.org/10.1103/PhysRevD.96.022005. arxiv:1703.06298

Alexander KD, Margutti R, Blanchard PK, Fong W, Berger E, Hajela A, Eftekhari T, Chornock R, Cowperthwaite PS, Giannios D, Guidorzi C, Kathirgamaraju A, MacFadyen A, Metzger BD, Nicholl M, Sironi L, Villar VA, Williams PKG, Xie X, Zrake J (2018) A decline in the X-ray through radio emission from GW170817 continues to support an off-axis structured jet. Astrophys J Lett 863:L18. https://doi.org/10.3847/2041-8213/aad637. arxiv:1805.02870

Alexander KD et al (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. VI. Radio constraints on a relativistic jet and predictions for late-time emission from the kilonova ejecta. Astrophys J Lett 848:L21. https://doi.org/10.3847/2041-8213/aa905d. arxiv:1710.05457

Allen B (2005) $$\chi ^2$$ time-frequency discriminator for gravitational wave detection. Phys Rev D 71:062001. https://doi.org/10.1103/PhysRevD.71.062001. arxiv:gr-qc/0405045

Amaro-Seoane P, Audley H, Babak S, Baker J, Barausse E, Bender P, Berti E, Binetruy P, Born M, Bortoluzzi D, Camp J, Caprini C, Cardoso V, Colpi M, Conklin J, Cornish N, Cutler C, Danzmann K, Dolesi R, Ferraioli L, Ferroni V, Fitzsimons E, Gair J, Gesa Bote L, Giardini D, Gibert F, Grimani C, Halloin H, Heinzel G, Hertog T, Hewitson M, Holley-Bockelmann K, Hollington D, Hueller M, Inchauspe H, Jetzer P, Karnesis N, Killow C, Klein A, Klipstein B, Korsakova N, Larson SL, Livas J, Lloro I, Man N, Mance D, Martino J, Mateos I, McKenzie K, McWilliams ST, Miller C, Mueller G, Nardini G, Nelemans G, Nofrarias M, Petiteau A, Pivato P, Plagnol E, Porter E, Reiche J, Robertson D, Robertson N, Rossi E, Russano G, Schutz B, Sesana A, Shoemaker D, Slutsky J, Sopuerta CF, Sumner T, Tamanini N, Thorpe I, Troebs M, Vallisneri M, Vecchio A, Vetrugno D, Vitale S, Volonteri M, Wanner G, Ward H, Wass P, Weber W, Ziemer J, Zweifel P (2017) Laser Interferometer Space Antenna. arXiv e-prints arXiv:1702.00786

Anderson S, Williams R (2017) LIGO data management plan, June 2017. Technical Report LIGO-M1000066, LIGO Scientific Collaboration and Virgo Collaboration. https://dcc.ligo.org/LIGO-M1000066/public

Arcavi I et al (2017) Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. Nature 551:64. https://doi.org/10.1038/nature24291. arxiv:1710.05843

Artale MC, Mapelli M, Giacobbo N, Sabha NB, Spera M, Santoliquido F, Bressan A (2019) Host galaxies of merging compact objects: mass, star formation rate, metallicity and colours. Mon Not R Astron Soc. https://doi.org/10.1093/mnras/stz1382. arxiv:1903.00083

Ashton G, Hübner M, Lasky PD, Talbot C, Ackley K, Biscoveanu S, Chu Q, Divakarla A, Easter PJ, Goncharov B, Hernandez Vivanco F, Harms J, Lower ME, Meadors GD, Melchor D, Payne E, Pitkin MD, Powell J, Sarin N, Smith RJE, Thrane E (2019) BILBY: a user-friendly Bayesian inference library for gravitational-wave astronomy. Astrophys J Suppl Ser 241:27. https://doi.org/10.3847/1538-4365/ab06fc. arxiv:1811.02042

Aso Y et al (2013) Interferometer design of the KAGRA gravitational wave detector. Phys Rev D 88:043007. https://doi.org/10.1103/PhysRevD.88.043007. arxiv:1306.6747

Atwood WB, Abdo AA, Ackermann M, Althouse W, Anderson B, Axelsson M, Baldini L, Ballet J, Band DL, Barbiellini G et al (2009) The Large Area Telescope on the Fermi Gamma-Ray Space Telescope mission. Astrophys J 697:1071–1102. https://doi.org/10.1088/0004-637X/697/2/1071. arxiv:0902.1089

Babak S, Balasubramanian R, Churches D, Cokelaer T, Sathyaprakash BS (2006) A template bank to search for gravitational waves from inspiralling compact binaries. I. Physical models. Class Quantum Grav 23:5477–5504. https://doi.org/10.1088/0264-9381/23/18/002. arxiv:gr-qc/0604037

Babak S et al (2013) Searching for gravitational waves from binary coalescence. Phys Rev D 87:024033. https://doi.org/10.1103/PhysRevD.87.024033. arxiv:1208.3491

Bagoly Z et al (2016) Searching for electromagnetic counterpart of LIGO gravitational waves in the Fermi GBM data with ADWO. Astron Astrophys 593:L10. https://doi.org/10.1051/0004-6361/201628569. arxiv:1603.06611

Barausse E, Yunes N, Chamberlain K (2016) Theory-agnostic constraints on black-hole dipole radiation with multiband gravitational-wave astrophysics. Phys Rev Lett 116:241104. https://doi.org/10.1103/PhysRevLett.116.241104. arxiv:1603.04075

Barbieri C, Salafia OS, Perego A, Colpi M, Ghirlanda G (2019) Light-curve models of black hole–neutron star mergers: steps towards a multi-messenger parameter estimation. Astron Astrophys 625:A152. https://doi.org/10.1051/0004-6361/201935443. arxiv:1903.04543

Barnes J, Kasen D (2013) Effect of a high opacity on the light curves of radioactively powered transients from compact object mergers. Astrophys J 775(1):18. https://doi.org/10.1088/0004-637X/775/1/18. arxiv:1303.5787

Barrett JW, Gaebel SM, Neijssel CJ, Vigna-Gómez A, Stevenson S, Berry CPL, Farr WM, Mandel I (2018) Accuracy of inference on the physics of binary evolution from gravitational-wave observations. Mon Not R Astron Soc 477:4685–4695. https://doi.org/10.1093/mnras/sty908. arxiv:1711.06287

Bartos I, Kocsis B, Haiman Z, Márka S (2017) Rapid and bright stellar-mass binary black hole mergers in active galactic nuclei. Astrophys J 835:165. https://doi.org/10.3847/1538-4357/835/2/165. arxiv:1602.03831

Bécsy B, Raffai P, Cornish NJ, Essick R, Kanner J, Katsavounidis E, Littenberg TB, Millhouse M, Vitale S (2017) Parameter estimation for gravitational-wave bursts with the BayesWave pipeline. Astrophys J 839:15. https://doi.org/10.3847/1538-4357/aa63ef. arxiv:1612.02003

Belczynski K et al (2017) The origin of the first neutron star-neutron star merger. ArXiv e-prints arxiv:1712.00632

Berger BK (2018) Identification and mitigation of Advanced LIGO noise sources. J Phys: Conf Ser 957:012004. https://doi.org/10.1088/1742-6596/957/1/012004

Berry CPL et al (2015) Parameter estimation for binary neutron-star coalescences with realistic noise during the Advanced LIGO era. Astrophys J 804:114. https://doi.org/10.1088/0004-637X/804/2/114. arxiv:1411.6934

Biscans S et al (2018) Control strategy to limit duty cycle impact of earthquakes on the LIGO gravitational-wave detectors. Class Quantum Grav 35:055004. https://doi.org/10.1088/1361-6382/aaa4aa. arxiv:1707.03466

Blackburn L, Briggs MS, Camp J, Christensen N, Connaughton V, Jenke P, Remillard RA, Veitch J (2015) High-energy electromagnetic offline follow-up of LIGO-Virgo gravitational-wave binary coalescence candidate events. Astrophys J Suppl 217:8. https://doi.org/10.1088/0067-0049/217/1/8. arxiv:1410.0929

Blanchet L (2014) Gravitational radiation from post-newtonian sources and inspiralling compact binaries. Living Rev Relativ 17:2. https://doi.org/10.12942/lrr-2014-2. arxiv:1310.1528

Breivik K et al (2016) Distinguishing between formation channels for binary black holes with LISA. Astrophys J Lett 830:L18. https://doi.org/10.3847/2041-8205/830/1/L18. arxiv:1606.09558

Brown DA, Harry I, Lundgren A, Nitz AH (2012) Detecting binary neutron star systems with spin in advanced gravitational-wave detectors. Phys Rev D 86:084017. https://doi.org/10.1103/PhysRevD.86.084017. arxiv:1207.6406

