Triển vọng quan sát và định vị các tín hiệu sóng hấp dẫn tạm thời với Advanced LIGO, Advanced Virgo và KAGRA
Tóm tắt
Chúng tôi trình bày ước lượng tốt nhất hiện tại của các kịch bản quan sát khả thi cho các máy phát hiện sóng hấp dẫn Advanced LIGO, Advanced Virgo và KAGRA trong vài năm tới, với mục đích cung cấp thông tin để hỗ trợ kế hoạch cho thiên văn học đa thông điệp với sóng hấp dẫn. Chúng tôi ước lượng độ nhạy của mạng lưới đối với các tín hiệu sóng hấp dẫn tạm thời cho các đợt quan sát thứ ba (O3), thứ tư (O4) và thứ năm (O5), bao gồm các nâng cấp dự kiến của các thiết bị Advanced LIGO và Advanced Virgo. Chúng tôi nghiên cứu khả năng của mạng lưới trong việc xác định vị trí bầu trời của nguồn sóng hấp dẫn từ sự bắt chước của các hệ thống nhị phân của các đối tượng cô đặc, tức là các hệ sao neutron nhị phân, sao neutron - hố đen, và các hệ hố đen nhị phân. Khả năng định vị các nguồn được đưa ra dưới dạng diện tích bầu trời, khoảng cách độ sáng và thể tích đồng chuyển. Diện tích định vị bầu trời trung bình (vùng tin cậy 90%) dự kiến sẽ rơi vào vài trăm độ vuông cho tất cả các loại hệ nhị phân trong O3 với mạng lưới Advanced LIGO và Virgo (HLV). Diện tích định vị bầu trời trung bình sẽ cải thiện xuống còn vài chục độ vuông trong O4 với mạng lưới Advanced LIGO, Virgo và KAGRA (HLVK). Trong O3, thể tích định vị trung bình (vùng tin cậy 90%) dự kiến sẽ ở khoảng
Từ khóa
Tài liệu tham khảo
Aasi J et al (2012) The characterization of Virgo data and its impact on gravitational-wave searches. Class Quantum Grav 29:155002. https://doi.org/10.1088/0264-9381/29/15/155002. arxiv:1203.5613
Aasi J et al (2013a) Enhancing the sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photon 7:613–619. https://doi.org/10.1038/nphoton.2013.177. arxiv:1310.0383
Aasi J et al (2013b) Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Phys Rev D 88:062001. https://doi.org/10.1103/PhysRevD.88.062001. arxiv:1304.1775
Aasi J et al (2014a) First searches for optical counterparts to gravitational-wave candidate events. Astrophys J Suppl 211:7. https://doi.org/10.1088/0067-0049/211/1/7. arxiv:1310.2314
Aasi J et al (2014b) Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO600, LIGO, and Virgo detectors. Phys Rev D 89:122004. https://doi.org/10.1103/PhysRevD.89.122004. arxiv:1405.1053
Aasi J et al (2014c) Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Phys Rev D 89:122003. https://doi.org/10.1103/PhysRevD.89.122003. arxiv:1404.2199
Aasi J et al (2014d) Search for gravitational waves associated with $$\gamma $$-ray bursts detected by the interplanetary network. Phys Rev Lett 113:011102. https://doi.org/10.1103/PhysRevLett.113.011102. arxiv:1403.6639
Aasi J et al (2015a) Advanced LIGO. Class Quantum Grav 32:074001. https://doi.org/10.1088/0264-9381/32/7/074001. arxiv:1411.4547
Aasi J et al (2015b) Characterization of the LIGO detectors during their sixth science run. Class Quantum Grav 32:115012. https://doi.org/10.1088/0264-9381/32/11/115012. arxiv:1410.7764
Aasi J et al (2016) Prospects for observing and localizing gravitational-wave transients with Advanced LIGO and Advanced Virgo. Living Rev Relativ 19:1. https://doi.org/10.1007/lrr-2016-1. arxiv:1304.0670v3
Abadie J et al (2008) Search for gravitational-wave bursts from soft gamma repeaters. Phys Rev Lett 101:211102. https://doi.org/10.1103/PhysRevLett.101.211102. arxiv:0808.2050
Abadie J et al (2010a) All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Phys Rev D 81:102001. https://doi.org/10.1103/PhysRevD.85.089905. arxiv:1002.1036
Abadie J et al (2010b) Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Class Quantum Grav 27:173001. https://doi.org/10.1088/0264-9381/27/17/173001. arxiv:1003.2480
Abadie J et al (2011a) A gravitational wave observatory operating beyond the quantum shot-noise limit: squeezed light in application. Nature Phys 7:962–965. https://doi.org/10.1038/nphys2083. arxiv:1109.2295
Abadie J et al (2011b) Search for gravitational wave bursts from six magnetars. Astrophys J Lett 734:L35. https://doi.org/10.1088/2041-8205/734/2/L35. arxiv:1011.4079
Abadie J et al (2012a) All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Phys Rev D 85:122007. https://doi.org/10.1103/PhysRevD.85.122007. arxiv:1202.2788
Abadie J et al (2012b) First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astron Astrophys 541:A155. https://doi.org/10.1051/0004-6361/201218860. arxiv:1112.6005
Abadie J et al (2012c) Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts. Astron Astrophys 539:A124. https://doi.org/10.1051/0004-6361/201118219. arxiv:1109.3498
Abadie J et al (2012d) Search for gravitational waves associated with gamma-ray bursts during LIGO science run 6 and Virgo science runs 2 and 3. Astrophys J 760:12. https://doi.org/10.1088/0004-637X/760/1/12. arxiv:1205.2216
Abadie J et al (2012e) Search for gravitational waves from intermediate mass binary black holes. Phys Rev D 85:102004. https://doi.org/10.1103/PhysRevD.85.102004. arxiv:1201.5999
Abbott BP et al (2016a) All-sky search for long-duration gravitational wave transients with initial LIGO. Phys Rev D 93:042005. https://doi.org/10.1103/PhysRevD.93.042005. arxiv:1511.04398
Abbott BP et al (2016b) Binary black hole mergers in the first Advanced LIGO observing run. Phys Rev X 6:041015. https://doi.org/10.1103/PhysRevX.6.041015. arxiv:1606.04856
Abbott BP et al (2016c) Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Class Quantum Grav 33:134001. https://doi.org/10.1088/0264-9381/33/13/134001. arxiv:1602.03844
Abbott BP et al (2016d) GW150914: first results from the search for binary black hole coalescence with Advanced LIGO. Phys Rev D 93:122003. https://doi.org/10.1103/PhysRevD.93.122003. arxiv:1602.03839
Abbott BP et al (2016e) GW150914: the Advanced LIGO detectors in the era of first discoveries. Phys Rev Lett 116:131103. https://doi.org/10.1103/PhysRevLett.116.131103. arxiv:1602.03838
Abbott BP et al (2016f) GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys Rev Lett 116:241103. https://doi.org/10.1103/PhysRevLett.116.241103. arxiv:1606.04855
Abbott BP et al (2016g) Improved analysis of GW150914 using a fully spin-precessing waveform model. Phys Rev X 6:041014. https://doi.org/10.1103/PhysRevX.6.041014. arxiv:1606.01210
Abbott BP et al (2016h) Localization and broadband follow-up of the gravitational-wave transient GW150914. Astrophys J Lett 826:L13. https://doi.org/10.3847/2041-8205/826/1/L13. arxiv:1602.08492
Abbott BP et al (2016i) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116:061102. https://doi.org/10.1103/PhysRevLett.116.061102. arxiv:1602.03837
Abbott BP et al (2016j) Observing gravitational-wave transient GW150914 with minimal assumptions. Phys Rev D 93:122004. https://doi.org/10.1103/PhysRevD.93.122004. arxiv:1602.03843
Abbott BP et al (2016k) Properties of the binary black hole merger GW150914. Phys Rev Lett 116:241102. https://doi.org/10.1103/PhysRevLett.116.241102. arxiv:1602.03840
Abbott BP et al (2016l) Supplement: localization and broadband follow-up of the gravitational-wave transient GW150914. Astrophys J Suppl 225:8. https://doi.org/10.3847/0067-0049/225/1/8. arxiv:1604.07864
Abbott BP et al (2016m) Supplement: the rate of binary black hole mergers inferred from Advanced LIGO observations surrounding GW150914. Astrophys J Suppl 227:14. https://doi.org/10.3847/0067-0049/227/2/14. arxiv:1606.03939
Abbott BP et al (2016n) The rate of binary black hole mergers inferred from Advanced LIGO observations surrounding GW150914. Astrophys J Lett 833:1. https://doi.org/10.3847/2041-8205/833/1/L1. arxiv:1602.03842
Abbott BP et al (2016o) Upper limits on the rates of binary neutron star and neutron-star–black-hole mergers from Advanced LIGO’s first observing run. Astrophys J Lett 832:L21. https://doi.org/10.3847/2041-8205/832/2/L21. arxiv:1607.07456
Abbott BP et al (2017a) A gravitational-wave standard siren measurement of the Hubble constant. Nature 551:85–88. https://doi.org/10.1038/nature24471. arxiv:1710.05835
Abbott BP et al (2017b) All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Phys Rev D 95:042003. https://doi.org/10.1103/PhysRevD.95.042003. arxiv:1611.02972
Abbott BP et al (2017c) Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Phys Rev D 95:062003. https://doi.org/10.1103/PhysRevD.95.062003. arxiv:1602.03845
Abbott BP et al (2017d) Exploring the sensitivity of next generation gravitational wave detectors. Class Quantum Grav 34:044001. https://doi.org/10.1088/1361-6382/aa51f4. arxiv:1607.08697
Abbott BP et al (2017e) Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys J Lett 848:L13. https://doi.org/10.3847/2041-8213/aa920c. arxiv:1710.05834
Abbott BP et al (2017f) GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys Rev Lett 118:221101. https://doi.org/10.1103/PhysRevLett.118.221101. arxiv:1706.01812
Abbott BP et al (2017g) GW170608: observation of a 19 solar-mass binary black hole coalescence. Astrophys J Lett 851:35. https://doi.org/10.3847/2041-8213/aa9f0c. arxiv:1711.05578
Abbott BP et al (2017h) GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys Rev Lett 119:141101. https://doi.org/10.1103/PhysRevLett.119.141101. arxiv:1709.09660
