Triển vọng cho "Nông nghiệp thông minh" tại Nga

Herald of the Russian Academy of Sciences - Tập 88 - Trang 330-340 - 2019
V. P. Yakushev1, V. V. Yakushev1
1Agrophysical Research Institute, St. Petersburg, Russia

Tóm tắt

Các tác giả biện minh cho việc sử dụng nông nghiệp chính xác như một vectơ chính trong sự phát triển của phân khúc "nông nghiệp thông minh" của nền tảng FoodNet trong sáng kiến công nghệ quốc gia. Nông nghiệp mở rộng không có triển vọng, dựa trên việc khai thác độ màu mỡ tự nhiên của đất, đang chiếm ưu thế ở Nga; do đó, các nghiên cứu thực địa kéo dài đã làm nổi bật tính hợp lý về kinh tế và sinh thái của việc sử dụng công nghệ thông tin trong nông nghiệp chính xác. Trong bối cảnh tăng trưởng đáng kể về năng suất cây trồng, tỷ lệ hoàn vốn cho phân bón và các chất bảo vệ thực vật đã tăng từ 1,5 đến 1,7 lần; tải trọng hóa học nông nghiệp lên môi trường đã giảm từ 35 đến 60%; và chất lượng sản phẩm nông nghiệp đã cải thiện rõ rệt. Việc chuyển đổi sang các công nghệ sản xuất cây trồng mới là hợp lý. Sự chú ý được dành cho việc cần thiết phải tạo ra một nền tảng vật lý-kỹ thuật và phần mềm–phần cứng trong nước cho nông nghiệp chính xác, việc thiếu hụt này là một trở ngại lớn cho sự phát triển của "nông nghiệp thông minh" ở Nga.

Từ khóa

#nông nghiệp thông minh #nông nghiệp chính xác #công nghệ thông tin #sản xuất cây trồng #môi trường