Brown DD, Miao H, Collins C, Mow-Lowry C, Töyra D, Freise A (2017) Broadband sensitivity enhancement of detuned dual-recycled Michelson interferometers with EPR entanglement. Phys Rev D 96:062003. https://doi.org/10.1103/PhysRevD.96.062003. arxiv:1704.07173

Buonanno A, Iyer B, Ochsner E, Pan Y, Sathyaprakash BS (2009) Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors. Phys Rev D 80:084043. https://doi.org/10.1103/PhysRevD.80.084043. arxiv:0907.0700

Burns E, Goldstein A, Hui CM, Blackburn L, Briggs MS, Connaughton V, Hamburg R, Kocevski D, Veres P, Wilson-Hodge CA, Bissaldi E, Cleveland WH, Giles MM, Mailyan B, Meegan CA, Paciesas WA, Poolakkil S, Preece RD, Racusin JL, Roberts OJ, von Kienlin A (Fermi Gamma-Ray Burst Monitor), Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, Adams T, Addesso P et al (A LIGO Scientific Collaboration and the Virgo Collaboration) (2019) A Fermi Gamma-Ray Burst Monitor search for electromagnetic signals coincident with gravitational-wave candidates in advanced LIGO’s first observing run. Astrophys J 871:90. https://doi.org/10.3847/1538-4357/aaf726. arxiv:1810.02764

Bustillo JC, Laguna P, Shoemaker D (2017) Detectability of gravitational waves from binary black holes: impact of precession and higher modes. Phys Rev D 95:104038. https://doi.org/10.1103/PhysRevD.95.104038. arxiv:1612.02340

Canizares P, Field SE, Gair JR, Tiglio M (2013) Gravitational wave parameter estimation with compressed likelihood evaluations. Phys Rev D 87:124005. https://doi.org/10.1103/PhysRevD.87.124005. arxiv:1304.0462

Canizares P, Field SE, Gair J, Raymond V, Smith R, Tiglio M (2015) Accelerated gravitational-wave parameter estimation with reduced order modeling. Phys Rev Lett 114:071104. https://doi.org/10.1103/PhysRevLett.114.071104. arxiv:1404.6284

Cannon K, Cariou R, Chapman A, Crispin-Ortuzar M, Fotopoulos N et al (2012) Toward early-warning detection of gravitational waves from compact binary coalescence. Astrophys J 748:136. https://doi.org/10.1088/0004-637X/748/2/136. arxiv:1107.2665

Cannon K, Hanna C, Peoples J (2015) Likelihood-ratio ranking statistic for compact binary coalescence candidates with rate estimation. ArXiv e-prints arxiv:1504.04632

Capano C, Harry I, Privitera S, Buonanno A (2016) Implementing a search for gravitational waves from binary black holes with nonprecessing spin. Phys Rev D 93:124007. https://doi.org/10.1103/PhysRevD.93.124007. arxiv:1602.03509

Capano C, Dent T, Hanna C, Hendry M, Hu YM, Messenger C, Veitch J (2017) Systematic errors in estimation of gravitational-wave candidate significance. Phys Rev D 96:082002. https://doi.org/10.1103/PhysRevD.96.082002. arxiv:1708.06710

Centrella J et al (2010) Black-hole binaries, gravitational waves, and numerical relativity. Rev Mod Phys 82:3069. https://doi.org/10.1103/RevModPhys.82.3069. arxiv:1010.5260

Chan ML, Hu YM, Messenger C, Hendry M, Heng IS (2017) Maximising the detection probability of kilonovae associated with gravitational wave observations. Astrophys J 834:84. https://doi.org/10.3847/1538-4357/834/1/84. arxiv:1506.04035

Chassande-Mottin E, Miele M, Mohapatra S, Cadonati L (2010) Detection of gravitational-wave bursts with chirplet-like template families. Class Quantum Grav 27:194017. https://doi.org/10.1088/0264-9381/27/19/194017. arxiv:1005.2876

Chatterji S, Lazzarini A, Stein L, Sutton P, Searle A, Tinto M (2006) Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise. Phys Rev D 74:082005. https://doi.org/10.1103/PhysRevD.74.082005. arxiv:gr-qc/0605002

Chen HY, Holz DE, Miller J, Evans M, Vitale S, Creighton J (2017) Distance measures in gravitational-wave astrophysics and cosmology. ArXiv e-prints arxiv:1709.08079

Chen HY, Fishbach M, Holz DE (2018) A two per cent Hubble constant measurement from standard sirens within five years. Nature 562:545–547. https://doi.org/10.1038/s41586-018-0606-0. arxiv:1712.06531

Chornock R et al (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. IV. Detection of near-infrared signatures of r-process nucleosynthesis with gemini-south. Astrophys J Lett 848:L19. https://doi.org/10.3847/2041-8213/aa905c. arxiv:1710.05454

Chruslinska M, Nelemans G, Belczynski K (2019) The influence of the distribution of cosmic star formation at different metallicities on the properties of merging double compact objects. Mon Not R Astron Soc 482:5012–5017. https://doi.org/10.1093/mnras/sty3087. arxiv:1811.03565

Ciolfi R, Siegel DM (2015) Short gamma-ray bursts in the “time-reversal” scenario. Astrophys J Lett 798:L36. https://doi.org/10.1088/2041-8205/798/2/L36. arxiv:1411.2015

Cokelaer T (2007) Gravitational waves from inspiralling compact binaries: hexagonal template placement and its efficiency in detecting physical signals. Phys Rev D 76:102004. https://doi.org/10.1103/PhysRevD.76.102004. arxiv:0706.4437

Connaughton V et al (2016) Fermi GBM observations of LIGO gravitational wave event GW150914. Astrophys J Lett 826:L6. https://doi.org/10.3847/2041-8205/826/1/L6. arxiv:1602.03920

Connaughton V et al (2018) On the interpretation of the Fermi GBM transient observed in coincidence with LIGO gravitational wave event GW150914. Astrophys J Lett 853:L9. https://doi.org/10.3847/2041-8213/aaa4f2. arxiv:1801.02305

Cornish NJ, Littenberg TB (2015) BayesWave: Bayesian inference for gravitational wave bursts and instrument glitches. Class Quantum Grav 32:135012. https://doi.org/10.1088/0264-9381/32/13/135012. arxiv:1410.3835

Coughlin M et al (2017) Limiting the effects of earthquakes on gravitational-wave interferometers. Class Quantum Grav 34:044004. https://doi.org/10.1088/1361-6382/aa5a60. arxiv:1611.09812

Coughlin MW et al (2018) Optimizing searches for electromagnetic counterparts of gravitational wave triggers. ArXiv e-prints arxiv:1803.02255

Coulter DA et al (2017) Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358(6370):1556–1558. https://doi.org/10.1126/science.aap9811. arxiv:1710.05452

Covas PB et al (2018) Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO. Phys Rev D 97:082002. https://doi.org/10.1103/PhysRevD.97.082002. arxiv:1801.07204

Cowperthwaite PS et al (2016) A DECam search for an optical counterpart to the LIGO gravitational wave event GW151226. Astrophys J Lett 826:L29. https://doi.org/10.3847/2041-8205/826/2/L29. arxiv:1606.04538

Cutler C, Flanagan EE (1994) Gravitational waves from merging compact binaries: how accurately can one extract the binary’s parameters from the inspiral wave form? Phys Rev D 49:2658–2697. https://doi.org/10.1103/PhysRevD.49.2658. arxiv:gr-qc/9402014

Dal Canton T, Harry IW (2017) Designing a template bank to observe compact binary coalescences in Advanced LIGO’s second observing run. ArXiv e-prints arxiv:1705.01845

Dal Canton T, Bhagwat S, Dhurandhar SV, Lundgren A (2014a) Effect of sine-Gaussian glitches on searches for binary coalescence. Class Quantum Grav 31:015016. https://doi.org/10.1088/0264-9381/31/1/015016. arxiv:1304.0008

Dal Canton T, Lundgren AP, Nielsen AB (2015) Impact of precession on aligned-spin searches for neutron-star–black-hole binaries. Phys Rev D 91:062010. https://doi.org/10.1103/PhysRevD.91.062010. arxiv:1411.6815

Dal Canton T et al (2014b) Implementing a search for aligned-spin neutron star–black hole systems with advanced ground based gravitational wave detectors. Phys Rev D 90:082004. https://doi.org/10.1103/PhysRevD.90.082004. arxiv:1405.6731

Dalal N, Holz DE, Hughes SA, Jain B (2006) Short GRB and binary black hole standard sirens as a probe of dark energy. Phys Rev D 74(6):063006. https://doi.org/10.1103/PhysRevD.74.063006. arxiv:astro-ph/0601275

D’Avanzo P, Campana S, Salafia OS, Ghirlanda G, Ghisellini G, Melandri A, Bernardini MG, Branchesi M, Chassande-Mottin E, Covino S, D’Elia V, Nava L, Salvaterra R, Tagliaferri G, Vergani SD (2018) The evolution of the X-ray afterglow emission of GW 170817/ GRB 170817A in XMM-Newton observations. Astron Astrophys 613:L1. https://doi.org/10.1051/0004-6361/201832664. arxiv:1801.06164