Abbott BP et al (2017i) GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys Rev Lett 119:161101. https://doi.org/10.1103/PhysRevLett.119.161101. arxiv:1710.05832
Abbott BP et al (2017j) Multi-messenger observations of a binary neutron star merger. Astrophys J Lett 848:L12. https://doi.org/10.3847/2041-8213/aa91c9. arxiv:1710.05833
Abbott BP et al (2017k) Search for gravitational waves associated with gamma-ray bursts during the first Advanced LIGO observing run and implications for the origin of GRB 150906B. Astrophys J 841:89. https://doi.org/10.3847/1538-4357/aa6c47. arxiv:1611.07947
Abbott BP et al (2017l) Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Phys Rev D 96:022001. https://doi.org/10.1103/PhysRevD.96.022001. arxiv:1704.04628
Abbott BP et al (2018a) Binary black hole population properties inferred from the first and second observing runs of Advanced LIGO and Advanced Virgo. Astrophys J arxiv:1811.12940
Abbott BP et al (2018b) Constraints on cosmic strings using data from the first Advanced LIGO observing run. Phys Rev D 97:102002. https://doi.org/10.1103/PhysRevD.97.102002. arxiv:1712.01168
Abbott BP et al (2018c) GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. arXiv e-prints arxiv:1811.12907
Abbott BP et al (2018d) Instrument science white paper. Technical Report LIGO-T1800133-v3, LIGO, Pasadena, CA. https://dcc.ligo.org/LIGO-T1800133/public
Abbott BP et al (2018e) The LSC–Virgo white paper on gravitational wave searches and astrophysics (2018–2019 edition). Technical Report LIGO-T1800058-v2, LIGO, Pasadena, CA. https://dcc.ligo.org/LIGO-T1800058/public
Abbott BP et al (2018f) Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev Relativ 21:3. https://doi.org/10.1007/s41114-018-0012-9. arxiv:1304.0670
Abbott BP et al (2018g) Search for subsolar-mass ultracompact binaries in Advanced LIGO’s first observing run. Phys Rev Lett 121:231103. https://doi.org/10.1103/PhysRevLett.121.231103. arxiv:1808.04771
Abbott BP et al (2019a) All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. arXiv e-prints arxiv:1903.12015
Abbott BP et al (2019b) All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. arXiv e-prints arXiv:1905.03457
Abbott BP et al (2019c) An optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of Advanced LIGO and Advanced Virgo. arXiv e-prints arxiv:1908.03584
Abbott BP et al (2019d) Low-latency gravitational wave alerts for multi-messenger astronomy during the second Advanced LIGO and Virgo observing run. arXiv e-prints arxiv:1901.03310
Abbott BP et al (2019e) Search for eccentric binary black hole mergers with Advanced LIGO and Advanced Virgo during their first and second observing runs. arXiv e-prints arXiv:1907.09384
Abbott BP et al (2019f) Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. arXiv e-prints arXiv:1906.08000
Abbott BP et al (2019g) Search for transient gravitational-wave signals associated with magnetar bursts during Advanced LIGO’s second observing run. Astrophys J 874:163. https://doi.org/10.3847/1538-4357/ab0e15
Acernese F et al (2015) Advanced Virgo: a second-generation interferometric gravitational wave detector. Class Quantum Grav 32:024001. https://doi.org/10.1088/0264-9381/32/2/024001. arxiv:1408.3978
Adams TS, Meacher D, Clark J, Sutton PJ, Jones G, Minot A (2013) Gravitational-wave detection using multivariate analysis. Phys Rev D 88:062006. https://doi.org/10.1103/PhysRevD.88.062006. arxiv:1305.5714
Ade PAR et al (2016) Planck 2015 results. XIII. Cosmological parameters. Astron Astrophys 594:A13. https://doi.org/10.1051/0004-6361/201525830. arxiv:1502.01589
Adrian-Martinez S et al (2016) High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Phys Rev D 93:122010. https://doi.org/10.1103/PhysRevD.93.122010. arxiv:1602.05411
Affeldt C et al (2014) Advanced techniques in GEO 600. Class Quantum Grav 31:224002. https://doi.org/10.1088/0264-9381/31/22/224002
Ajith P, Fotopoulos N, Privitera S, Neunzert A, Weinstein AJ (2014) Effectual template bank for the detection of gravitational waves from inspiralling compact binaries with generic spins. Phys Rev D 89:084041. https://doi.org/10.1103/PhysRevD.89.084041. arxiv:1210.6666
Akutsu T et al (2018) Construction of KAGRA: an underground gravitational wave observatory. Prog Theor Exp Phys 2018:013F01. https://doi.org/10.1093/ptep/ptx180. arxiv:1712.00148
Albert A et al (2017a) Search for high-energy neutrinos from binary neutron star merger GW170817 with ANTARES, IceCube, and the Pierre Auger observatory. Astrophys J Lett 850:L35. https://doi.org/10.3847/2041-8213/aa9aed. arxiv:1710.05839
Albert A et al (2017b) Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Phys Rev D 96:022005. https://doi.org/10.1103/PhysRevD.96.022005. arxiv:1703.06298
Alexander KD, Margutti R, Blanchard PK, Fong W, Berger E, Hajela A, Eftekhari T, Chornock R, Cowperthwaite PS, Giannios D, Guidorzi C, Kathirgamaraju A, MacFadyen A, Metzger BD, Nicholl M, Sironi L, Villar VA, Williams PKG, Xie X, Zrake J (2018) A decline in the X-ray through radio emission from GW170817 continues to support an off-axis structured jet. Astrophys J Lett 863:L18. https://doi.org/10.3847/2041-8213/aad637. arxiv:1805.02870
Alexander KD et al (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. VI. Radio constraints on a relativistic jet and predictions for late-time emission from the kilonova ejecta. Astrophys J Lett 848:L21. https://doi.org/10.3847/2041-8213/aa905d. arxiv:1710.05457
Allen B (2005) $$\chi ^2$$ time-frequency discriminator for gravitational wave detection. Phys Rev D 71:062001. https://doi.org/10.1103/PhysRevD.71.062001. arxiv:gr-qc/0405045
Amaro-Seoane P, Audley H, Babak S, Baker J, Barausse E, Bender P, Berti E, Binetruy P, Born M, Bortoluzzi D, Camp J, Caprini C, Cardoso V, Colpi M, Conklin J, Cornish N, Cutler C, Danzmann K, Dolesi R, Ferraioli L, Ferroni V, Fitzsimons E, Gair J, Gesa Bote L, Giardini D, Gibert F, Grimani C, Halloin H, Heinzel G, Hertog T, Hewitson M, Holley-Bockelmann K, Hollington D, Hueller M, Inchauspe H, Jetzer P, Karnesis N, Killow C, Klein A, Klipstein B, Korsakova N, Larson SL, Livas J, Lloro I, Man N, Mance D, Martino J, Mateos I, McKenzie K, McWilliams ST, Miller C, Mueller G, Nardini G, Nelemans G, Nofrarias M, Petiteau A, Pivato P, Plagnol E, Porter E, Reiche J, Robertson D, Robertson N, Rossi E, Russano G, Schutz B, Sesana A, Shoemaker D, Slutsky J, Sopuerta CF, Sumner T, Tamanini N, Thorpe I, Troebs M, Vallisneri M, Vecchio A, Vetrugno D, Vitale S, Volonteri M, Wanner G, Ward H, Wass P, Weber W, Ziemer J, Zweifel P (2017) Laser Interferometer Space Antenna. arXiv e-prints arXiv:1702.00786
Anderson S, Williams R (2017) LIGO data management plan, June 2017. Technical Report LIGO-M1000066, LIGO Scientific Collaboration and Virgo Collaboration. https://dcc.ligo.org/LIGO-M1000066/public
Arcavi I et al (2017) Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. Nature 551:64. https://doi.org/10.1038/nature24291. arxiv:1710.05843
Artale MC, Mapelli M, Giacobbo N, Sabha NB, Spera M, Santoliquido F, Bressan A (2019) Host galaxies of merging compact objects: mass, star formation rate, metallicity and colours. Mon Not R Astron Soc. https://doi.org/10.1093/mnras/stz1382. arxiv:1903.00083
Ashton G, Hübner M, Lasky PD, Talbot C, Ackley K, Biscoveanu S, Chu Q, Divakarla A, Easter PJ, Goncharov B, Hernandez Vivanco F, Harms J, Lower ME, Meadors GD, Melchor D, Payne E, Pitkin MD, Powell J, Sarin N, Smith RJE, Thrane E (2019) BILBY: a user-friendly Bayesian inference library for gravitational-wave astronomy. Astrophys J Suppl Ser 241:27. https://doi.org/10.3847/1538-4365/ab06fc. arxiv:1811.02042
Aso Y et al (2013) Interferometer design of the KAGRA gravitational wave detector. Phys Rev D 88:043007. https://doi.org/10.1103/PhysRevD.88.043007. arxiv:1306.6747
Atwood WB, Abdo AA, Ackermann M, Althouse W, Anderson B, Axelsson M, Baldini L, Ballet J, Band DL, Barbiellini G et al (2009) The Large Area Telescope on the Fermi Gamma-Ray Space Telescope mission. Astrophys J 697:1071–1102. https://doi.org/10.1088/0004-637X/697/2/1071. arxiv:0902.1089
Babak S, Balasubramanian R, Churches D, Cokelaer T, Sathyaprakash BS (2006) A template bank to search for gravitational waves from inspiralling compact binaries. I. Physical models. Class Quantum Grav 23:5477–5504. https://doi.org/10.1088/0264-9381/23/18/002. arxiv:gr-qc/0604037
Babak S et al (2013) Searching for gravitational waves from binary coalescence. Phys Rev D 87:024033. https://doi.org/10.1103/PhysRevD.87.024033. arxiv:1208.3491
Bagoly Z et al (2016) Searching for electromagnetic counterpart of LIGO gravitational waves in the Fermi GBM data with ADWO. Astron Astrophys 593:L10. https://doi.org/10.1051/0004-6361/201628569. arxiv:1603.06611
Barausse E, Yunes N, Chamberlain K (2016) Theory-agnostic constraints on black-hole dipole radiation with multiband gravitational-wave astrophysics. Phys Rev Lett 116:241104. https://doi.org/10.1103/PhysRevLett.116.241104. arxiv:1603.04075
Barbieri C, Salafia OS, Perego A, Colpi M, Ghirlanda G (2019) Light-curve models of black hole–neutron star mergers: steps towards a multi-messenger parameter estimation. Astron Astrophys 625:A152. https://doi.org/10.1051/0004-6361/201935443. arxiv:1903.04543
