Triển vọng trong Chương trình Lai Ghép ở Cỏ Năng Lượng Sinh Học

BioEnergy Research - Tập 5 - Trang 10-19 - 2011
Andrea Arias Aguirre1, Bruno Studer2, Ursula Frei1, Thomas Lübberstedt1
1Department of Agronomy, Iowa State University, Agronomy Hall, Ames, USA
2Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, Slagelse, Denmark

Tóm tắt

Nhiên liệu sinh học thu được từ sinh khối có tiềm năng thay thế một phần lớn hydrocarbon gốc dầu mỏ, những hợp chất này không chỉ góp phần vào phát thải khí carbon mà còn có nguồn cung hạn chế. Với mục tiêu tối đa hóa năng suất sinh khối để sản xuất nhiên liệu sinh học, bài tổng quan này nhằm đánh giá triển vọng của các phương pháp lai ghép khác nhau để khai thác tốt nhất hiện tượng mạnh (heterosis) nhằm nâng cao năng suất sinh khối ở cỏ lúa mạch lâu năm (Lolium perenne L.) và cỏ switchgrass (Panicum virgatum), hai loài cỏ mẫu lâu năm cho sản xuất năng lượng sinh học. Bắt đầu bằng việc đánh giá cẩn thận các phương pháp lai giống hiện tại và tổng hợp, chúng tôi giải quyết những vấn đề quan trọng để thực hiện chương trình lai ghép, chẳng hạn như sự sẵn có và phát triển của các nhóm heterotic, cũng như các cơ chế sinh học để kiểm soát quá trình lai ghép như không tương hợp tự thân (SI) và vô sinh ở đực (MS). Cuối cùng, chúng tôi trình bày các phương pháp lai ghép tiềm năng dựa trên SI và MS cho hai loài cỏ năng lượng sinh học, và thảo luận cách mà các công cụ phân tử và đồng gen (synteny) có thể được sử dụng để chuyển thông tin liên quan cho các gen kiểm soát các cơ chế sinh học này giữa các loài cỏ.

Từ khóa

#nhiên liệu sinh học #sinh khối #lai ghép #heterosis #năng suất sinh khối #cỏ lúa mạch lâu năm #cỏ switchgrass #không tương hợp tự thân #vô sinh ở đực