Daw EJ, Giaime JA, Lormand D, Lubinski M, Zweizig J (2004) Long term study of the seismic environment at LIGO. Class Quantum Grav 21:2255–2273. https://doi.org/10.1088/0264-9381/21/9/003. arxiv:gr-qc/0403046

de Mink SE, Belczynski K (2015) Merger rates of double neutron stars and stellar origin black holes: the impact of initial conditions on binary evolution predictions. Astrophys J 814:58. https://doi.org/10.1088/0004-637X/814/1/58. arxiv:1506.03573

Del Pozzo W (2012) Inference of cosmological parameters from gravitational waves: applications to second generation interferometers. Phys Rev D 86:043011. https://doi.org/10.1103/PhysRevD.86.043011. arxiv:1108.1317

Del Pozzo W, Berry C, Ghosh A, Haines T, Singer L, Vecchio A (2018) Dirichlet Process Gaussian-mixture model: An application to localizing coalescing binary neutron stars with gravitational-wave observations. https://doi.org/10.1093/mnras/sty1485. ArXiv e-prints arxiv:1801.08009

Dimmelmeier H, Ott C, Marek A, Janka HT (2008) The gravitational wave burst signal from core collapse of rotating stars. Phys Rev D 78:064056. https://doi.org/10.1103/PhysRevD.78.064056. arxiv:0806.4953

Dobie D, Kaplan DL, Murphy T, Lenc E, Mooley KP, Lynch C, Corsi A, Frail D, Kasliwal M, Hallinan G (2018) A turnover in the radio light curve of GW170817. Astrophys J Lett 858:L15. https://doi.org/10.3847/2041-8213/aac105

Dominik M, Berti E, O’Shaughnessy R, Mandel I, Belczynski K, Fryer C, Holz DE, Bulik T, Pannarale F (2015) Double compact objects III: gravitational wave detection rates. Astrophys J 806:263. https://doi.org/10.1088/0004-637X/806/2/263. arxiv:1405.7016

Dooley KL et al (2016) GEO 600 and the GEO-HF upgrade program: successes and challenges. Class Quantum Grav 33:075009. https://doi.org/10.1088/0264-9381/33/7/075009. arxiv:1510.00317

Effler A, Schofield RMS, Frolov VV, González G, Kawabe K, Smith JR, Birch J, McCarthy R (2015) Environmental influences on the LIGO gravitational wave detectors during the 6th science run. Class Quantum Grav 32:035017. https://doi.org/10.1088/0264-9381/32/3/035017. arxiv:1409.5160

Eichler D, Livio M, Piran T, Schramm DN (1989) Nucleosynthesis, neutrino bursts and $$\gamma $$-rays from coalescing neutron stars. Nature 340(6229):126–128. https://doi.org/10.1038/340126a0

Eldridge JJ, Stanway ER, Xiao L, McClelland LAS, Taylor G, Ng M, Greis SML, Bray JC (2017) Binary population and spectral synthesis version 2.1: construction, observational verification, and new results. Publ Astron Soc Austral 34:e058. https://doi.org/10.1017/pasa.2017.51. arxiv:1710.02154

Eldridge JJ, Stanway ER, Tang PN (2019) A consistent estimate for gravitational wave and electromagnetic transient rates. Mon Not R Astron Soc 482:870–880. https://doi.org/10.1093/mnras/sty2714. arxiv:1807.07659

Essick R, Vitale S, Katsavounidis E, Vedovato G, Klimenko S (2015) Localization of short duration gravitational-wave transients with the early Advanced LIGO and Virgo detectors. Astrophys J 800:81. https://doi.org/10.1088/0004-637X/800/2/81. arxiv:1409.2435

Evans P et al (2012) Swift follow-up observations of candidate gravitational-wave transient events. Astrophys J Suppl 203:28. https://doi.org/10.1088/0067-0049/203/2/28. arxiv:1205.1124

Evans PA, Osborne JP, Kennea JA, Campana S, O’Brien PT, Tanvir NR, Racusin JL, Burrows DN, Cenko SB, Gehrels N (2016a) Optimisation of the Swift X-ray follow-up of Advanced LIGO and Virgo gravitational wave triggers in 2015–16. Mon Not R Astron Soc 455:1522–1537. https://doi.org/10.1093/mnras/stv2213. arxiv:1506.01624

Evans PA, Cenko SB, Kennea JA, Emery SWK, Kuin NPM, Korobkin O, Wollaeger RT, Fryer CL, Madsen KK, Harrison FA, Xu Y, Nakar E, Hotokezaka K, Lien A, Campana S, Oates SR, Troja E, Breeveld AA, Marshall FE, Barthelmy SD, Beardmore AP, Burrows DN, Cusumano G, D’Aì A, D’Avanzo P, D’Elia V, de Pasquale M, Even WP, Fontes CJ, Forster K, Garcia J, Giommi P, Grefenstette B, Gronwall C, Hartmann DH, Heida M, Hungerford AL, Kasliwal MM, Krimm HA, Levan AJ, Malesani D, Melandri A, Miyasaka H, Nousek JA, O’Brien PT, Osborne JP, Pagani C, Page KL, Palmer DM, Perri M, Pike S, Racusin JL, Rosswog S, Siegel MH, Sakamoto T, Sbarufatti B, Tagliaferri G, Tanvir NR, Tohuvavohu A (2017) Swift and NuSTAR observations of GW170817: detection of a blue kilonova. Science 358(6370):1565–1570. https://doi.org/10.1126/science.aap9580. arxiv:1710.05437

Evans PA et al (2016b) Swift follow-up of gravitational wave triggers: results from the first aLIGO run and optimisation for the future. Mon Not R Astron Soc 462:1591–1602. https://doi.org/10.1093/mnras/stw1746. arxiv:1606.05001

Fairhurst S (2009) Triangulation of gravitational wave sources with a network of detectors. New J Phys 11:123006. https://doi.org/10.1088/1367-2630/11/12/123006 [Erratum New J Phys 13:069602 (2011)] arxiv:0908.2356

Fairhurst S (2011) Source localization with an advanced gravitational wave detector network. Class Quantum Grav 28:105021. https://doi.org/10.1088/0264-9381/28/10/105021. arxiv:1010.6192

Fairhurst S (2017) Localization of transient gravitational wave sources: beyond triangulation. ArXiv e-prints arxiv:1712.04724

Fan X, Messenger C, Heng IS (2014) A Bayesian approach to multi-messenger astronomy: identification of gravitational-wave host galaxies. Astrophys J 795:43. https://doi.org/10.1088/0004-637X/795/1/43. arxiv:1406.1544

Farr B et al (2016) Parameter estimation on gravitational waves from neutron-star binaries with spinning components. Astrophys J 825:116. https://doi.org/10.3847/0004-637X/825/2/116. arxiv:1508.05336

Farr WM, Farr B, Littenberg T (2015) Modelling calibration errors in CBC waveforms. Technical Report LIGO-T1400682, LIGO Scientific Collaboration and Virgo Collaboration https://dcc.ligo.org/LIGO-T1400682/public

Farr WM, Stevenson S, Miller MC, Mandel I, Farr B, Vecchio A (2017) Distinguishing spin-aligned and isotropic black hole populations with gravitational waves. Nature 548:426–429. https://doi.org/10.1038/nature23453. arxiv:1706.01385

Fishbach M, Gray R, Magaña Hernandez I, Qi H, Sur A, Acernese F, Aiello L, Allocca A, Aloy MA, Amato A et al (2019) A standard siren measurement of the Hubble constant from GW170817 without the electromagnetic counterpart. Astrophys J Lett 871:L13. https://doi.org/10.3847/2041-8213/aaf96e. arxiv:1807.05667

Fong W, Blanchard PK, Alexander KD, Strader J, Margutti R, Hajela A, Villar VA, Wu Y, Ye CS, Berger E, Chornock R, Coppejans D, Cowperthwaite PS, Eftekhari T, Giannios D, Guidorzi C, Kathirgamaraju A, Laskar T, Macfadyen A, Metzger BD, Nicholl M, Paterson K, Terreran G, Sand DJ, Sironi L, Williams PKG, Xie X, Zrake J (2019) The optical afterglow of GW170817: an off-axis structured jet and deep constraints on a globular cluster origin. Astrophys J Lett 883(1):L1. https://doi.org/10.3847/2041-8213/ab3d9e. arxiv:1908.08046

Foucart F (2012) Black-hole–neutron-star mergers: disk mass predictions. Phys Rev D 86:124007. https://doi.org/10.1103/PhysRevD.86.124007. arxiv:1207.6304

Foucart F, Hinderer T, Nissanke S (2018) Remnant baryon mass in neutron star–black hole mergers: predictions for binary neutron star mimickers and rapidly spinning black holes. Phys Rev D 98:081501. https://doi.org/10.1103/PhysRevD.98.081501. arxiv:1807.00011