Barnes J, Kasen D (2013) Effect of a high opacity on the light curves of radioactively powered transients from compact object mergers. Astrophys J 775(1):18. https://doi.org/10.1088/0004-637X/775/1/18. arxiv:1303.5787
Barrett JW, Gaebel SM, Neijssel CJ, Vigna-Gómez A, Stevenson S, Berry CPL, Farr WM, Mandel I (2018) Accuracy of inference on the physics of binary evolution from gravitational-wave observations. Mon Not R Astron Soc 477:4685–4695. https://doi.org/10.1093/mnras/sty908. arxiv:1711.06287
Bartos I, Kocsis B, Haiman Z, Márka S (2017) Rapid and bright stellar-mass binary black hole mergers in active galactic nuclei. Astrophys J 835:165. https://doi.org/10.3847/1538-4357/835/2/165. arxiv:1602.03831
Bécsy B, Raffai P, Cornish NJ, Essick R, Kanner J, Katsavounidis E, Littenberg TB, Millhouse M, Vitale S (2017) Parameter estimation for gravitational-wave bursts with the BayesWave pipeline. Astrophys J 839:15. https://doi.org/10.3847/1538-4357/aa63ef. arxiv:1612.02003
Belczynski K et al (2017) The origin of the first neutron star-neutron star merger. ArXiv e-prints arxiv:1712.00632
Berger BK (2018) Identification and mitigation of Advanced LIGO noise sources. J Phys: Conf Ser 957:012004. https://doi.org/10.1088/1742-6596/957/1/012004
Berry CPL et al (2015) Parameter estimation for binary neutron-star coalescences with realistic noise during the Advanced LIGO era. Astrophys J 804:114. https://doi.org/10.1088/0004-637X/804/2/114. arxiv:1411.6934
Biscans S et al (2018) Control strategy to limit duty cycle impact of earthquakes on the LIGO gravitational-wave detectors. Class Quantum Grav 35:055004. https://doi.org/10.1088/1361-6382/aaa4aa. arxiv:1707.03466
Blackburn L, Briggs MS, Camp J, Christensen N, Connaughton V, Jenke P, Remillard RA, Veitch J (2015) High-energy electromagnetic offline follow-up of LIGO-Virgo gravitational-wave binary coalescence candidate events. Astrophys J Suppl 217:8. https://doi.org/10.1088/0067-0049/217/1/8. arxiv:1410.0929
Blanchet L (2014) Gravitational radiation from post-newtonian sources and inspiralling compact binaries. Living Rev Relativ 17:2. https://doi.org/10.12942/lrr-2014-2. arxiv:1310.1528
Breivik K et al (2016) Distinguishing between formation channels for binary black holes with LISA. Astrophys J Lett 830:L18. https://doi.org/10.3847/2041-8205/830/1/L18. arxiv:1606.09558
Brown DA, Harry I, Lundgren A, Nitz AH (2012) Detecting binary neutron star systems with spin in advanced gravitational-wave detectors. Phys Rev D 86:084017. https://doi.org/10.1103/PhysRevD.86.084017. arxiv:1207.6406
Brown DD, Miao H, Collins C, Mow-Lowry C, Töyra D, Freise A (2017) Broadband sensitivity enhancement of detuned dual-recycled Michelson interferometers with EPR entanglement. Phys Rev D 96:062003. https://doi.org/10.1103/PhysRevD.96.062003. arxiv:1704.07173
Buonanno A, Iyer B, Ochsner E, Pan Y, Sathyaprakash BS (2009) Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors. Phys Rev D 80:084043. https://doi.org/10.1103/PhysRevD.80.084043. arxiv:0907.0700
Burns E, Goldstein A, Hui CM, Blackburn L, Briggs MS, Connaughton V, Hamburg R, Kocevski D, Veres P, Wilson-Hodge CA, Bissaldi E, Cleveland WH, Giles MM, Mailyan B, Meegan CA, Paciesas WA, Poolakkil S, Preece RD, Racusin JL, Roberts OJ, von Kienlin A (Fermi Gamma-Ray Burst Monitor), Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, Adams T, Addesso P et al (A LIGO Scientific Collaboration and the Virgo Collaboration) (2019) A Fermi Gamma-Ray Burst Monitor search for electromagnetic signals coincident with gravitational-wave candidates in advanced LIGO’s first observing run. Astrophys J 871:90. https://doi.org/10.3847/1538-4357/aaf726. arxiv:1810.02764
Bustillo JC, Laguna P, Shoemaker D (2017) Detectability of gravitational waves from binary black holes: impact of precession and higher modes. Phys Rev D 95:104038. https://doi.org/10.1103/PhysRevD.95.104038. arxiv:1612.02340
Canizares P, Field SE, Gair JR, Tiglio M (2013) Gravitational wave parameter estimation with compressed likelihood evaluations. Phys Rev D 87:124005. https://doi.org/10.1103/PhysRevD.87.124005. arxiv:1304.0462
Canizares P, Field SE, Gair J, Raymond V, Smith R, Tiglio M (2015) Accelerated gravitational-wave parameter estimation with reduced order modeling. Phys Rev Lett 114:071104. https://doi.org/10.1103/PhysRevLett.114.071104. arxiv:1404.6284
Cannon K, Cariou R, Chapman A, Crispin-Ortuzar M, Fotopoulos N et al (2012) Toward early-warning detection of gravitational waves from compact binary coalescence. Astrophys J 748:136. https://doi.org/10.1088/0004-637X/748/2/136. arxiv:1107.2665
Cannon K, Hanna C, Peoples J (2015) Likelihood-ratio ranking statistic for compact binary coalescence candidates with rate estimation. ArXiv e-prints arxiv:1504.04632
Capano C, Harry I, Privitera S, Buonanno A (2016) Implementing a search for gravitational waves from binary black holes with nonprecessing spin. Phys Rev D 93:124007. https://doi.org/10.1103/PhysRevD.93.124007. arxiv:1602.03509
Capano C, Dent T, Hanna C, Hendry M, Hu YM, Messenger C, Veitch J (2017) Systematic errors in estimation of gravitational-wave candidate significance. Phys Rev D 96:082002. https://doi.org/10.1103/PhysRevD.96.082002. arxiv:1708.06710
Centrella J et al (2010) Black-hole binaries, gravitational waves, and numerical relativity. Rev Mod Phys 82:3069. https://doi.org/10.1103/RevModPhys.82.3069. arxiv:1010.5260
Chan ML, Hu YM, Messenger C, Hendry M, Heng IS (2017) Maximising the detection probability of kilonovae associated with gravitational wave observations. Astrophys J 834:84. https://doi.org/10.3847/1538-4357/834/1/84. arxiv:1506.04035
Chassande-Mottin E, Miele M, Mohapatra S, Cadonati L (2010) Detection of gravitational-wave bursts with chirplet-like template families. Class Quantum Grav 27:194017. https://doi.org/10.1088/0264-9381/27/19/194017. arxiv:1005.2876
Chatterji S, Lazzarini A, Stein L, Sutton P, Searle A, Tinto M (2006) Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise. Phys Rev D 74:082005. https://doi.org/10.1103/PhysRevD.74.082005. arxiv:gr-qc/0605002
Chen HY, Holz DE, Miller J, Evans M, Vitale S, Creighton J (2017) Distance measures in gravitational-wave astrophysics and cosmology. ArXiv e-prints arxiv:1709.08079
Chen HY, Fishbach M, Holz DE (2018) A two per cent Hubble constant measurement from standard sirens within five years. Nature 562:545–547. https://doi.org/10.1038/s41586-018-0606-0. arxiv:1712.06531
Chornock R et al (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. IV. Detection of near-infrared signatures of r-process nucleosynthesis with gemini-south. Astrophys J Lett 848:L19. https://doi.org/10.3847/2041-8213/aa905c. arxiv:1710.05454
Chruslinska M, Nelemans G, Belczynski K (2019) The influence of the distribution of cosmic star formation at different metallicities on the properties of merging double compact objects. Mon Not R Astron Soc 482:5012–5017. https://doi.org/10.1093/mnras/sty3087. arxiv:1811.03565
Ciolfi R, Siegel DM (2015) Short gamma-ray bursts in the “time-reversal” scenario. Astrophys J Lett 798:L36. https://doi.org/10.1088/2041-8205/798/2/L36. arxiv:1411.2015
Cokelaer T (2007) Gravitational waves from inspiralling compact binaries: hexagonal template placement and its efficiency in detecting physical signals. Phys Rev D 76:102004. https://doi.org/10.1103/PhysRevD.76.102004. arxiv:0706.4437
Connaughton V et al (2016) Fermi GBM observations of LIGO gravitational wave event GW150914. Astrophys J Lett 826:L6. https://doi.org/10.3847/2041-8205/826/1/L6. arxiv:1602.03920
Connaughton V et al (2018) On the interpretation of the Fermi GBM transient observed in coincidence with LIGO gravitational wave event GW150914. Astrophys J Lett 853:L9. https://doi.org/10.3847/2041-8213/aaa4f2. arxiv:1801.02305
Cornish NJ, Littenberg TB (2015) BayesWave: Bayesian inference for gravitational wave bursts and instrument glitches. Class Quantum Grav 32:135012. https://doi.org/10.1088/0264-9381/32/13/135012. arxiv:1410.3835
Coughlin M et al (2017) Limiting the effects of earthquakes on gravitational-wave interferometers. Class Quantum Grav 34:044004. https://doi.org/10.1088/1361-6382/aa5a60. arxiv:1611.09812
Coughlin MW et al (2018) Optimizing searches for electromagnetic counterparts of gravitational wave triggers. ArXiv e-prints arxiv:1803.02255
Coulter DA et al (2017) Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358(6370):1556–1558. https://doi.org/10.1126/science.aap9811. arxiv:1710.05452
Covas PB et al (2018) Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO. Phys Rev D 97:082002. https://doi.org/10.1103/PhysRevD.97.082002. arxiv:1801.07204
Cowperthwaite PS et al (2016) A DECam search for an optical counterpart to the LIGO gravitational wave event GW151226. Astrophys J Lett 826:L29. https://doi.org/10.3847/2041-8205/826/2/L29. arxiv:1606.04538
Cutler C, Flanagan EE (1994) Gravitational waves from merging compact binaries: how accurately can one extract the binary’s parameters from the inspiral wave form? Phys Rev D 49:2658–2697. https://doi.org/10.1103/PhysRevD.49.2658. arxiv:gr-qc/9402014