Tài liệu tham khảo

Coyle W (2006) The future of biofuels. Pacific Food System Outlook 2006–2007. Pacific Economic Cooperation Council McLaughlin SB, Kszos LA (2005) Development of Switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28:515–535 Walsh ME, De la Torre D, Shapouri H, Slinsky S (2003) Bioenergy crop production in the United States. Environ Resour Econ 24:313–333 Somers DJ, Kirkpatrick R, Moniwa M, Walsh A (2003) Mining single-nucleotide polymorphisms from hexaploid wheat ESTs. Genome 46(3):431–437 Shepherd P (2000) National renewable energy laboratory: developing bioenergy fuels. Biopower FactSheet 2 Kszos LA, Downing ME, Wright LL, Cushman JH, McLaughlin SB, Tolbert VR et al (2000) Bioenergy Feedstock Development Program Status Report (trans: Laboratory ORN). Department of Energy, Tennessee McLaughlin SB, Walsh ME (1998) Evaluating environmental consequences of producing herbaceous crops for bioenergy. Biomass Bioenergy 14(4):317–324 Lewandowski I, Scurlock J, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361 Searchinger T (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238 de Nettancourt D (1997) Incompatibility in amgiosperms. Sex Plant Reprod 10:185–199 Martinez-Reyna JM, Vogel KP (2008) Heterosis in Switchgrass: spaced plants. Crop Sci 48:1312–1320 Vogel K, Mitchell R (2008) Heterosis in Switchgrass: biomass yield in Swards. Crop Sci 48:2159–2164 Posselt U (ed) (2010) Identification of heterotic pattermd in perennial ryegrass. Sustainable use of genetic diversity in forage and turf breeding. Springer, New York Posselt UK (2003) Heterosis in grasses. Czech J Genet Plant Breed 39:48–53 Boller BSF, Streckeisen P, Baert J, Bayle B, Bourdon P, Chosson J-F et al (2003) The EUCARPIA multisite rust evaluation—results 2001. Pflanzenzüchg 59:198–207 Foster C (1971) Interpopulation and intervarietal hybridization in Lolium perenne breeding: heterosis under non-competitive conditions. J Agric Sci 76:107–130 Esparza Martínez JH, Foster AE (1998) Genetic analysis of heading date and other agronomic characters in barley (Hordeum vulgare L.). Euphytica 99(3):145–153 Yang B, Thorogood D, Armstead I, Barth S (2008) How far are we from unravelling self-incompatibility in grasses. New Phytologist. doi:10.1111/j.1469-8137.2008.02421.x Klaas M, Yang B, Bosch M, Thorogood D, Manzanares C, Armstead IP et al (2011) Progress towards elucidating the mechanisms of self-incompatibility in the grasses: further insights from studies in Lolium. Ann Bot. doi:10.1093/aob/mcr186 Geiger HH, Miedaner T (2009) Rye breeding. In: Carena MJ (ed) Cereals, vol 3. Springer, New York, pp 157–181 Laughnan JR (1983) Cytoplasmic male sterility in maize. Annu Rev Genet 17(1):27 Bennetzen JL, Freeling M (1993) Grasses as a single genetic system—genome composition, colinearity and compatibility. Plant Cell 12:1021–1029 Devos KM (1997) Comparative genetics in the grasses. Plant Mol Biol 35(1):3 Gale MD (1998) Plant comparative genetics after 10 years. Science 282(5389):656 Devos KM (2000) Genome relationships: the grass model in current research. Plant Cell 12(5):637 Feuillet C, Keller B (2002) Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann Bot 89(1):3–10 Devos KM (2005) Updating the ‘crop circle’. Curr Opin Plant Biol 8(2):155–162 Gaut BS (2002) Evolutionary dynamics of grass genomes. New Phytol 154(1):15 Salse J (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20(1):11 Bolot S (2009) The ‘inner circle’of the cereal genomes. Curr Opin Plant Biol 12(2):119 Donnison I, Farrar K, Allison GG, Hodgson E, Adams J, Hatch R et al (2009) Functional genomics of forage and bioenergy quality traits in the grasses. In: Yamada TSG (ed) Molecular breeding of forage and turf. Springer, New York Farrar K, Asp T, Lübberstedt T, Xu ML, Thomas AM, Christiansen C et al (2007) Construction of two Lolium perenne BAC libraries and identification of BACs containing candidate genes for disease resistance and forage quality. Mol Breed 19(1):15–23 Studer B, Kölliker R, Muylle H, Torben A, Frei U, Roldán-Ruiz I, Barre P, Tomaszewski C, Meally H, Barth S, Skøt L, Armstead I, Dolstra O, Lübberstedt T (2010) EST-derived SSR markers used as anchor loci for the construction of a consensus linkage map in ryegrass (Lolium spp.). BMC Plan Biology. doi:10.1186/1471-2229-10-177 Martinez-Reyna JM, Vogel KP (2002) Incompatibility sy stems in Switchgrass. Crop Sci 42:1800–1805 Cornish MA, Hayward MD, Lawrence MJ (1979) Self-incompatibility in Ryegrass. Heredity 43(1):129–136 Fearon CH, Hayward MD, Lawrence MJ (1984) Self-incompatibility in Ryegrass VII. The determination of incomaptibility genotypes in autotetraploids families of Lolium perenne L. Heredity 53:403–413 Casler M, Brummer C (2008) Theoretical expected genetic gains for among-and-within-family selection methods in perennial forage crops. Crop Sci 48:890–902 Casler M (2001) Breeding forage crops for increased nutritional value. Adv Agron 71(51–107) Humphreys MO (1997) The contribution of conventional plant breeding to forage crop improvement. Proceedings of the 18th