Gehrels N, Chincarini G, Giommi P, Mason KO, Nousek JA, Wells AA, White NE, Barthelmy SD, Burrows DN, Cominsky LR, Hurley KC, Marshall FE, Mészáros P, Roming PWA, Angelini L, Barbier LM, Belloni T, Campana S, Caraveo PA, Chester MM, Citterio O, Cline TL, Cropper MS, Cummings JR, Dean AJ, Feigelson ED, Fenimore EE, Frail DA, Fruchter AS, Garmire GP, Gendreau K, Ghisellini G, Greiner J, Hill JE, Hunsberger SD, Krimm HA, Kulkarni SR, Kumar P, Lebrun F, Lloyd-Ronning NM, Markwardt CB, Mattson BJ, Mushotzky RF, Norris JP, Osborne J, Paczynski B, Palmer DM, Park HS, Parsons AM, Paul J, Rees MJ, Reynolds CS, Rhoads JE, Sasseen TP, Schaefer BE, Short AT, Smale AP, Smith IA, Stella L, Tagliaferri G, Takahashi T, Tashiro M, Townsley LK, Tueller J, Turner MJL, Vietri M, Voges W, Ward MJ, Willingale R, Zerbi FM, Zhang WW (2004) The swift gamma-ray burst mission. Astrophys J 611:1005–1020. https://doi.org/10.1086/422091

Gehrels N, Cannizzo JK, Kanner J, Kasliwal MM, Nissanke S, Singer LP (2016) Galaxy strategy for LIGO-Virgo gravitational wave counterpart searches. Astrophys J 820:136. https://doi.org/10.3847/0004-637X/820/2/136. arxiv:1508.03608

Ghirlanda G, Salafia OS, Pescalli A, Ghisellini G, Salvaterra R, Chassande-Mottin E, Colpi M, Nappo F, D’Avanzo P, Melandri A, Bernardini MG, Branchesi M, Campana S, Ciolfi R, Covino S, Götz D, Vergani SD, Zennaro M, Tagliaferri G (2016) Short gamma-ray bursts at the dawn of the gravitational wave era. Astron Astrophys 594:A84. https://doi.org/10.1051/0004-6361/201628993. arxiv:1607.07875

Ghirlanda G, Salafia OS, Paragi Z, Giroletti M, Yang J, Marcote B, Blanchard J, Agudo I, An T, Bernardini MG, Beswick R, Branchesi M, Campana S, Casadio C, Chassande-Mottin E, Colpi M, Covino S, D’Avanzo P, D’Elia V, Frey S, Gawronski M, Ghisellini G, Gurvits LI, Jonker PG, van Langevelde HJ, Melandri A, Moldon J, Nava L, Perego A, Perez-Torres MA, Reynolds C, Salvaterra R, Tagliaferri G, Venturi T, Vergani SD, Zhang M (2019) Compact radio emission indicates a structured jet was produced by a binary neutron star merger. Science 363(6430):968–971. https://doi.org/10.1126/science.aau8815. ArXiv e-prints arxiv:1808.00469

Ghosh S, Bloemen S, Nelemans G, Groot PJ, Price LR (2016) Tiling strategies for optical follow-up of gravitational-wave triggers by telescopes with a wide field of view. Astron Astrophys 592:A82. https://doi.org/10.1051/0004-6361/201527712. arxiv:1511.02673

Giacobbo N, Mapelli M (2018) The progenitors of compact-object binaries: impact of metallicity, common envelope and natal kicks. Mon Not R Astron Soc 480:2011–2030. https://doi.org/10.1093/mnras/sty1999. arxiv:1806.00001

Goldstein A et al (2017a) An ordinary short gamma-ray burst with extraordinary implications: fermi-GBM detection of GRB 170817A. Astrophys J Lett 848:L14. https://doi.org/10.3847/2041-8213/aa8f41. arxiv:1710.05446

Goldstein A et al (2017b) Fermi observations of the LIGO event GW170104. Astrophys J Lett 846:L5. https://doi.org/10.3847/2041-8213/aa8319. arxiv:1706.00199

Goodman J (1986) Are gamma-ray bursts optically thick? Astrophys J Lett 308:L47. https://doi.org/10.1086/184741

Grossman D, Korobkin O, Rosswog S, Piran T (2014) The long-term evolution of neutron star merger remnants—II. Radioactively powered transients. Mon Not R Astron Soc 439(1):757–770. https://doi.org/10.1093/mnras/stt2503. arxiv:1307.2943

Grote H et al (2013) First long-term application of squeezed states of light in a gravitational-wave observatory. Phys Rev Lett 110:181101. https://doi.org/10.1103/PhysRevLett.110.181101. arxiv:1302.2188

Grover K, Fairhurst S, Farr BF, Mandel I, Rodriguez C, Sidery T, Vecchio A (2014) Comparison of gravitational wave detector network sky localization approximations. Phys Rev D 89:042004. https://doi.org/10.1103/PhysRevD.89.042004. arxiv:1310.7454

Haggard D, Nynka M, Ruan JJ, Kalogera V, Bradley Cenko S, Evans P, Kennea JA (2017) A deep chandra X-ray study of neutron star coalescence GW170817. Astrophys J Lett 848:L25. https://doi.org/10.3847/2041-8213/aa8ede. arxiv:1710.05852

Hajela A, Margutti R, Alexander KD, Kathirgamaraju A, Baldeschi A, Guidorzi C, Giannios D, Fong W, Wu Y, MacFadyen A, Paggi A, Berger E, Blanchard PK, Chornock R, Coppejans DL, Cowperthwaite PS, Eftekhari T, Gomez S, Hosseinzadeh G, Laskar T, Metzger BD, Nicholl M, Paterson K, Radice D, Sironi L, Terreran G, Villar VA, Williams PKG, Xie X, Zrake J (2019) Two years of nonthermal emission from the binary neutron star merger GW170817: rapid fading of the jet afterglow and first constraints on the kilonova fastest ejecta. Astrophys J Lett 886(1):L17. https://doi.org/10.3847/2041-8213/ab5226. arxiv:1909.06393

Hallinan G et al (2017) A radio counterpart to a neutron star merger. Science 358(6370):1579–1583. https://doi.org/10.1126/science.aap9855. arxiv:1710.05435

Hanna C, Mandel I, Vousden W (2014) Utility of galaxy catalogs for following up gravitational waves from binary neutron star mergers with wide-field telescopes. Astrophys J 784:8. https://doi.org/10.1088/0004-637X/784/1/8. arxiv:1312.2077

Harry I, Privitera S, Bohé A, Buonanno A (2016) Searching for gravitational waves from compact binaries with precessing spins. Phys Rev D 94:024012. https://doi.org/10.1103/PhysRevD.94.024012. arxiv:1603.02444

Harry IW, Allen B, Sathyaprakash BS (2009) Stochastic template placement algorithm for gravitational wave data analysis. Phys Rev D 80:104014. https://doi.org/10.1103/PhysRevD.80.104014. arxiv:0908.2090

Harry IW et al (2014) Investigating the effect of precession on searches for neutron-star–black-hole binaries with Advanced LIGO. Phys Rev D 89:024010. https://doi.org/10.1103/PhysRevD.89.024010. arxiv:1307.3562

Holz DE, Hughes SA (2005) Using gravitational-wave standard sirens. Astrophys J 629:15–22. https://doi.org/10.1086/431341. arxiv:astro-ph/0504616

Hurley K et al (2016) The interplanetary network response to LIGO GW150914. Astrophys J Lett 829:L12. https://doi.org/10.3847/2041-8205/829/1/L12

Iyer B et al (2011) LIGO-India. Technical Report M1100296-v2, IndIGO, India https://dcc.ligo.org/LIGO-M1100296/public

Janiuk A, Bejger M, Charzyński S, Sukova P (2017) On the possible gamma-ray burst-gravitational wave association in GW150914. New Astron 51:7–14. https://doi.org/10.1016/j.newast.2016.08.002. arxiv:1604.07132

Jaranowski P, Królak A (2012) Gravitational-wave data analysis. Formalism and sample applications: the Gaussian case. Living Rev Relativ 15:4. https://doi.org/10.12942/lrr-2012-4. arxiv:0711.1115

Kanner JB et al (2016) Leveraging waveform complexity for confident detection of gravitational waves. Phys Rev D 93:022002. https://doi.org/10.1103/PhysRevD.93.022002. arxiv:1509.06423

Kapadia SJ, Caudill S, Creighton JDE, Farr WM, Mendell G, Weinstein A, Cannon K, Fong H, Godwin P, Lo RKL, Magee R, Meacher D, Messick C, Mohite SR, Mukherjee D, Sachdev S (2020) A self-consistent method to estimate the rate of compact binary coalescences with a Poisson mixture model. Class. Quantum Grav. 37:045007. https://doi.org/10.1088/1361-6382/ab5f2d. arxiv:1903.06881