Dal Canton T, Harry IW (2017) Designing a template bank to observe compact binary coalescences in Advanced LIGO’s second observing run. ArXiv e-prints arxiv:1705.01845
Dal Canton T, Bhagwat S, Dhurandhar SV, Lundgren A (2014a) Effect of sine-Gaussian glitches on searches for binary coalescence. Class Quantum Grav 31:015016. https://doi.org/10.1088/0264-9381/31/1/015016. arxiv:1304.0008
Dal Canton T, Lundgren AP, Nielsen AB (2015) Impact of precession on aligned-spin searches for neutron-star–black-hole binaries. Phys Rev D 91:062010. https://doi.org/10.1103/PhysRevD.91.062010. arxiv:1411.6815
Dal Canton T et al (2014b) Implementing a search for aligned-spin neutron star–black hole systems with advanced ground based gravitational wave detectors. Phys Rev D 90:082004. https://doi.org/10.1103/PhysRevD.90.082004. arxiv:1405.6731
Dalal N, Holz DE, Hughes SA, Jain B (2006) Short GRB and binary black hole standard sirens as a probe of dark energy. Phys Rev D 74(6):063006. https://doi.org/10.1103/PhysRevD.74.063006. arxiv:astro-ph/0601275
D’Avanzo P, Campana S, Salafia OS, Ghirlanda G, Ghisellini G, Melandri A, Bernardini MG, Branchesi M, Chassande-Mottin E, Covino S, D’Elia V, Nava L, Salvaterra R, Tagliaferri G, Vergani SD (2018) The evolution of the X-ray afterglow emission of GW 170817/ GRB 170817A in XMM-Newton observations. Astron Astrophys 613:L1. https://doi.org/10.1051/0004-6361/201832664. arxiv:1801.06164
Daw EJ, Giaime JA, Lormand D, Lubinski M, Zweizig J (2004) Long term study of the seismic environment at LIGO. Class Quantum Grav 21:2255–2273. https://doi.org/10.1088/0264-9381/21/9/003. arxiv:gr-qc/0403046
de Mink SE, Belczynski K (2015) Merger rates of double neutron stars and stellar origin black holes: the impact of initial conditions on binary evolution predictions. Astrophys J 814:58. https://doi.org/10.1088/0004-637X/814/1/58. arxiv:1506.03573
Del Pozzo W (2012) Inference of cosmological parameters from gravitational waves: applications to second generation interferometers. Phys Rev D 86:043011. https://doi.org/10.1103/PhysRevD.86.043011. arxiv:1108.1317
Del Pozzo W, Berry C, Ghosh A, Haines T, Singer L, Vecchio A (2018) Dirichlet Process Gaussian-mixture model: An application to localizing coalescing binary neutron stars with gravitational-wave observations. https://doi.org/10.1093/mnras/sty1485. ArXiv e-prints arxiv:1801.08009
Dimmelmeier H, Ott C, Marek A, Janka HT (2008) The gravitational wave burst signal from core collapse of rotating stars. Phys Rev D 78:064056. https://doi.org/10.1103/PhysRevD.78.064056. arxiv:0806.4953
Dobie D, Kaplan DL, Murphy T, Lenc E, Mooley KP, Lynch C, Corsi A, Frail D, Kasliwal M, Hallinan G (2018) A turnover in the radio light curve of GW170817. Astrophys J Lett 858:L15. https://doi.org/10.3847/2041-8213/aac105
Dominik M, Berti E, O’Shaughnessy R, Mandel I, Belczynski K, Fryer C, Holz DE, Bulik T, Pannarale F (2015) Double compact objects III: gravitational wave detection rates. Astrophys J 806:263. https://doi.org/10.1088/0004-637X/806/2/263. arxiv:1405.7016
Dooley KL et al (2016) GEO 600 and the GEO-HF upgrade program: successes and challenges. Class Quantum Grav 33:075009. https://doi.org/10.1088/0264-9381/33/7/075009. arxiv:1510.00317
Effler A, Schofield RMS, Frolov VV, González G, Kawabe K, Smith JR, Birch J, McCarthy R (2015) Environmental influences on the LIGO gravitational wave detectors during the 6th science run. Class Quantum Grav 32:035017. https://doi.org/10.1088/0264-9381/32/3/035017. arxiv:1409.5160
Eichler D, Livio M, Piran T, Schramm DN (1989) Nucleosynthesis, neutrino bursts and $$\gamma $$-rays from coalescing neutron stars. Nature 340(6229):126–128. https://doi.org/10.1038/340126a0
Eldridge JJ, Stanway ER, Xiao L, McClelland LAS, Taylor G, Ng M, Greis SML, Bray JC (2017) Binary population and spectral synthesis version 2.1: construction, observational verification, and new results. Publ Astron Soc Austral 34:e058. https://doi.org/10.1017/pasa.2017.51. arxiv:1710.02154
Eldridge JJ, Stanway ER, Tang PN (2019) A consistent estimate for gravitational wave and electromagnetic transient rates. Mon Not R Astron Soc 482:870–880. https://doi.org/10.1093/mnras/sty2714. arxiv:1807.07659
Essick R, Vitale S, Katsavounidis E, Vedovato G, Klimenko S (2015) Localization of short duration gravitational-wave transients with the early Advanced LIGO and Virgo detectors. Astrophys J 800:81. https://doi.org/10.1088/0004-637X/800/2/81. arxiv:1409.2435
Evans P et al (2012) Swift follow-up observations of candidate gravitational-wave transient events. Astrophys J Suppl 203:28. https://doi.org/10.1088/0067-0049/203/2/28. arxiv:1205.1124
Evans PA, Osborne JP, Kennea JA, Campana S, O’Brien PT, Tanvir NR, Racusin JL, Burrows DN, Cenko SB, Gehrels N (2016a) Optimisation of the Swift X-ray follow-up of Advanced LIGO and Virgo gravitational wave triggers in 2015–16. Mon Not R Astron Soc 455:1522–1537. https://doi.org/10.1093/mnras/stv2213. arxiv:1506.01624
Evans PA, Cenko SB, Kennea JA, Emery SWK, Kuin NPM, Korobkin O, Wollaeger RT, Fryer CL, Madsen KK, Harrison FA, Xu Y, Nakar E, Hotokezaka K, Lien A, Campana S, Oates SR, Troja E, Breeveld AA, Marshall FE, Barthelmy SD, Beardmore AP, Burrows DN, Cusumano G, D’Aì A, D’Avanzo P, D’Elia V, de Pasquale M, Even WP, Fontes CJ, Forster K, Garcia J, Giommi P, Grefenstette B, Gronwall C, Hartmann DH, Heida M, Hungerford AL, Kasliwal MM, Krimm HA, Levan AJ, Malesani D, Melandri A, Miyasaka H, Nousek JA, O’Brien PT, Osborne JP, Pagani C, Page KL, Palmer DM, Perri M, Pike S, Racusin JL, Rosswog S, Siegel MH, Sakamoto T, Sbarufatti B, Tagliaferri G, Tanvir NR, Tohuvavohu A (2017) Swift and NuSTAR observations of GW170817: detection of a blue kilonova. Science 358(6370):1565–1570. https://doi.org/10.1126/science.aap9580. arxiv:1710.05437
Evans PA et al (2016b) Swift follow-up of gravitational wave triggers: results from the first aLIGO run and optimisation for the future. Mon Not R Astron Soc 462:1591–1602. https://doi.org/10.1093/mnras/stw1746. arxiv:1606.05001
Fairhurst S (2009) Triangulation of gravitational wave sources with a network of detectors. New J Phys 11:123006. https://doi.org/10.1088/1367-2630/11/12/123006 [Erratum New J Phys 13:069602 (2011)] arxiv:0908.2356
Fairhurst S (2011) Source localization with an advanced gravitational wave detector network. Class Quantum Grav 28:105021. https://doi.org/10.1088/0264-9381/28/10/105021. arxiv:1010.6192
Fairhurst S (2017) Localization of transient gravitational wave sources: beyond triangulation. ArXiv e-prints arxiv:1712.04724
Fan X, Messenger C, Heng IS (2014) A Bayesian approach to multi-messenger astronomy: identification of gravitational-wave host galaxies. Astrophys J 795:43. https://doi.org/10.1088/0004-637X/795/1/43. arxiv:1406.1544
Farr B et al (2016) Parameter estimation on gravitational waves from neutron-star binaries with spinning components. Astrophys J 825:116. https://doi.org/10.3847/0004-637X/825/2/116. arxiv:1508.05336
Farr WM, Farr B, Littenberg T (2015) Modelling calibration errors in CBC waveforms. Technical Report LIGO-T1400682, LIGO Scientific Collaboration and Virgo Collaboration https://dcc.ligo.org/LIGO-T1400682/public
Farr WM, Stevenson S, Miller MC, Mandel I, Farr B, Vecchio A (2017) Distinguishing spin-aligned and isotropic black hole populations with gravitational waves. Nature 548:426–429. https://doi.org/10.1038/nature23453. arxiv:1706.01385
Fishbach M, Gray R, Magaña Hernandez I, Qi H, Sur A, Acernese F, Aiello L, Allocca A, Aloy MA, Amato A et al (2019) A standard siren measurement of the Hubble constant from GW170817 without the electromagnetic counterpart. Astrophys J Lett 871:L13. https://doi.org/10.3847/2041-8213/aaf96e. arxiv:1807.05667
Fong W, Blanchard PK, Alexander KD, Strader J, Margutti R, Hajela A, Villar VA, Wu Y, Ye CS, Berger E, Chornock R, Coppejans D, Cowperthwaite PS, Eftekhari T, Giannios D, Guidorzi C, Kathirgamaraju A, Laskar T, Macfadyen A, Metzger BD, Nicholl M, Paterson K, Terreran G, Sand DJ, Sironi L, Williams PKG, Xie X, Zrake J (2019) The optical afterglow of GW170817: an off-axis structured jet and deep constraints on a globular cluster origin. Astrophys J Lett 883(1):L1. https://doi.org/10.3847/2041-8213/ab3d9e. arxiv:1908.08046
Foucart F (2012) Black-hole–neutron-star mergers: disk mass predictions. Phys Rev D 86:124007. https://doi.org/10.1103/PhysRevD.86.124007. arxiv:1207.6304
Foucart F, Hinderer T, Nissanke S (2018) Remnant baryon mass in neutron star–black hole mergers: predictions for binary neutron star mimickers and rapidly spinning black holes. Phys Rev D 98:081501. https://doi.org/10.1103/PhysRevD.98.081501. arxiv:1807.00011