Tài liệu tham khảo

Agroecological Land Assessment, the Design of Adaptive Landscape Farming Systems and Agrotechnologies: Methodological Guidelines, Ed. by V. I. Kiryushin and A. L. Ivanov (FGNU Rosinformagrotekh, Moscow, 2005) [in Russian]. V. I. Kiryushin, “Mineral fertilizers as a key factor of developing agriculture and optimizing nature management,” Dostizheniya Nauki Tekhniki APK, No. 3, 19–25 (2016). Yu. F. Lachuga, “Precision agriculture and livestock farming: The general vector of agricultural production development in the 21st century,” in Proc. 3rd Scientific and Practical Conference “Computer Technologies for Production in the System of Precision Agriculture and Livestock Farming” (VIM, Moscow, 2005), pp. 8–11 [in Russian]. Precision Agriculture, Ed. by D. Shpaar, A. Zakharenko, and V. Yakushev (Pushkin, 2009) [in Russian]. P. C. Robert, “Precision agriculture: Research needs and status in the USA,” in Precision Agriculture: Proceedings of the Second European Conference, Ed. by J. V. Stafford, Part 1 (Sheffield Academic Press, 1999), pp. 19–33. J. Bouma, J. Stoorvogel, B. J. van Alfen, and H. W. G. Booltink, “Pedology, precision agriculture and changing paradigm of agricultural research,” Soil. Sci. Soc. Am. J. 63, 1763–1768 (1999). Remembering A.F. Ioffe (Nauka, Leningrad, 1973) [in Russian]. I. S. Shatilov, “Crop yield programming principles,” Vestn. Sel’skokhoz. Nauk, No. 3, 8–14 (1973). V. P. Yakushev, Toward Precision Agriculture (Izd. PIYaF RAN, St. Petersburg, 2002) [in Russian]. V. I. Kiryushin, “Precise agrotechnologies as an important form of intensifying adaptive landscape agriculture,” Zemledelie, No. 6, 16–21 (2004). V. P. Yakushev and V. V. Yakushev, Information Support for Precision Agriculture (Izd. PIYaF RAN, St. Petersburg, 2007) [in Russian]. V. V. Yakushev, Precision Agriculture: Theory and Practice (AFI, St. Petersburg, 2016) [in Russian]. V. M. Bure, A. F. Petrushin, and V. V. Yakushev, Automated system of stochastic identification of homogeneous technological zones on an agricultural field by yield data. Certificate of state registration of computer program no. 614663 of Sep. 29, 2008 (2008). V. P. Yakushev, V. V. Yakushev, and A. F. Petrushin, Automated system of planning a complex of agrotechnical measures. Certificate of state registration of computer program no. 616508 of Oct. 1, 2010 (2010). A. F. Petrushin, V. V. Yakushev, and P. V. Lekomtsev, The program for automatic creation of maps and diagrams to survey agricultural fields using a geoinformation mobile station. Certificate of state registration of computer program no. 616509 of Oct. 1, 2010 (2010). S. V. Chasovskikh, B. A. Telal, and V. V. Yakushev, “Specialized software for the implementation of precise farming systems,” in Materials of a Scientific Session of the Agrophysical Research Institute (2013), pp. 16–32 V. P. Yakushev, P. V. Lekomtsev, V. V. Voropaev, et al., “Differentiated application of chemicals to grow spring wheat,” Vestn. Ross. Sel’skokhoz. Nauki, No. 4, 13–17 (2017). V. M. Bure, Methodology and software tools for information support of precision agriculture, Extended Abstract of Doctoral (Engineering) Dissertation (AFI, St. Petersburg, 2009) [in Russian]. A. G. Topazh, The principle of optimality in mathematical models of agroecosystems, Extended Abstract of Doctoral (Engineering) Dissertation (AFI, St. Petersburg, 2009) [in Russian]. I. P. Anan’ev, Self-generating measuring converters of two-component dielcometry of agricultural materials, Extended Abstract of Doctoral (Engineering) Dissertation (AFI, St. Petersburg, 2009) [in Russian]. A. A. Konashenkov, The scientific rationale of fertilizer systems for precise implementation in the conditions of the northwest of Russia, Extended Abstract of Doctoral (Agriculture) Dissertation (AFI, St. Petersburg, 2014) [in Russian]. V. V. Yakushev, Information and technological basics of plant crop precision production, Extended Abstract of Doctoral (Agriculture) Dissertation (AFI, St. Petersburg, 2013) [in Russian]. P. V. Lekomtsev, Scientific and methodological support for the spring wheat production control in the precision agriculture system, Extended Abstract of Doctoral (Biology) Dissertation (AFI, St. Petersburg, 2015) [in Russian]. A. F. Petrushin, A set of programs for database and knowledge formation and processing in agronomy, Extended Abstract of Candidate’s (Engineering) Dissertation (AFI, St. Petersburg, 2005) [in Russian]. D. A. Matveenko, Differentiated application of nitrogen fertilizers based on the assessment of optical characteristic of spring wheat plantings, Extended Abstract of Candidate’s (Agriculture) Dissertation (AFI, St. Petersburg, 2012) [in Russian]. A. V. Konev, Automation of application and methods of improvement of fertilizer dosing techniques in the precision agriculture system, Extended Abstract of Candidate’s (Agriculture) Dissertation (AFI, St. Petersburg, 2014) [in Russian]. O. I. Yakusheva, The impact of intrafield soil heterogeneity and agrotechnology intensification on spring wheat yields, Extended Abstract of Candidate’s (Agriculture) Dissertation (AFI, St. Petersburg, 2013) [in Russian]. V. P. Yakushev, E. V. Kanash, A. A. Konev, et al., Theoretical and Methodological Basics of Identifying Homogeneous Technological Zones for Differentiated Application of Chemicals by the Optical Characteristics of Plantings: A Practical Guide (AFI, St. Petersburg, 2010) [in Russian]. K. J. Lee and B. W. Lee, “Application of color indices and canopy cover derived from digital camera image analysis to estimate growth parameters of rice canopy,” in Precision Agriculture, Proceeding of 8th European Conference on Precision Agriculture, Prague, July 11–14, 2011, Ed. by J. V. Stafford (Ampthill, UK, 2011), pp. 111–121. V. V. Voropaev, P. V. Lekomtsev, D. A. Matveenko, et al., “The experience of applying precision agriculture elements in the northwestern region of the Russian Federation,” in Collection of Articles of the International Scientific and Practical Conference “Resource-Saving Agriculture at the Turn of the 21st Century” (MGU, Moscow, 2009) [in Russian]. P. A. Sukhanov, V. V. Yakushev, A. V. Konev, and D. A. Matveenko, “Regional agricultural land monitoring based on a network of stationary test grounds,” Agrokhim. Vestn., No. 3, 14–16 (2011). A. McBratney, B. Whelan, and T. Ancev, “Future directions of precision agriculture,” Precision Agriculture 6, 7–23 (2005). A. P. Zinchenko, “Russia’s agriculture by the results of the 2016 all-Russia agricultural census,” Izv. TSKhA, No. 5, 124–136 (2017).