Kasen D, Badnell NR, Barnes J (2013) Opacities and spectra of the r-process ejecta from neutron star mergers. Astrophys J 774(1):25. https://doi.org/10.1088/0004-637X/774/1/25. arxiv:1303.5788

Kasliwal MM, Nissanke S (2014) On discovering electromagnetic emission from neutron star mergers: the early years of two gravitational wave detectors. Astrophys J Lett 789:L5. https://doi.org/10.1088/2041-8205/789/1/L5. arxiv:1309.1554

Kasliwal MM et al (2017) Illuminating gravitational waves: a concordant picture of photons from a neutron star merger. Science 358:1559. https://doi.org/10.1126/science.aap9455. arxiv:1710.05436

Khan S et al (2016) Frequency-domain gravitational waves from non-precessing black-hole binaries. II. A phenomenological model for the advanced detector era. Phys Rev D 93:044007. https://doi.org/10.1103/PhysRevD.93.044007. arxiv:1508.07253

Kim C, Perera BBP, McLaughlin MA (2013) Implications of PSR J0737–3039B for the galactic NS-NS binary merger rate. Mon Not R Astron Soc 448:928–938. https://doi.org/10.1093/mnras/stu2729. arxiv:1308.4676

Klencki J, Moe M, Gladysz W, Chruslinska M, Holz DE, Belczynski K (2018) Impact of inter-correlated initial binary parameters on double black hole and neutron star mergers. Astron Astrophys 619:A77. https://doi.org/10.1051/0004-6361/201833025. arxiv:1808.07889

Klimenko S, Mohanty S, Rakhmanov M, Mitselmakher G (2005) Constraint likelihood analysis for a network of gravitational wave detectors. Phys Rev D 72:122002. https://doi.org/10.1103/PhysRevD.72.122002. arxiv:gr-qc/0508068

Klimenko S, Yakushin I, Mercer A, Mitselmakher G (2008) Coherent method for detection of gravitational wave bursts. Class Quantum Grav 25:114029. https://doi.org/10.1088/0264-9381/25/11/114029. arxiv:0802.3232

Klimenko S, Vedovato G, Drago M, Mazzolo G, Mitselmakher G, Pankow C, Prodi G, Re V, Salemi F, Yakushin I (2011) Localization of gravitational wave sources with networks of advanced detectors. Phys Rev D 83:102001. https://doi.org/10.1103/PhysRevD.83.102001. arxiv:1101.5408

Klimenko S et al (2016) Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors. Phys Rev D 93:042004. https://doi.org/10.1103/PhysRevD.93.042004. arxiv:1511.05999

Kruckow MU, Tauris TM, Langer N, Kramer M, Izzard RG (2018) Progenitors of gravitational wave mergers: Binary evolution with the stellar grid based code ComBinE. Mon Not R Astron Soc 481(2):1908–1949. https://doi.org/10.1093/mnras/sty2190. arxiv:1801.05433

Kulkarni SR (2005) Modeling supernova-like explosions associated with gamma-ray bursts with short durations. arXiv e-prints astro-ph/0510256

Lasky PD (2015) Gravitational waves from neutron stars: a review. Publ Astron Soc Australia 32:e034. https://doi.org/10.1017/pasa.2015.35. arxiv:1508.06643

Li LX, Paczynski B (1998) Transient events from neutron star mergers. Astrophys J 507:L59. https://doi.org/10.1086/311680. arxiv:astro-ph/9807272

LIGO Scientific Collaboration, Virgo Collaboration (2015) LIGO/Virgo G211117: identification of a GW CBC candidate. GCN Circular 18728. https://gcn.gsfc.nasa.gov/gcn3/18728.gcn3

Lindblom L, Owen BJ, Brown DA (2008) Model waveform accuracy standards for gravitational wave data analysis. Phys Rev D 78:124020. https://doi.org/10.1103/PhysRevD.78.124020. arxiv:0809.3844

Lipunov VM et al (2017) MASTER optical detection of the first LIGO/Virgo neutron star binary merger GW170817. Astrophys J Lett 850:L1. https://doi.org/10.3847/2041-8213/aa92c0. arxiv:1710.05461

Littenberg TB, Cornish NJ (2015) Bayesian inference for spectral estimation of gravitational wave detector noise. Phys Rev D 91:084034. https://doi.org/10.1103/PhysRevD.91.084034. arxiv:1410.3852

Lück H et al (2010) The upgrade of GEO600. J Phys: Conf Ser 228:012012. https://doi.org/10.1088/1742-6596/228/1/012012. arxiv:1004.0339

Lyman JD et al (2018) The optical afterglow of the short gamma-ray burst associated with GW170817. ArXiv e-prints arxiv:1801.02669

Mandel I, O’Shaughnessy R (2010) Compact binary coalescences in the band of ground-based gravitational-wave detectors. Class Quantum Grav 27:114007. https://doi.org/10.1088/0264-9381/27/11/114007. arxiv:0912.1074

Mapelli M, Giacobbo N (2018) The cosmic merger rate of neutron stars and black holes. Mon Not R Astron Soc 479:4391–4398. https://doi.org/10.1093/mnras/sty1613. arxiv:1806.04866

Margutti R et al (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. V. Rising X-ray emission from an off-axis jet. Astrophys J Lett 848:L20. https://doi.org/10.3847/2041-8213/aa9057. arxiv:1710.05431

Margutti R et al (2018) The binary neutron star event LIGO/Virgo GW170817 a hundred days after merger: synchrotron emission across the electromagnetic spectrum. Astrophys J Lett 856:L18. https://doi.org/10.3847/2041-8213/aab2ad. arxiv:1801.03531

Martynov DV et al (2016) Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy. Phys Rev D 93:112004. https://doi.org/10.1103/PhysRevD.93.112004. arxiv:1604.00439

McCully C et al (2017) The rapid reddening and featureless optical spectra of the optical counterpart of GW170817, AT 2017gfo, during the first four days. Astrophys J Lett 848:L32. https://doi.org/10.3847/2041-8213/aa9111. arxiv:1710.05853

Meegan C, Lichti G, Bhat PN, Bissaldi E, Briggs MS, Connaughton V, Diehl R, Fishman G, Greiner J, Hoover AS, van der Horst AJ, von Kienlin A, Kippen RM, Kouveliotou C, McBreen S, Paciesas WS, Preece R, Steinle H, Wallace MS, Wilson RB, Wilson-Hodge C (2009) The Fermi Gamma-Ray Burst Monitor. Astrophys J 702:791–804. https://doi.org/10.1088/0004-637X/702/1/791. arxiv:0908.0450

Messick C et al (2017) Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data. Phys Rev D 95:042001. https://doi.org/10.1103/PhysRevD.95.042001. arxiv:1604.04324

Metzger BD (2020) (2020) Kilonovae. Living Rev Relativ 23:1. https://doi.org/10.1007/s41114-019-0024-0. arxiv:1910.01617

Metzger BD, Berger E (2012) What is the most promising electromagnetic counterpart of a neutron star binary merger? Astrophys J 746:48. https://doi.org/10.1088/0004-637X/746/1/48. arxiv:1108.6056

Metzger BD, Martínez-Pinedo G, Darbha S, Quataert E, Arcones A, Kasen D, Thomas R, Nugent P, Panov IV, Zinner NT (2010) Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Mon Not R Astron Soc 406(4):2650–2662. https://doi.org/10.1111/j.1365-2966.2010.16864.x. arxiv:1001.5029

Mooley KP, Deller AT, Gottlieb O, Nakar E, Hallinan G, Bourke S, Frail DA, Horesh A, Corsi A, Hotokezaka K (2018) Superluminal motion of a relativistic jet in the neutron-star merger GW170817. Nature 561:355–359. https://doi.org/10.1038/s41586-018-0486-3. arxiv:1806.09693

Mooley KP et al (2018) A mildly relativistic wide-angle outflow in the neutron star merger GW170817. Nature 554:207. https://doi.org/10.1038/nature25452. arxiv:1711.11573

Nicholl M et al (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. III. Optical and UV spectra of a blue kilonova from fast polar ejecta. Astrophys J Lett 848:L18. https://doi.org/10.3847/2041-8213/aa9029. arxiv:1710.05456

Nishizawa A, Berti E, Klein A, Sesana A (2016a) eLISA eccentricity measurements as tracers of binary black hole formation. Phys Rev D 94:064020. https://doi.org/10.1103/PhysRevD.94.064020. arxiv:1605.01341

Nishizawa A, Sesana A, Berti E, Klein A (2016b) Constraining stellar binary black hole formation scenarios with eLISA eccentricity measurements. Mon Not R Astron Soc 465:4375. https://doi.org/10.1093/mnras/stw2993. arxiv:1606.09295