Gehrels N, Chincarini G, Giommi P, Mason KO, Nousek JA, Wells AA, White NE, Barthelmy SD, Burrows DN, Cominsky LR, Hurley KC, Marshall FE, Mészáros P, Roming PWA, Angelini L, Barbier LM, Belloni T, Campana S, Caraveo PA, Chester MM, Citterio O, Cline TL, Cropper MS, Cummings JR, Dean AJ, Feigelson ED, Fenimore EE, Frail DA, Fruchter AS, Garmire GP, Gendreau K, Ghisellini G, Greiner J, Hill JE, Hunsberger SD, Krimm HA, Kulkarni SR, Kumar P, Lebrun F, Lloyd-Ronning NM, Markwardt CB, Mattson BJ, Mushotzky RF, Norris JP, Osborne J, Paczynski B, Palmer DM, Park HS, Parsons AM, Paul J, Rees MJ, Reynolds CS, Rhoads JE, Sasseen TP, Schaefer BE, Short AT, Smale AP, Smith IA, Stella L, Tagliaferri G, Takahashi T, Tashiro M, Townsley LK, Tueller J, Turner MJL, Vietri M, Voges W, Ward MJ, Willingale R, Zerbi FM, Zhang WW (2004) The swift gamma-ray burst mission. Astrophys J 611:1005–1020. https://doi.org/10.1086/422091
Gehrels N, Cannizzo JK, Kanner J, Kasliwal MM, Nissanke S, Singer LP (2016) Galaxy strategy for LIGO-Virgo gravitational wave counterpart searches. Astrophys J 820:136. https://doi.org/10.3847/0004-637X/820/2/136. arxiv:1508.03608
Ghirlanda G, Salafia OS, Pescalli A, Ghisellini G, Salvaterra R, Chassande-Mottin E, Colpi M, Nappo F, D’Avanzo P, Melandri A, Bernardini MG, Branchesi M, Campana S, Ciolfi R, Covino S, Götz D, Vergani SD, Zennaro M, Tagliaferri G (2016) Short gamma-ray bursts at the dawn of the gravitational wave era. Astron Astrophys 594:A84. https://doi.org/10.1051/0004-6361/201628993. arxiv:1607.07875
Ghirlanda G, Salafia OS, Paragi Z, Giroletti M, Yang J, Marcote B, Blanchard J, Agudo I, An T, Bernardini MG, Beswick R, Branchesi M, Campana S, Casadio C, Chassande-Mottin E, Colpi M, Covino S, D’Avanzo P, D’Elia V, Frey S, Gawronski M, Ghisellini G, Gurvits LI, Jonker PG, van Langevelde HJ, Melandri A, Moldon J, Nava L, Perego A, Perez-Torres MA, Reynolds C, Salvaterra R, Tagliaferri G, Venturi T, Vergani SD, Zhang M (2019) Compact radio emission indicates a structured jet was produced by a binary neutron star merger. Science 363(6430):968–971. https://doi.org/10.1126/science.aau8815. ArXiv e-prints arxiv:1808.00469
Ghosh S, Bloemen S, Nelemans G, Groot PJ, Price LR (2016) Tiling strategies for optical follow-up of gravitational-wave triggers by telescopes with a wide field of view. Astron Astrophys 592:A82. https://doi.org/10.1051/0004-6361/201527712. arxiv:1511.02673
Giacobbo N, Mapelli M (2018) The progenitors of compact-object binaries: impact of metallicity, common envelope and natal kicks. Mon Not R Astron Soc 480:2011–2030. https://doi.org/10.1093/mnras/sty1999. arxiv:1806.00001
Goldstein A et al (2017a) An ordinary short gamma-ray burst with extraordinary implications: fermi-GBM detection of GRB 170817A. Astrophys J Lett 848:L14. https://doi.org/10.3847/2041-8213/aa8f41. arxiv:1710.05446
Goldstein A et al (2017b) Fermi observations of the LIGO event GW170104. Astrophys J Lett 846:L5. https://doi.org/10.3847/2041-8213/aa8319. arxiv:1706.00199
Goodman J (1986) Are gamma-ray bursts optically thick? Astrophys J Lett 308:L47. https://doi.org/10.1086/184741
Grossman D, Korobkin O, Rosswog S, Piran T (2014) The long-term evolution of neutron star merger remnants—II. Radioactively powered transients. Mon Not R Astron Soc 439(1):757–770. https://doi.org/10.1093/mnras/stt2503. arxiv:1307.2943
Grote H et al (2013) First long-term application of squeezed states of light in a gravitational-wave observatory. Phys Rev Lett 110:181101. https://doi.org/10.1103/PhysRevLett.110.181101. arxiv:1302.2188
Grover K, Fairhurst S, Farr BF, Mandel I, Rodriguez C, Sidery T, Vecchio A (2014) Comparison of gravitational wave detector network sky localization approximations. Phys Rev D 89:042004. https://doi.org/10.1103/PhysRevD.89.042004. arxiv:1310.7454
Haggard D, Nynka M, Ruan JJ, Kalogera V, Bradley Cenko S, Evans P, Kennea JA (2017) A deep chandra X-ray study of neutron star coalescence GW170817. Astrophys J Lett 848:L25. https://doi.org/10.3847/2041-8213/aa8ede. arxiv:1710.05852
Hajela A, Margutti R, Alexander KD, Kathirgamaraju A, Baldeschi A, Guidorzi C, Giannios D, Fong W, Wu Y, MacFadyen A, Paggi A, Berger E, Blanchard PK, Chornock R, Coppejans DL, Cowperthwaite PS, Eftekhari T, Gomez S, Hosseinzadeh G, Laskar T, Metzger BD, Nicholl M, Paterson K, Radice D, Sironi L, Terreran G, Villar VA, Williams PKG, Xie X, Zrake J (2019) Two years of nonthermal emission from the binary neutron star merger GW170817: rapid fading of the jet afterglow and first constraints on the kilonova fastest ejecta. Astrophys J Lett 886(1):L17. https://doi.org/10.3847/2041-8213/ab5226. arxiv:1909.06393
Hallinan G et al (2017) A radio counterpart to a neutron star merger. Science 358(6370):1579–1583. https://doi.org/10.1126/science.aap9855. arxiv:1710.05435
Hanna C, Mandel I, Vousden W (2014) Utility of galaxy catalogs for following up gravitational waves from binary neutron star mergers with wide-field telescopes. Astrophys J 784:8. https://doi.org/10.1088/0004-637X/784/1/8. arxiv:1312.2077
Harry I, Privitera S, Bohé A, Buonanno A (2016) Searching for gravitational waves from compact binaries with precessing spins. Phys Rev D 94:024012. https://doi.org/10.1103/PhysRevD.94.024012. arxiv:1603.02444
Harry IW, Allen B, Sathyaprakash BS (2009) Stochastic template placement algorithm for gravitational wave data analysis. Phys Rev D 80:104014. https://doi.org/10.1103/PhysRevD.80.104014. arxiv:0908.2090
Harry IW et al (2014) Investigating the effect of precession on searches for neutron-star–black-hole binaries with Advanced LIGO. Phys Rev D 89:024010. https://doi.org/10.1103/PhysRevD.89.024010. arxiv:1307.3562
Holz DE, Hughes SA (2005) Using gravitational-wave standard sirens. Astrophys J 629:15–22. https://doi.org/10.1086/431341. arxiv:astro-ph/0504616
Hurley K et al (2016) The interplanetary network response to LIGO GW150914. Astrophys J Lett 829:L12. https://doi.org/10.3847/2041-8205/829/1/L12
Iyer B et al (2011) LIGO-India. Technical Report M1100296-v2, IndIGO, India https://dcc.ligo.org/LIGO-M1100296/public
Janiuk A, Bejger M, Charzyński S, Sukova P (2017) On the possible gamma-ray burst-gravitational wave association in GW150914. New Astron 51:7–14. https://doi.org/10.1016/j.newast.2016.08.002. arxiv:1604.07132
Jaranowski P, Królak A (2012) Gravitational-wave data analysis. Formalism and sample applications: the Gaussian case. Living Rev Relativ 15:4. https://doi.org/10.12942/lrr-2012-4. arxiv:0711.1115
Kanner JB et al (2016) Leveraging waveform complexity for confident detection of gravitational waves. Phys Rev D 93:022002. https://doi.org/10.1103/PhysRevD.93.022002. arxiv:1509.06423
Kapadia SJ, Caudill S, Creighton JDE, Farr WM, Mendell G, Weinstein A, Cannon K, Fong H, Godwin P, Lo RKL, Magee R, Meacher D, Messick C, Mohite SR, Mukherjee D, Sachdev S (2020) A self-consistent method to estimate the rate of compact binary coalescences with a Poisson mixture model. Class. Quantum Grav. 37:045007. https://doi.org/10.1088/1361-6382/ab5f2d. arxiv:1903.06881
Kasen D, Badnell NR, Barnes J (2013) Opacities and spectra of the r-process ejecta from neutron star mergers. Astrophys J 774(1):25. https://doi.org/10.1088/0004-637X/774/1/25. arxiv:1303.5788
Kasliwal MM, Nissanke S (2014) On discovering electromagnetic emission from neutron star mergers: the early years of two gravitational wave detectors. Astrophys J Lett 789:L5. https://doi.org/10.1088/2041-8205/789/1/L5. arxiv:1309.1554
Kasliwal MM et al (2017) Illuminating gravitational waves: a concordant picture of photons from a neutron star merger. Science 358:1559. https://doi.org/10.1126/science.aap9455. arxiv:1710.05436
Khan S et al (2016) Frequency-domain gravitational waves from non-precessing black-hole binaries. II. A phenomenological model for the advanced detector era. Phys Rev D 93:044007. https://doi.org/10.1103/PhysRevD.93.044007. arxiv:1508.07253
Kim C, Perera BBP, McLaughlin MA (2013) Implications of PSR J0737–3039B for the galactic NS-NS binary merger rate. Mon Not R Astron Soc 448:928–938. https://doi.org/10.1093/mnras/stu2729. arxiv:1308.4676
Klencki J, Moe M, Gladysz W, Chruslinska M, Holz DE, Belczynski K (2018) Impact of inter-correlated initial binary parameters on double black hole and neutron star mergers. Astron Astrophys 619:A77. https://doi.org/10.1051/0004-6361/201833025. arxiv:1808.07889
Klimenko S, Mohanty S, Rakhmanov M, Mitselmakher G (2005) Constraint likelihood analysis for a network of gravitational wave detectors. Phys Rev D 72:122002. https://doi.org/10.1103/PhysRevD.72.122002. arxiv:gr-qc/0508068
Klimenko S, Yakushin I, Mercer A, Mitselmakher G (2008) Coherent method for detection of gravitational wave bursts. Class Quantum Grav 25:114029. https://doi.org/10.1088/0264-9381/25/11/114029. arxiv:0802.3232
Klimenko S, Vedovato G, Drago M, Mazzolo G, Mitselmakher G, Pankow C, Prodi G, Re V, Salemi F, Yakushin I (2011) Localization of gravitational wave sources with networks of advanced detectors. Phys Rev D 83:102001. https://doi.org/10.1103/PhysRevD.83.102001. arxiv:1101.5408
Klimenko S et al (2016) Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors. Phys Rev D 93:042004. https://doi.org/10.1103/PhysRevD.93.042004. arxiv:1511.05999
Kruckow MU, Tauris TM, Langer N, Kramer M, Izzard RG (2018) Progenitors of gravitational wave mergers: Binary evolution with the stellar grid based code ComBinE. Mon Not R Astron Soc 481(2):1908–1949. https://doi.org/10.1093/mnras/sty2190. arxiv:1801.05433
Kulkarni SR (2005) Modeling supernova-like explosions associated with gamma-ray bursts with short durations. arXiv e-prints astro-ph/0510256