Nissanke S, Holz DE, Hughes SA, Dalal N, Sievers JL (2010) Exploring short gamma-ray bursts as gravitational-wave standard sirens. Astrophys J 725:496–514. https://doi.org/10.1088/0004-637X/725/1/496. arxiv:0904.1017

Nissanke S, Sievers J, Dalal N, Holz D (2011) Localizing compact binary inspirals on the sky using ground-based gravitational wave interferometers. Astrophys J 739:99. https://doi.org/10.1088/0004-637X/739/2/99. arxiv:1105.3184

Nissanke S, Kasliwal M, Georgieva A (2013) Identifying elusive electromagnetic counterparts to gravitational wave mergers: an end-to-end simulation. Astrophys J 767:124. https://doi.org/10.1088/0004-637X/767/2/124. arxiv:1210.6362

Nitz AH, Dent T, Dal Canton T, Fairhurst S, Brown DA (2017) Detecting binary compact-object mergers with gravitational waves: understanding and Improving the sensitivity of the PyCBC search. Astrophys J 849:118. https://doi.org/10.3847/1538-4357/aa8f50. arxiv:1705.01513

Nitz AH et al (2013) Accuracy of gravitational waveform models for observing neutron-star–black-hole binaries in Advanced LIGO. Phys Rev D 88:124039. https://doi.org/10.1103/PhysRevD.88.124039. arxiv:1307.1757

Nuttall L et al (2015) Improving the data quality of Advanced LIGO based on early engineering run results. Class Quantum Grav 32:245005. https://doi.org/10.1088/0264-9381/32/24/245005. arxiv:1508.07316

Ott C (2009) The gravitational wave signature of core-collapse supernovae. Class Quantum Grav 26:063001. https://doi.org/10.1088/0264-9381/26/6/063001. arxiv:0809.0695

Ott C, Reisswig C, Schnetter E, O’Connor E, Sperhake U, Löffler F, Diener P, Abdikamalov E, Hawke I, Burrows A (2011) Dynamics and gravitational wave signature of collapsar formation. Phys Rev Lett 106:161103. https://doi.org/10.1103/PhysRevLett.106.161103. arxiv:1012.1853

Owen BJ (1996) Search templates for gravitational waves from inspiraling binaries: choice of template spacing. Phys Rev D 53:6749–6761. https://doi.org/10.1103/PhysRevD.53.6749. arxiv:gr-qc/9511032

Owen BJ, Sathyaprakash B (1999) Matched filtering of gravitational waves from inspiraling compact binaries: computational cost and template placement. Phys Rev D 60:022002. https://doi.org/10.1103/PhysRevD.60.022002. arxiv:gr-qc/9808076

Özel F, Freire P (2016) Masses, radii, and the equation of state of neutron stars. Annu Rev Astron Astrophys 54:401–440. https://doi.org/10.1146/annurev-astro-081915-023322. arxiv:1603.02698

Paczynski B (1986) Gamma-ray bursters at cosmological distances. Astrophys J Lett 308:L43–L46. https://doi.org/10.1086/184740

Palliyaguru NT et al (2016) Radio follow-up of gravitational wave triggers during Advanced LIGO O1. Astrophys J Lett 829:L28. https://doi.org/10.3847/2041-8205/829/2/L28. arxiv:1608.06518

Pan Y et al (2014) Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism. Phys Rev D 89:084006. https://doi.org/10.1103/PhysRevD.89.084006. arxiv:1307.6232

Pankow C, Chase EA, Coughlin S, Zevin M, Kalogera V (2018) Improvements in gravitational-wave sky localization with expanded networks of interferometers. Astrophys J Lett 854:L25. https://doi.org/10.3847/2041-8213/aaacd4. arxiv:1801.02674

Pankow C, Rizzo M, Rao K, Berry CPL, Kalogera V (2019) Localization of compact binary sources with second generation gravitational-wave interferometer networks. arXiv e-prints arXiv:1909.12961

Pannarale F, Ohme F (2014) Prospects for joint gravitational-wave and electromagnetic observations of neutron-star–black-hole coalescing binaries. Astrophys J Lett 791:L7. https://doi.org/10.1088/2041-8205/791/1/L7. arxiv:1406.6057

Paschalidis V (2017) General relativistic simulations of compact binary mergers as engines of short gamma-ray bursts. Class Quantum Grav 34:084002. https://doi.org/10.1088/1361-6382/aa61ce. arxiv:1611.01519

Patricelli B, Stamerra A, Razzano M, Pian E, Cella G (2018) Searching for gamma-ray counterparts to gravitational waves from merging binary neutron stars with the Cherenkov Telescope Array. J Cosmol Astropart Phys 05(2018)056. https://doi.org/10.1088/1475-7516/2018/05/056. arxiv:1801.05167

Patricelli B et al (2016) Prospects for joint observations of gravitational waves and gamma rays from merging neutron star binaries. J Cosmol Astropart Phys 11(2016)056. https://doi.org/10.1088/1475-7516/2016/11/056. arxiv:1606.06124

Perna R, Lazzati D, Giacomazzo B (2016) Short gamma-ray bursts from the merger of two black holes. Astrophys J Lett 821:L18. https://doi.org/10.3847/2041-8205/821/1/L18. arxiv:1602.05140

Pian E et al (2017) Spectroscopic identification of r-process nucleosynthesis in a double neutron star merger. Nature 551:67–70. https://doi.org/10.1038/nature24298. arxiv:1710.05858

Pitkin M, Reid S, Rowan S, Hough J (2011) Gravitational wave detection by interferometry (ground and space). Living Rev Relativ 14:5. https://doi.org/10.12942/lrr-2011-5. arxiv:1102.3355

Pol N, McLaughlin M, Lorimer DR (2019) Future prospects for ground-based gravitational-wave detectors: the galactic double neutron star merger rate revisited. Astrophys J 870:71. https://doi.org/10.3847/1538-4357/aaf006. arxiv:1811.04086

Pooley D, Kumar P, Wheeler JC (2017) GW170817 most likely made a black hole. ArXiv e-prints arxiv:1712.03240

Privitera S, Mohapatra SRP, Ajith P, Cannon K, Fotopoulos N, Frei MA, Hanna C, Weinstein AJ, Whelan JT (2014) Improving the sensitivity of a search for coalescing binary black holes with nonprecessing spins in gravitational wave data. Phys Rev D 89:024003. https://doi.org/10.1103/PhysRevD.89.024003. arxiv:1310.5633

Prix R (2007) Template-based searches for gravitational waves: efficient lattice covering of flat parameter spaces. Class Quantum Grav 24:S481–S490. https://doi.org/10.1088/0264-9381/24/19/S11. arxiv:0707.0428

Punturo M et al (2010) The Einstein telescope: a third-generation gravitational wave observatory. Class Quantum Grav 27:194002. https://doi.org/10.1088/0264-9381/27/19/194002

Pürrer M (2014) Frequency domain reduced order models for gravitational waves from aligned-spin compact binaries. Class Quantum Grav 31:195010. https://doi.org/10.1088/0264-9381/31/19/195010. arxiv:1402.4146

Racusin JL et al (2017) Searching the gamma-ray sky for counterparts to gravitational wave sources: Fermi GBM and LAT observations of LVT151012 and GW151226. Astrophys J 835:82. https://doi.org/10.3847/1538-4357/835/1/82. arxiv:1606.04901

Rana J, Singhal A, Gadre B, Bhalerao V, Bose S (2017) An enhanced method for scheduling observations of large sky error regions for finding optical counterparts to transients. Astrophys J 838:108. https://doi.org/10.3847/1538-4357/838/2/108. arxiv:1603.01689

Read JS et al (2013) Matter effects on binary neutron star waveforms. Phys Rev D 88:044042. https://doi.org/10.1103/PhysRevD.88.044042. arxiv:1306.4065

Roberts LF, Kasen D, Lee WH, Ramirez-Ruiz E (2011) Electromagnetic transients powered by nuclear decay in the tidal tails of coalescing compact binaries. Astrophys J Lett 736(1):L21. https://doi.org/10.1088/2041-8205/736/1/L21. arxiv:1104.5504

Rodriguez CL et al (2014) Basic parameter estimation of binary neutron star systems by the Advanced LIGO/Virgo network. Astrophys J 784:119. https://doi.org/10.1088/0004-637X/784/2/119. arxiv:1309.3273

Ross MP, Venkateswara K, Hagedorn CA, Gundlach JH, Kissel JS, Warner J, Radkins H, Shaffer TJ, Coughlin MW, Bodin P (2017) Low frequency tilt seismology with a precision ground rotation sensor. Seismol Res Lett 89:67–76. https://doi.org/10.1785/0220170148. arxiv:1707.03084

Rosswog S (2005) Mergers of neutron star–black hole binaries with small mass ratios: nucleosynthesis, gamma-ray bursts, and electromagnetic transients. Astrophys J 634(2):1202–1213. https://doi.org/10.1086/497062. arxiv:astro-ph/0508138

Rosswog S et al (2017) Detectability of compact binary merger macronovae. Class Quantum Grav 34:104001. https://doi.org/10.1088/1361-6382/aa68a9. arxiv:1611.09822

Röver C, Meyer R, Christensen N (2007a) Coherent Bayesian inference on compact binary inspirals using a network of interferometric gravitational wave detectors. Phys Rev D 75:062004. https://doi.org/10.1103/PhysRevD.75.062004. arxiv:gr-qc/0609131

Röver C, Meyer R, Guidi GM, Viceré A, Christensen N (2007b) Coherent Bayesian analysis of inspiral signals. Class Quantum Grav 24:S607–S615. https://doi.org/10.1088/0264-9381/24/19/S23. arxiv:0707.3962

Ruan JJ, Nynka M, Haggard D, Kalogera V, Evans P (2018) Brightening X-ray emission from GW170817/GRB170817A: further evidence for an outflow. Astrophys J Lett 853:L4. https://doi.org/10.3847/2041-8213/aaa4f3. arxiv:1712.02809

Sachdev S, Caudill S, Fong H, Lo RKL, Messick C, Mukherjee D, Magee R, Tsukada L, Blackburn K, Brady P, Brockill P, Cannon K, Chamberlin SJ, Chatterjee D, Creighton JDE, Godwin P, Gupta A, Hanna C, Kapadia S, Lang RN, Li TGF, Meacher D, Pace A, Privitera S, Sadeghian L, Wade L, Wade M, Weinstein A, Liting Xiao S (2019) The GstLAL search analysis methods for compact binary mergers in Advanced LIGO’s second and Advanced Virgo’s first observing runs. arXiv e-prints arxiv:1901.08580

Salafia OS, Colpi M, Branchesi M, Chassande-Mottin E, Ghirlanda G, Ghisellini G, Vergani S (2017) Where and when: optimal scheduling of the electromagnetic follow-up of gravitational-wave events based on counterpart lightcurve models. Astrophys J 846:62. https://doi.org/10.3847/1538-4357/aa850e. arxiv:1704.05851

Sathyaprakash BS, Dhurandhar SV (1991) Choice of filters for the detection of gravitational waves from coalescing binaries. Phys Rev D 44:3819–3834. https://doi.org/10.1103/PhysRevD.44.3819

Sathyaprakash BS, Schutz BF (2009) Physics, astrophysics and cosmology with gravitational waves. Living Rev Relativ 12:2. https://doi.org/10.12942/lrr-2009-2. arxiv:0903.0338

Savchenko V et al (2016) INTEGRAL upper limits on gamma-ray emission associated with the gravitational wave event GW150914. Astrophys J Lett 820:L36. https://doi.org/10.3847/2041-8205/820/2/L36. arxiv:1602.04180

Savchenko V et al (2017a) INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817. Astrophys J Lett 848:L15. https://doi.org/10.3847/2041-8213/aa8f94. arxiv:1710.05449

Savchenko V et al (2017b) INTEGRAL observations of GW170104. Astrophys J Lett 846:L23. https://doi.org/10.3847/2041-8213/aa87ae. arxiv:1707.03719

Schmidt P, Ohme F, Hannam M (2015) Towards models of gravitational waveforms from generic binaries II: modelling precession effects with a single effective precession parameter. Phys Rev D 91:024043. https://doi.org/10.1103/PhysRevD.91.024043. arxiv:1408.1810

Schnittman JD (2013) Astrophysics of super-massive black hole mergers. Class Quantum Grav 30:244007. https://doi.org/10.1088/0264-9381/30/24/244007. arxiv:1307.3542

Schutz BF (1986) Determining the Hubble constant from gravitational wave observations. Nature 323:310–311. https://doi.org/10.1038/323310a0

Sesana A (2016) Prospects for multiband gravitational-wave astronomy after GW150914. Phys Rev Lett 116:231102. https://doi.org/10.1103/PhysRevLett.116.231102. arxiv:1602.06951

Shappee BJ et al (2017) Early spectra of the gravitational wave source GW170817: evolution of a neutron star merger. Science 358:1574. https://doi.org/10.1126/science.aaq0186. arxiv:1710.05432

Siebert MR et al (2017) The unprecedented properties of the first electromagnetic counterpart to a gravitational wave source. Astrophys J Lett 848:L26. https://doi.org/10.3847/2041-8213/aa905e. arxiv:1710.05440

Singer LP, Price LR (2016) Rapid Bayesian position reconstruction for gravitational-wave transients. Phys Rev D 93:024013. https://doi.org/10.1103/PhysRevD.93.024013. arxiv:1508.03634

Singer LP et al (2014) The first two years of electromagnetic follow-up with Advanced LIGO and Virgo. Astrophys J 795:105. https://doi.org/10.1088/0004-637X/795/2/105. arxiv:1404.5623

Singer LP et al (2016a) Going the distance: mapping host galaxies of LIGO and Virgo sources in three dimensions using local cosmography and targeted follow-up. Astrophys J Lett 829:L15. https://doi.org/10.3847/2041-8205/829/1/L15. arxiv:1603.07333

Singer LP et al (2016b) Supplement: going the distance: mapping host galaxies of LIGO and Virgo sources in three dimensions using local cosmography and targeted follow-up. Astrophys J Suppl 226:10. https://doi.org/10.3847/0067-0049/226/1/10. arxiv:1605.04242

van der Sluys MV, Röver C, Stroeer A, Christensen N, Kalogera V, Meyer R, Vecchio A (2008) Gravitational-wave astronomy with inspiral signals of spinning compact-object binaries. Astrophys J Lett 688:L61. https://doi.org/10.1086/595279. arxiv:0710.1897

Smartt SJ et al (2016) A search for an optical counterpart to the gravitational wave event GW151226. Astrophys J Lett 827:L40. https://doi.org/10.3847/2041-8205/827/2/L40. arxiv:1606.04795

Smartt SJ et al (2017) A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 551(7678):75–79. https://doi.org/10.1038/nature24303. arxiv:1710.05841

Smith R, Field SE, Blackburn K, Haster CJ, Pürrer M, Raymond V, Schmidt P (2016) Fast and accurate inference on gravitational waves from precessing compact binaries. Phys Rev D 94:044031. https://doi.org/10.1103/PhysRevD.94.044031. arxiv:1604.08253

Soares-Santos M, Palmese A, Hartley W, Annis J, Garcia-Bellido J, Lahav O, Doctor Z, et al (2019) First measurement of the Hubble constant from a dark standard siren using the dark energy survey galaxies and the LIGO/Virgo binary-black-hole merger GW170814. Astrophys J Lett 876:L7. https://doi.org/10.3847/2041-8213/ab14f1. arxiv:1901.01540

Soares-Santos M et al (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. I. Discovery of the optical counterpart using the dark energy camera. Astrophys J Lett 848:L16. https://doi.org/10.3847/2041-8213/aa9059. arxiv:1710.05459

Somiya K (2012) Detector configuration of KAGRA: the Japanese cryogenic gravitational-wave detector. Class Quantum Grav 29:124007. https://doi.org/10.1088/0264-9381/29/12/124007. arxiv:1111.7185

Spera M, Mapelli M, Giacobbo N, Trani AA, Bressan A, Costa G (2019) Merging black hole binaries with the SEVN code. Mon Not R Astron Soc 485:889–907. https://doi.org/10.1093/mnras/stz359. arxiv:1809.04605

Staley A et al (2014) Achieving resonance in the Advanced LIGO gravitational-wave interferometer. Class Quantum Grav 31:245010. https://doi.org/10.1088/0264-9381/31/24/245010

Stevenson S, Berry CPL, Mandel I (2017) Hierarchical analysis of gravitational-wave measurements of binary black hole spin-orbit misalignments. Mon Not R Astron Soc 471:2801–2811. https://doi.org/10.1093/mnras/stx1764. arxiv:1703.06873

Stone NC, Metzger BD, Haiman Z (2017) Assisted inspirals of stellar mass black holes embedded in AGN disks. Mon Not R Astron Soc 464:946–954. https://doi.org/10.1093/mnras/stw2260. arxiv:1602.04226

Sutton P (2013) A rule of thumb for the detectability of gravitational-wave bursts. ArXiv e-prints arxiv:1304.0210

Sutton PJ et al (2010) X-Pipeline: an analysis package for autonomous gravitational-wave burst searches. New J Phys 12:053034. https://doi.org/10.1088/1367-2630/12/5/053034. arxiv:0908.3665

Tanaka M, Hotokezaka K (2013) Radiative transfer simulations of neutron star merger ejecta. Astrophys J 775(2):113. https://doi.org/10.1088/0004-637X/775/2/113. arxiv:1306.3742