Lasky PD (2015) Gravitational waves from neutron stars: a review. Publ Astron Soc Australia 32:e034. https://doi.org/10.1017/pasa.2015.35. arxiv:1508.06643
Li LX, Paczynski B (1998) Transient events from neutron star mergers. Astrophys J 507:L59. https://doi.org/10.1086/311680. arxiv:astro-ph/9807272
LIGO Scientific Collaboration, Virgo Collaboration (2015) LIGO/Virgo G211117: identification of a GW CBC candidate. GCN Circular 18728. https://gcn.gsfc.nasa.gov/gcn3/18728.gcn3
Lindblom L, Owen BJ, Brown DA (2008) Model waveform accuracy standards for gravitational wave data analysis. Phys Rev D 78:124020. https://doi.org/10.1103/PhysRevD.78.124020. arxiv:0809.3844
Lipunov VM et al (2017) MASTER optical detection of the first LIGO/Virgo neutron star binary merger GW170817. Astrophys J Lett 850:L1. https://doi.org/10.3847/2041-8213/aa92c0. arxiv:1710.05461
Littenberg TB, Cornish NJ (2015) Bayesian inference for spectral estimation of gravitational wave detector noise. Phys Rev D 91:084034. https://doi.org/10.1103/PhysRevD.91.084034. arxiv:1410.3852
Lück H et al (2010) The upgrade of GEO600. J Phys: Conf Ser 228:012012. https://doi.org/10.1088/1742-6596/228/1/012012. arxiv:1004.0339
Lyman JD et al (2018) The optical afterglow of the short gamma-ray burst associated with GW170817. ArXiv e-prints arxiv:1801.02669
Mandel I, O’Shaughnessy R (2010) Compact binary coalescences in the band of ground-based gravitational-wave detectors. Class Quantum Grav 27:114007. https://doi.org/10.1088/0264-9381/27/11/114007. arxiv:0912.1074
Mapelli M, Giacobbo N (2018) The cosmic merger rate of neutron stars and black holes. Mon Not R Astron Soc 479:4391–4398. https://doi.org/10.1093/mnras/sty1613. arxiv:1806.04866
Margutti R et al (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. V. Rising X-ray emission from an off-axis jet. Astrophys J Lett 848:L20. https://doi.org/10.3847/2041-8213/aa9057. arxiv:1710.05431
Margutti R et al (2018) The binary neutron star event LIGO/Virgo GW170817 a hundred days after merger: synchrotron emission across the electromagnetic spectrum. Astrophys J Lett 856:L18. https://doi.org/10.3847/2041-8213/aab2ad. arxiv:1801.03531
Martynov DV et al (2016) Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy. Phys Rev D 93:112004. https://doi.org/10.1103/PhysRevD.93.112004. arxiv:1604.00439
McCully C et al (2017) The rapid reddening and featureless optical spectra of the optical counterpart of GW170817, AT 2017gfo, during the first four days. Astrophys J Lett 848:L32. https://doi.org/10.3847/2041-8213/aa9111. arxiv:1710.05853
Meegan C, Lichti G, Bhat PN, Bissaldi E, Briggs MS, Connaughton V, Diehl R, Fishman G, Greiner J, Hoover AS, van der Horst AJ, von Kienlin A, Kippen RM, Kouveliotou C, McBreen S, Paciesas WS, Preece R, Steinle H, Wallace MS, Wilson RB, Wilson-Hodge C (2009) The Fermi Gamma-Ray Burst Monitor. Astrophys J 702:791–804. https://doi.org/10.1088/0004-637X/702/1/791. arxiv:0908.0450
Messick C et al (2017) Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data. Phys Rev D 95:042001. https://doi.org/10.1103/PhysRevD.95.042001. arxiv:1604.04324
Metzger BD (2020) (2020) Kilonovae. Living Rev Relativ 23:1. https://doi.org/10.1007/s41114-019-0024-0. arxiv:1910.01617
Metzger BD, Berger E (2012) What is the most promising electromagnetic counterpart of a neutron star binary merger? Astrophys J 746:48. https://doi.org/10.1088/0004-637X/746/1/48. arxiv:1108.6056
Metzger BD, Martínez-Pinedo G, Darbha S, Quataert E, Arcones A, Kasen D, Thomas R, Nugent P, Panov IV, Zinner NT (2010) Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Mon Not R Astron Soc 406(4):2650–2662. https://doi.org/10.1111/j.1365-2966.2010.16864.x. arxiv:1001.5029
Mooley KP, Deller AT, Gottlieb O, Nakar E, Hallinan G, Bourke S, Frail DA, Horesh A, Corsi A, Hotokezaka K (2018) Superluminal motion of a relativistic jet in the neutron-star merger GW170817. Nature 561:355–359. https://doi.org/10.1038/s41586-018-0486-3. arxiv:1806.09693
Mooley KP et al (2018) A mildly relativistic wide-angle outflow in the neutron star merger GW170817. Nature 554:207. https://doi.org/10.1038/nature25452. arxiv:1711.11573
Nicholl M et al (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. III. Optical and UV spectra of a blue kilonova from fast polar ejecta. Astrophys J Lett 848:L18. https://doi.org/10.3847/2041-8213/aa9029. arxiv:1710.05456
Nishizawa A, Berti E, Klein A, Sesana A (2016a) eLISA eccentricity measurements as tracers of binary black hole formation. Phys Rev D 94:064020. https://doi.org/10.1103/PhysRevD.94.064020. arxiv:1605.01341
Nishizawa A, Sesana A, Berti E, Klein A (2016b) Constraining stellar binary black hole formation scenarios with eLISA eccentricity measurements. Mon Not R Astron Soc 465:4375. https://doi.org/10.1093/mnras/stw2993. arxiv:1606.09295
Nissanke S, Holz DE, Hughes SA, Dalal N, Sievers JL (2010) Exploring short gamma-ray bursts as gravitational-wave standard sirens. Astrophys J 725:496–514. https://doi.org/10.1088/0004-637X/725/1/496. arxiv:0904.1017
Nissanke S, Sievers J, Dalal N, Holz D (2011) Localizing compact binary inspirals on the sky using ground-based gravitational wave interferometers. Astrophys J 739:99. https://doi.org/10.1088/0004-637X/739/2/99. arxiv:1105.3184
Nissanke S, Kasliwal M, Georgieva A (2013) Identifying elusive electromagnetic counterparts to gravitational wave mergers: an end-to-end simulation. Astrophys J 767:124. https://doi.org/10.1088/0004-637X/767/2/124. arxiv:1210.6362
Nitz AH, Dent T, Dal Canton T, Fairhurst S, Brown DA (2017) Detecting binary compact-object mergers with gravitational waves: understanding and Improving the sensitivity of the PyCBC search. Astrophys J 849:118. https://doi.org/10.3847/1538-4357/aa8f50. arxiv:1705.01513
Nitz AH et al (2013) Accuracy of gravitational waveform models for observing neutron-star–black-hole binaries in Advanced LIGO. Phys Rev D 88:124039. https://doi.org/10.1103/PhysRevD.88.124039. arxiv:1307.1757
Nuttall L et al (2015) Improving the data quality of Advanced LIGO based on early engineering run results. Class Quantum Grav 32:245005. https://doi.org/10.1088/0264-9381/32/24/245005. arxiv:1508.07316
Ott C (2009) The gravitational wave signature of core-collapse supernovae. Class Quantum Grav 26:063001. https://doi.org/10.1088/0264-9381/26/6/063001. arxiv:0809.0695
Ott C, Reisswig C, Schnetter E, O’Connor E, Sperhake U, Löffler F, Diener P, Abdikamalov E, Hawke I, Burrows A (2011) Dynamics and gravitational wave signature of collapsar formation. Phys Rev Lett 106:161103. https://doi.org/10.1103/PhysRevLett.106.161103. arxiv:1012.1853
Owen BJ (1996) Search templates for gravitational waves from inspiraling binaries: choice of template spacing. Phys Rev D 53:6749–6761. https://doi.org/10.1103/PhysRevD.53.6749. arxiv:gr-qc/9511032
Owen BJ, Sathyaprakash B (1999) Matched filtering of gravitational waves from inspiraling compact binaries: computational cost and template placement. Phys Rev D 60:022002. https://doi.org/10.1103/PhysRevD.60.022002. arxiv:gr-qc/9808076
Özel F, Freire P (2016) Masses, radii, and the equation of state of neutron stars. Annu Rev Astron Astrophys 54:401–440. https://doi.org/10.1146/annurev-astro-081915-023322. arxiv:1603.02698
Paczynski B (1986) Gamma-ray bursters at cosmological distances. Astrophys J Lett 308:L43–L46. https://doi.org/10.1086/184740
Palliyaguru NT et al (2016) Radio follow-up of gravitational wave triggers during Advanced LIGO O1. Astrophys J Lett 829:L28. https://doi.org/10.3847/2041-8205/829/2/L28. arxiv:1608.06518
Pan Y et al (2014) Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism. Phys Rev D 89:084006. https://doi.org/10.1103/PhysRevD.89.084006. arxiv:1307.6232
Pankow C, Chase EA, Coughlin S, Zevin M, Kalogera V (2018) Improvements in gravitational-wave sky localization with expanded networks of interferometers. Astrophys J Lett 854:L25. https://doi.org/10.3847/2041-8213/aaacd4. arxiv:1801.02674
Pankow C, Rizzo M, Rao K, Berry CPL, Kalogera V (2019) Localization of compact binary sources with second generation gravitational-wave interferometer networks. arXiv e-prints arXiv:1909.12961
Pannarale F, Ohme F (2014) Prospects for joint gravitational-wave and electromagnetic observations of neutron-star–black-hole coalescing binaries. Astrophys J Lett 791:L7. https://doi.org/10.1088/2041-8205/791/1/L7. arxiv:1406.6057
Paschalidis V (2017) General relativistic simulations of compact binary mergers as engines of short gamma-ray bursts. Class Quantum Grav 34:084002. https://doi.org/10.1088/1361-6382/aa61ce. arxiv:1611.01519
Patricelli B, Stamerra A, Razzano M, Pian E, Cella G (2018) Searching for gamma-ray counterparts to gravitational waves from merging binary neutron stars with the Cherenkov Telescope Array. J Cosmol Astropart Phys 05(2018)056. https://doi.org/10.1088/1475-7516/2018/05/056. arxiv:1801.05167
Patricelli B et al (2016) Prospects for joint observations of gravitational waves and gamma rays from merging neutron star binaries. J Cosmol Astropart Phys 11(2016)056. https://doi.org/10.1088/1475-7516/2016/11/056. arxiv:1606.06124