Tanvir NR et al (2017) The emergence of a lanthanide-rich kilonova following the merger of two neutron stars. Astrophys J Lett 848:L27. https://doi.org/10.3847/2041-8213/aa90b6. arxiv:1710.05455

Taracchini A et al (2014) Effective-one-body model for black-hole binaries with generic mass ratios and spins. Phys Rev D 89:061502. https://doi.org/10.1103/PhysRevD.89.061502. arxiv:1311.2544

Tavani M et al (2016) AGILE observations of the gravitational wave event GW150914. Astrophys J Lett 825:L4. https://doi.org/10.3847/2041-8205/825/1/L4. arxiv:1604.00955

Thrane E, Coughlin M (2013) Searching for gravitational-wave transients with a qualitative signal model: seedless clustering strategies. Phys Rev D 88:083010. https://doi.org/10.1103/PhysRevD.88.083010. arxiv:1308.5292

Thrane E, Mandic V, Christensen N (2015) Detecting very long-lived gravitational-wave transients lasting hours to weeks. Phys Rev D 91:104021. https://doi.org/10.1103/PhysRevD.91.104021. arxiv:1501.06648

Thrane E et al (2011) Long gravitational-wave transients and associated detection strategies for a network of terrestrial interferometers. Phys Rev D 83:083004. https://doi.org/10.1103/PhysRevD.83.083004. arxiv:1012.2150

Troja E, Piro L, Ryan G, van Eerten H, Ricci R, Wieringa MH, Lotti S, Sakamoto T, Cenko SB (2018) The outflow structure of GW170817 from late-time broad-band observations. Mon Not R Astron Soc 478:L18–L23. https://doi.org/10.1093/mnrasl/sly061

Troja E et al (2017) The X-ray counterpart to the gravitational wave event GW170817. Nature 551:71–74. https://doi.org/10.1038/nature24290. arxiv:1710.05433

Usman SA et al (2016) The PyCBC search for gravitational waves from compact binary coalescence. Class Quantum Grav 33:215004. https://doi.org/10.1088/0264-9381/33/21/215004. arxiv:1508.02357

Valenti S, Sand DJ, Yang S, Cappellaro E, Tartaglia L, Corsi A, Jha SW, Reichart DE, Haislip J, Kouprianov V (2017) The discovery of the electromagnetic counterpart of GW170817: Kilonova AT 2017gfo/DLT17ck. Astrophys J Lett 848:L24. https://doi.org/10.3847/2041-8213/aa8edf. arxiv:1710.05854

Vallisneri M, Kanner J, Williams R, Weinstein A, Stephens B (2015) The LIGO open science center. J Phys: Conf Ser 610:012021. https://doi.org/10.1088/1742-6596/610/1/012021. arxiv:1410.4839

Vangioni E, Goriely S, Daigne F, François P, Belczynski K (2016) Cosmic neutron-star merger rate and gravitational waves constrained by the r-process nucleosynthesis. Mon Not R Astron Soc 455:17–34. https://doi.org/10.1093/mnras/stv2296. arxiv:1501.01115

Vecchio A (2004) LISA observations of rapidly spinning massive black hole binary systems. Phys Rev D 70:042001. https://doi.org/10.1103/PhysRevD.70.042001. arxiv:astro-ph/0304051

Veitch J, Mandel I, Aylott B, Farr B, Raymond V, Rodriguez C, van der Sluys M, Kalogera V, Vecchio A (2012) Estimating parameters of coalescing compact binaries with proposed advanced detector networks. Phys Rev D 85:104045. https://doi.org/10.1103/PhysRevD.85.104045. arxiv:1201.1195

Veitch J et al (2015) Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library. Phys Rev D 91:042003. https://doi.org/10.1103/PhysRevD.91.042003. arxiv:1409.7215

Venkateswara K, Hagedorn CA, Turner MD, Arp T, Gundlach JH (2014) A high-precision mechanical absolute-rotation sensor. Rev Sci Instrum 85:015005. https://doi.org/10.1063/1.4862816. arxiv:1401.4412

Venumadhav T, Zackay B, Roulet J, Dai L, Zaldarriaga M (2019) New search pipeline for compact binary mergers: results for binary black holes in the first observing run of Advanced LIGO. Phys Rev D 100:023011. https://doi.org/10.1103/PhysRevD.100.023011. arxiv:1902.10341

Venumadhav T, Zackay B, Roulet J, Dai L, Zaldarriaga M (2020) New binary black hole mergers in the second observing run of Advanced LIGO and Advanced Virgo. Phys. Rev. D 101:083030. https://doi.org/10.1103/PhysRevD.101.083030. arxiv:1904.07214

Verrecchia F et al (2017) AGILE observations of the gravitational-wave source GW170104. Astrophys J Lett 847:L20. https://doi.org/10.3847/2041-8213/aa8224. arxiv:1706.00029

Villar VA et al (2017) The combined ultraviolet, optical, and near-infrared light curves of the kilonova associated with the binary neutron star merger GW170817: unified data set, analytic models, and physical implications. Astrophys J Lett 851:L21. https://doi.org/10.3847/2041-8213/aa9c84. arxiv:1710.11576

Vinciguerra S, Veitch J, Mandel I (2017) Accelerating gravitational wave parameter estimation with multi-band template interpolation. Class Quantum Grav 34:115006. https://doi.org/10.1088/1361-6382/aa6d44. arxiv:1703.02062

Vinciguerra S, Branchesi M, Ciolfi R, Mandel I, Neijssel CJ, Stratta G (2019) SAPREMO: a simplified algorithm for predicting detections of electromagnetic transients in surveys. Mon Not R Astron Soc 484:332–344. https://doi.org/10.1093/mnras/sty3490. arxiv:1809.08641

Vitale S (2016) Multiband gravitational-wave astronomy: parameter estimation and tests of general relativity with space- and ground-based detectors. Phys Rev Lett 117:051102. https://doi.org/10.1103/PhysRevLett.117.051102. arxiv:1605.01037

Vitale S, Zanolin M (2011) Application of asymptotic expansions for maximum likelihood estimators’ errors to gravitational waves from binary mergers: the network case. Phys Rev D 84:104020. https://doi.org/10.1103/PhysRevD.84.104020. arxiv:1108.2410

Vitale S, Del Pozzo W, Li TG, Van Den Broeck C, Mandel I, Aylott B, Veitch J (2012) Effect of calibration errors on Bayesian parameter estimation for gravitational wave signals from inspiral binary systems in the advanced detectors era. Phys Rev D 85:064034. https://doi.org/10.1103/PhysRevD.85.064034. arxiv:1111.3044

Vitale S, Lynch R, Veitch J, Raymond V, Sturani R (2014) Measuring the spin of black holes in binary systems using gravitational waves. Phys Rev Lett 112:251101. https://doi.org/10.1103/PhysRevLett.112.251101. arxiv:1403.0129

Walker M, Agnew AF, Bidler J, Lundgren A, Macedo A, Macleod D, Massinger TJ, Patane O, Smith JR (2018) Identifying correlations between LIGO’s astronomical range and auxiliary sensors using lasso regression. Class Quantum Grav 35:225002. https://doi.org/10.1088/1361-6382/aae593. arxiv:1807.02592

Woosley SE (2016) The progenitor of GW150914. Astrophys J Lett 824:L10. https://doi.org/10.3847/2041-8205/824/1/L10. arxiv:1603.00511

Yakunin KN et al (2010) Gravitational waves from core collapse supernovae. Class Quantum Grav 27:194005. https://doi.org/10.1088/0264-9381/27/19/194005. arxiv:1005.0779

Yang S, Valenti S, Cappellaro E, Sand DJ, Tartaglia L, Corsi A, Reichart DE, Haislip J, Kouprianov V (2017) An empirical limit on the kilonova rate from the DLT40 one day cadence Supernova Survey. Astrophys J Lett 851:L48. https://doi.org/10.3847/2041-8213/aaa07d. arxiv:1710.05864

Zackay B, Venumadhav T, Dai L, Roulet J, Zaldarriaga M (2019) Highly spinning and aligned binary black hole merger in the Advanced LIGO first observing run. Phys Rev D 100:023007. https://doi.org/10.1103/PhysRevD.100.023007. arxiv:1902.10331

Zevin M, Pankow C, Rodriguez CL, Sampson L, Chase E, Kalogera V, Rasio FA (2017) Constraining Formation Models of Binary Black Holes with Gravitational-wave Observations. Astrophys J 846:82. https://doi.org/10.3847/1538-4357/aa8408. arxiv:1704.07379

Zevin M et al (2017) Gravity spy: integrating advanced LIGO detector characterization, machine learning, and citizen science. Class Quantum Grav 34:064003. https://doi.org/10.1088/1361-6382/aa5cea. arxiv:1611.04596

Zhang BB et al (2018) A peculiar low-luminosity short gamma-ray burst from a double neutron star merger progenitor. Nature Commun 9:447. https://doi.org/10.1038/s41467-018-02847-3. arxiv:1710.05851