Perna R, Lazzati D, Giacomazzo B (2016) Short gamma-ray bursts from the merger of two black holes. Astrophys J Lett 821:L18. https://doi.org/10.3847/2041-8205/821/1/L18. arxiv:1602.05140
Pian E et al (2017) Spectroscopic identification of r-process nucleosynthesis in a double neutron star merger. Nature 551:67–70. https://doi.org/10.1038/nature24298. arxiv:1710.05858
Pitkin M, Reid S, Rowan S, Hough J (2011) Gravitational wave detection by interferometry (ground and space). Living Rev Relativ 14:5. https://doi.org/10.12942/lrr-2011-5. arxiv:1102.3355
Pol N, McLaughlin M, Lorimer DR (2019) Future prospects for ground-based gravitational-wave detectors: the galactic double neutron star merger rate revisited. Astrophys J 870:71. https://doi.org/10.3847/1538-4357/aaf006. arxiv:1811.04086
Pooley D, Kumar P, Wheeler JC (2017) GW170817 most likely made a black hole. ArXiv e-prints arxiv:1712.03240
Privitera S, Mohapatra SRP, Ajith P, Cannon K, Fotopoulos N, Frei MA, Hanna C, Weinstein AJ, Whelan JT (2014) Improving the sensitivity of a search for coalescing binary black holes with nonprecessing spins in gravitational wave data. Phys Rev D 89:024003. https://doi.org/10.1103/PhysRevD.89.024003. arxiv:1310.5633
Prix R (2007) Template-based searches for gravitational waves: efficient lattice covering of flat parameter spaces. Class Quantum Grav 24:S481–S490. https://doi.org/10.1088/0264-9381/24/19/S11. arxiv:0707.0428
Punturo M et al (2010) The Einstein telescope: a third-generation gravitational wave observatory. Class Quantum Grav 27:194002. https://doi.org/10.1088/0264-9381/27/19/194002
Pürrer M (2014) Frequency domain reduced order models for gravitational waves from aligned-spin compact binaries. Class Quantum Grav 31:195010. https://doi.org/10.1088/0264-9381/31/19/195010. arxiv:1402.4146
Racusin JL et al (2017) Searching the gamma-ray sky for counterparts to gravitational wave sources: Fermi GBM and LAT observations of LVT151012 and GW151226. Astrophys J 835:82. https://doi.org/10.3847/1538-4357/835/1/82. arxiv:1606.04901
Rana J, Singhal A, Gadre B, Bhalerao V, Bose S (2017) An enhanced method for scheduling observations of large sky error regions for finding optical counterparts to transients. Astrophys J 838:108. https://doi.org/10.3847/1538-4357/838/2/108. arxiv:1603.01689
Read JS et al (2013) Matter effects on binary neutron star waveforms. Phys Rev D 88:044042. https://doi.org/10.1103/PhysRevD.88.044042. arxiv:1306.4065
Roberts LF, Kasen D, Lee WH, Ramirez-Ruiz E (2011) Electromagnetic transients powered by nuclear decay in the tidal tails of coalescing compact binaries. Astrophys J Lett 736(1):L21. https://doi.org/10.1088/2041-8205/736/1/L21. arxiv:1104.5504
Rodriguez CL et al (2014) Basic parameter estimation of binary neutron star systems by the Advanced LIGO/Virgo network. Astrophys J 784:119. https://doi.org/10.1088/0004-637X/784/2/119. arxiv:1309.3273
Ross MP, Venkateswara K, Hagedorn CA, Gundlach JH, Kissel JS, Warner J, Radkins H, Shaffer TJ, Coughlin MW, Bodin P (2017) Low frequency tilt seismology with a precision ground rotation sensor. Seismol Res Lett 89:67–76. https://doi.org/10.1785/0220170148. arxiv:1707.03084
Rosswog S (2005) Mergers of neutron star–black hole binaries with small mass ratios: nucleosynthesis, gamma-ray bursts, and electromagnetic transients. Astrophys J 634(2):1202–1213. https://doi.org/10.1086/497062. arxiv:astro-ph/0508138
Rosswog S et al (2017) Detectability of compact binary merger macronovae. Class Quantum Grav 34:104001. https://doi.org/10.1088/1361-6382/aa68a9. arxiv:1611.09822
Röver C, Meyer R, Christensen N (2007a) Coherent Bayesian inference on compact binary inspirals using a network of interferometric gravitational wave detectors. Phys Rev D 75:062004. https://doi.org/10.1103/PhysRevD.75.062004. arxiv:gr-qc/0609131
Röver C, Meyer R, Guidi GM, Viceré A, Christensen N (2007b) Coherent Bayesian analysis of inspiral signals. Class Quantum Grav 24:S607–S615. https://doi.org/10.1088/0264-9381/24/19/S23. arxiv:0707.3962
Ruan JJ, Nynka M, Haggard D, Kalogera V, Evans P (2018) Brightening X-ray emission from GW170817/GRB170817A: further evidence for an outflow. Astrophys J Lett 853:L4. https://doi.org/10.3847/2041-8213/aaa4f3. arxiv:1712.02809
Sachdev S, Caudill S, Fong H, Lo RKL, Messick C, Mukherjee D, Magee R, Tsukada L, Blackburn K, Brady P, Brockill P, Cannon K, Chamberlin SJ, Chatterjee D, Creighton JDE, Godwin P, Gupta A, Hanna C, Kapadia S, Lang RN, Li TGF, Meacher D, Pace A, Privitera S, Sadeghian L, Wade L, Wade M, Weinstein A, Liting Xiao S (2019) The GstLAL search analysis methods for compact binary mergers in Advanced LIGO’s second and Advanced Virgo’s first observing runs. arXiv e-prints arxiv:1901.08580
Salafia OS, Colpi M, Branchesi M, Chassande-Mottin E, Ghirlanda G, Ghisellini G, Vergani S (2017) Where and when: optimal scheduling of the electromagnetic follow-up of gravitational-wave events based on counterpart lightcurve models. Astrophys J 846:62. https://doi.org/10.3847/1538-4357/aa850e. arxiv:1704.05851
Sathyaprakash BS, Dhurandhar SV (1991) Choice of filters for the detection of gravitational waves from coalescing binaries. Phys Rev D 44:3819–3834. https://doi.org/10.1103/PhysRevD.44.3819
Sathyaprakash BS, Schutz BF (2009) Physics, astrophysics and cosmology with gravitational waves. Living Rev Relativ 12:2. https://doi.org/10.12942/lrr-2009-2. arxiv:0903.0338
Savchenko V et al (2016) INTEGRAL upper limits on gamma-ray emission associated with the gravitational wave event GW150914. Astrophys J Lett 820:L36. https://doi.org/10.3847/2041-8205/820/2/L36. arxiv:1602.04180
Savchenko V et al (2017a) INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817. Astrophys J Lett 848:L15. https://doi.org/10.3847/2041-8213/aa8f94. arxiv:1710.05449
Savchenko V et al (2017b) INTEGRAL observations of GW170104. Astrophys J Lett 846:L23. https://doi.org/10.3847/2041-8213/aa87ae. arxiv:1707.03719
Schmidt P, Ohme F, Hannam M (2015) Towards models of gravitational waveforms from generic binaries II: modelling precession effects with a single effective precession parameter. Phys Rev D 91:024043. https://doi.org/10.1103/PhysRevD.91.024043. arxiv:1408.1810
Schnittman JD (2013) Astrophysics of super-massive black hole mergers. Class Quantum Grav 30:244007. https://doi.org/10.1088/0264-9381/30/24/244007. arxiv:1307.3542
Schutz BF (1986) Determining the Hubble constant from gravitational wave observations. Nature 323:310–311. https://doi.org/10.1038/323310a0
Sesana A (2016) Prospects for multiband gravitational-wave astronomy after GW150914. Phys Rev Lett 116:231102. https://doi.org/10.1103/PhysRevLett.116.231102. arxiv:1602.06951
Shappee BJ et al (2017) Early spectra of the gravitational wave source GW170817: evolution of a neutron star merger. Science 358:1574. https://doi.org/10.1126/science.aaq0186. arxiv:1710.05432
Siebert MR et al (2017) The unprecedented properties of the first electromagnetic counterpart to a gravitational wave source. Astrophys J Lett 848:L26. https://doi.org/10.3847/2041-8213/aa905e. arxiv:1710.05440
Singer LP, Price LR (2016) Rapid Bayesian position reconstruction for gravitational-wave transients. Phys Rev D 93:024013. https://doi.org/10.1103/PhysRevD.93.024013. arxiv:1508.03634
Singer LP et al (2014) The first two years of electromagnetic follow-up with Advanced LIGO and Virgo. Astrophys J 795:105. https://doi.org/10.1088/0004-637X/795/2/105. arxiv:1404.5623
Singer LP et al (2016a) Going the distance: mapping host galaxies of LIGO and Virgo sources in three dimensions using local cosmography and targeted follow-up. Astrophys J Lett 829:L15. https://doi.org/10.3847/2041-8205/829/1/L15. arxiv:1603.07333
Singer LP et al (2016b) Supplement: going the distance: mapping host galaxies of LIGO and Virgo sources in three dimensions using local cosmography and targeted follow-up. Astrophys J Suppl 226:10. https://doi.org/10.3847/0067-0049/226/1/10. arxiv:1605.04242
van der Sluys MV, Röver C, Stroeer A, Christensen N, Kalogera V, Meyer R, Vecchio A (2008) Gravitational-wave astronomy with inspiral signals of spinning compact-object binaries. Astrophys J Lett 688:L61. https://doi.org/10.1086/595279. arxiv:0710.1897
Smartt SJ et al (2016) A search for an optical counterpart to the gravitational wave event GW151226. Astrophys J Lett 827:L40. https://doi.org/10.3847/2041-8205/827/2/L40. arxiv:1606.04795
Smartt SJ et al (2017) A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 551(7678):75–79. https://doi.org/10.1038/nature24303. arxiv:1710.05841
Smith R, Field SE, Blackburn K, Haster CJ, Pürrer M, Raymond V, Schmidt P (2016) Fast and accurate inference on gravitational waves from precessing compact binaries. Phys Rev D 94:044031. https://doi.org/10.1103/PhysRevD.94.044031. arxiv:1604.08253
Soares-Santos M, Palmese A, Hartley W, Annis J, Garcia-Bellido J, Lahav O, Doctor Z, et al (2019) First measurement of the Hubble constant from a dark standard siren using the dark energy survey galaxies and the LIGO/Virgo binary-black-hole merger GW170814. Astrophys J Lett 876:L7. https://doi.org/10.3847/2041-8213/ab14f1. arxiv:1901.01540
Soares-Santos M et al (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. I. Discovery of the optical counterpart using the dark energy camera. Astrophys J Lett 848:L16. https://doi.org/10.3847/2041-8213/aa9059. arxiv:1710.05459
Somiya K (2012) Detector configuration of KAGRA: the Japanese cryogenic gravitational-wave detector. Class Quantum Grav 29:124007. https://doi.org/10.1088/0264-9381/29/12/124007. arxiv:1111.7185
Spera M, Mapelli M, Giacobbo N, Trani AA, Bressan A, Costa G (2019) Merging black hole binaries with the SEVN code. Mon Not R Astron Soc 485:889–907. https://doi.org/10.1093/mnras/stz359. arxiv:1809.04605
Staley A et al (2014) Achieving resonance in the Advanced LIGO gravitational-wave interferometer. Class Quantum Grav 31:245010. https://doi.org/10.1088/0264-9381/31/24/245010
Stevenson S, Berry CPL, Mandel I (2017) Hierarchical analysis of gravitational-wave measurements of binary black hole spin-orbit misalignments. Mon Not R Astron Soc 471:2801–2811. https://doi.org/10.1093/mnras/stx1764. arxiv:1703.06873
Stone NC, Metzger BD, Haiman Z (2017) Assisted inspirals of stellar mass black holes embedded in AGN disks. Mon Not R Astron Soc 464:946–954. https://doi.org/10.1093/mnras/stw2260. arxiv:1602.04226
Sutton P (2013) A rule of thumb for the detectability of gravitational-wave bursts. ArXiv e-prints arxiv:1304.0210
Sutton PJ et al (2010) X-Pipeline: an analysis package for autonomous gravitational-wave burst searches. New J Phys 12:053034. https://doi.org/10.1088/1367-2630/12/5/053034. arxiv:0908.3665
Tanaka M, Hotokezaka K (2013) Radiative transfer simulations of neutron star merger ejecta. Astrophys J 775(2):113. https://doi.org/10.1088/0004-637X/775/2/113. arxiv:1306.3742
Tanvir NR et al (2017) The emergence of a lanthanide-rich kilonova following the merger of two neutron stars. Astrophys J Lett 848:L27. https://doi.org/10.3847/2041-8213/aa90b6. arxiv:1710.05455
Taracchini A et al (2014) Effective-one-body model for black-hole binaries with generic mass ratios and spins. Phys Rev D 89:061502. https://doi.org/10.1103/PhysRevD.89.061502. arxiv:1311.2544
Tavani M et al (2016) AGILE observations of the gravitational wave event GW150914. Astrophys J Lett 825:L4. https://doi.org/10.3847/2041-8205/825/1/L4. arxiv:1604.00955
Thrane E, Coughlin M (2013) Searching for gravitational-wave transients with a qualitative signal model: seedless clustering strategies. Phys Rev D 88:083010. https://doi.org/10.1103/PhysRevD.88.083010. arxiv:1308.5292
Thrane E, Mandic V, Christensen N (2015) Detecting very long-lived gravitational-wave transients lasting hours to weeks. Phys Rev D 91:104021. https://doi.org/10.1103/PhysRevD.91.104021. arxiv:1501.06648
Thrane E et al (2011) Long gravitational-wave transients and associated detection strategies for a network of terrestrial interferometers. Phys Rev D 83:083004. https://doi.org/10.1103/PhysRevD.83.083004. arxiv:1012.2150
Troja E, Piro L, Ryan G, van Eerten H, Ricci R, Wieringa MH, Lotti S, Sakamoto T, Cenko SB (2018) The outflow structure of GW170817 from late-time broad-band observations. Mon Not R Astron Soc 478:L18–L23. https://doi.org/10.1093/mnrasl/sly061
Troja E et al (2017) The X-ray counterpart to the gravitational wave event GW170817. Nature 551:71–74. https://doi.org/10.1038/nature24290. arxiv:1710.05433
Usman SA et al (2016) The PyCBC search for gravitational waves from compact binary coalescence. Class Quantum Grav 33:215004. https://doi.org/10.1088/0264-9381/33/21/215004. arxiv:1508.02357
Valenti S, Sand DJ, Yang S, Cappellaro E, Tartaglia L, Corsi A, Jha SW, Reichart DE, Haislip J, Kouprianov V (2017) The discovery of the electromagnetic counterpart of GW170817: Kilonova AT 2017gfo/DLT17ck. Astrophys J Lett 848:L24. https://doi.org/10.3847/2041-8213/aa8edf. arxiv:1710.05854
Vallisneri M, Kanner J, Williams R, Weinstein A, Stephens B (2015) The LIGO open science center. J Phys: Conf Ser 610:012021. https://doi.org/10.1088/1742-6596/610/1/012021. arxiv:1410.4839
Vangioni E, Goriely S, Daigne F, François P, Belczynski K (2016) Cosmic neutron-star merger rate and gravitational waves constrained by the r-process nucleosynthesis. Mon Not R Astron Soc 455:17–34. https://doi.org/10.1093/mnras/stv2296. arxiv:1501.01115
Vecchio A (2004) LISA observations of rapidly spinning massive black hole binary systems. Phys Rev D 70:042001. https://doi.org/10.1103/PhysRevD.70.042001. arxiv:astro-ph/0304051
Veitch J, Mandel I, Aylott B, Farr B, Raymond V, Rodriguez C, van der Sluys M, Kalogera V, Vecchio A (2012) Estimating parameters of coalescing compact binaries with proposed advanced detector networks. Phys Rev D 85:104045. https://doi.org/10.1103/PhysRevD.85.104045. arxiv:1201.1195
Veitch J et al (2015) Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library. Phys Rev D 91:042003. https://doi.org/10.1103/PhysRevD.91.042003. arxiv:1409.7215
Venkateswara K, Hagedorn CA, Turner MD, Arp T, Gundlach JH (2014) A high-precision mechanical absolute-rotation sensor. Rev Sci Instrum 85:015005. https://doi.org/10.1063/1.4862816. arxiv:1401.4412
Venumadhav T, Zackay B, Roulet J, Dai L, Zaldarriaga M (2019) New search pipeline for compact binary mergers: results for binary black holes in the first observing run of Advanced LIGO. Phys Rev D 100:023011. https://doi.org/10.1103/PhysRevD.100.023011. arxiv:1902.10341
Venumadhav T, Zackay B, Roulet J, Dai L, Zaldarriaga M (2020) New binary black hole mergers in the second observing run of Advanced LIGO and Advanced Virgo. Phys. Rev. D 101:083030. https://doi.org/10.1103/PhysRevD.101.083030. arxiv:1904.07214
Verrecchia F et al (2017) AGILE observations of the gravitational-wave source GW170104. Astrophys J Lett 847:L20. https://doi.org/10.3847/2041-8213/aa8224. arxiv:1706.00029
Villar VA et al (2017) The combined ultraviolet, optical, and near-infrared light curves of the kilonova associated with the binary neutron star merger GW170817: unified data set, analytic models, and physical implications. Astrophys J Lett 851:L21. https://doi.org/10.3847/2041-8213/aa9c84. arxiv:1710.11576
Vinciguerra S, Veitch J, Mandel I (2017) Accelerating gravitational wave parameter estimation with multi-band template interpolation. Class Quantum Grav 34:115006. https://doi.org/10.1088/1361-6382/aa6d44. arxiv:1703.02062
Vinciguerra S, Branchesi M, Ciolfi R, Mandel I, Neijssel CJ, Stratta G (2019) SAPREMO: a simplified algorithm for predicting detections of electromagnetic transients in surveys. Mon Not R Astron Soc 484:332–344. https://doi.org/10.1093/mnras/sty3490. arxiv:1809.08641
Vitale S (2016) Multiband gravitational-wave astronomy: parameter estimation and tests of general relativity with space- and ground-based detectors. Phys Rev Lett 117:051102. https://doi.org/10.1103/PhysRevLett.117.051102. arxiv:1605.01037
Vitale S, Zanolin M (2011) Application of asymptotic expansions for maximum likelihood estimators’ errors to gravitational waves from binary mergers: the network case. Phys Rev D 84:104020. https://doi.org/10.1103/PhysRevD.84.104020. arxiv:1108.2410
Vitale S, Del Pozzo W, Li TG, Van Den Broeck C, Mandel I, Aylott B, Veitch J (2012) Effect of calibration errors on Bayesian parameter estimation for gravitational wave signals from inspiral binary systems in the advanced detectors era. Phys Rev D 85:064034. https://doi.org/10.1103/PhysRevD.85.064034. arxiv:1111.3044
Vitale S, Lynch R, Veitch J, Raymond V, Sturani R (2014) Measuring the spin of black holes in binary systems using gravitational waves. Phys Rev Lett 112:251101. https://doi.org/10.1103/PhysRevLett.112.251101. arxiv:1403.0129
Walker M, Agnew AF, Bidler J, Lundgren A, Macedo A, Macleod D, Massinger TJ, Patane O, Smith JR (2018) Identifying correlations between LIGO’s astronomical range and auxiliary sensors using lasso regression. Class Quantum Grav 35:225002. https://doi.org/10.1088/1361-6382/aae593. arxiv:1807.02592
Woosley SE (2016) The progenitor of GW150914. Astrophys J Lett 824:L10. https://doi.org/10.3847/2041-8205/824/1/L10. arxiv:1603.00511
Yakunin KN et al (2010) Gravitational waves from core collapse supernovae. Class Quantum Grav 27:194005. https://doi.org/10.1088/0264-9381/27/19/194005. arxiv:1005.0779
Yang S, Valenti S, Cappellaro E, Sand DJ, Tartaglia L, Corsi A, Reichart DE, Haislip J, Kouprianov V (2017) An empirical limit on the kilonova rate from the DLT40 one day cadence Supernova Survey. Astrophys J Lett 851:L48. https://doi.org/10.3847/2041-8213/aaa07d. arxiv:1710.05864
Zackay B, Venumadhav T, Dai L, Roulet J, Zaldarriaga M (2019) Highly spinning and aligned binary black hole merger in the Advanced LIGO first observing run. Phys Rev D 100:023007. https://doi.org/10.1103/PhysRevD.100.023007. arxiv:1902.10331
Zevin M, Pankow C, Rodriguez CL, Sampson L, Chase E, Kalogera V, Rasio FA (2017) Constraining Formation Models of Binary Black Holes with Gravitational-wave Observations. Astrophys J 846:82. https://doi.org/10.3847/1538-4357/aa8408. arxiv:1704.07379
Zevin M et al (2017) Gravity spy: integrating advanced LIGO detector characterization, machine learning, and citizen science. Class Quantum Grav 34:064003. https://doi.org/10.1088/1361-6382/aa5cea. arxiv:1611.04596