International Grassland Congress. Association Management Centre, Calgary Reich V, Atkins R (1970) Yield stability of four population types of grain sorghum, Sorghum bicolor (L.) Moench in different environments. Crop Sci 10:511–517 Haussmann BIG (2000) Yield and yield stability of four population types of grain sorghum in a semi-arid area of Kenya. Crop Sci 40(2):319 Stelling D (1994) Yield stability in Faba Bean, Vicia faba L. 2. Effects of heterozygosity and heterogeneity. Plant Breed 112(1):30 Einfeldt C (1999) Effects of heterozygosity and heterogeneity on yield and yield stability of barley in the dry areas of North Syria. University of Hohenheim, Stuttgart Posselt U (2010) Breeding methods in cross-pollinated species. In: Boller B (ed) Fodder crops and amenity grasses. Springer, New York, pp 39–87 Kolliker R, Boller B, Widmer F (2005) Marker assisted polycross breeding to increase diversity and yield in perennial ryegrass (Lolium perenne L.). Euphytica 146:55–65 Lamkey KR, Edwards JW (1999) Quantitative genetics of heterosis. In: Coors JG, Pandey S (eds) Genetics and exploitation of heterosis in crops. ASA and CSSA, Madison Breese EL (1981) Interspecies hybrids and polyploidy. Philos Trans R Soc Biol Sci 292(1062):487 Zeven AC (1980) Polyploidy and plant domestication. In: Lewis WH (ed) Polyploidy: biological relevance. Plenum, New York, pp 385–408 Dewey DR (1980) Some applications and misapplications of induced polyploidy to plant breeding. In: Lewis WH (ed) Polyploidy: biological relevance. Plenum, New York, pp 445–470 Hallauer AR, Carena MJ, Miranda JB (2010) Quantitative genetics in maize breeding. Springer, New York Lubberstedt T, Melchinger AE, Dußle C, Vuylsteke M, Kuiper M (2000) Relationships among Early European maize inbreds: IV. Genetic diversity revealed with AFLP markers and comparison with RFLP, RAPD, and pedigree data. Crop Sci 40(3):783–791. doi:10.2135/cropsci2000.403783x Kubik C, Sawkins M, Meyer WA, Gaut BS (2001) Genetic diversity in seven perennial ryegrass (Lolium perenne L.) Cultivars based on SSR markers. Crop Sci 41:1565–1572 Kopecký D (2009) Development and mapping of DArT markers within the Festuca–Lolium complex. BMC Genomics 10(1):473 Kopecky D, Bartos J, Christelova P, Cernoch V, Kilian A, Dolezel J (2011) Genomic constitution of Festuca × Lolium hybrids revealed by the DArTFest array. Theor Appl Genet 122:355–363 Kölliker R (1999) Genetic variability of forage grass cultivars: a comparison of Festuca pratensis Huds., Lolium perenne L., and Dactylis glomerata L. Euphytica 106(3):261 Bolaric S, Barth S, Melchinger AE, Posselt UK (2005) Molecular genetic diversity within and among German ecotypes in comparison to European perennial ryegrass cultivars. Plant Breed 124(3):257–262 Brazauskas G (2011) Nucleotide diversity and linkage disequilibrium in five Lolium perenne genes with putative role in shoot morphology. Plant Sci 179(3):194 Hultquist AA, Vogel KP, Lee DJ, Arumuganathanm K, Kaeppler S (1996) Chloroplast DNA and nuclear DNA content variations and nuclear DNA content variations among cultivars of switchgrass populations. Crop Science 36:1049–1052 Lundqvist A (1962) The Nature of the two-loci incompatibility system in grasses. Hereditas 48(1–2):153 Thorogood D, Armstead I, Turner LB, Humphreys MO, Hayward MD (2005) Identification and mode of action of self-compatibility loci in Lolium perenne L. Heredity 94:356–363 Van Daele I (2008) Identification of transcribed derived fragments involved in self-incompatibility in perennial ryegrass (Lolium perenne L.) using cDNA-AFLP. Euphytica 163(1):67 Yang B, Thorogood D, Armstead I, Franlin FC, Barth S (2009) Identification of genes expressed duting the self-incompatibility response in perennial rygrass (Lolium perenne). Plant Mol Biol 70:709–723 Hackauf B, Wehling P (2005) Approaching the self-incompatibility locus Z in rye (Secale cereale L.) via comparative genetics. Theor Appl Genet 110(5):832–845 Shinozuka H, Cogan N, Smith K, Spangenberg G, Forster J (2009) Fine-scale comparative genetic and physical mapping supports map-based cloning strategies for the self-incompatibility loci of perennial ryegrass (Lolium perenne L.). Plant Mol Biol 72(3):343–355 Wilkins P, Thorogood D (1992) Breakdown of self-incompatibility in perennial ryegrass at high temperature and its uses in breeding. Euphytica 64:65–69 Nielsen E (1944) Analysis of variation in Panicum virgatum. J Agric Res 69(327–353) Missaoui AM (2005) Investigation of genomic organization in switchgrass (Panicum virgatum L.) using DNA markers. Theor Appl Genet 110(8):1372 Okada M (2010) Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing and multilocus interactions. Genetics 185(3):745 Wit F (1974) Cytoplasmic male sterility in ryegrasses (Lolium SPP.) detected after intergeneric hybridization. Euphytica 23(1):31–38 Vogel KP, Lamb J (2007) Forage breeding. In: Forages: the science of grassland agriculture. Blackwell: London. pp 427–438 Fehr W (1993) Principles of cultivar development, vol. 1. Macmillan, New York Palmer RG, Alberten MC, Horner HT, Skorupska H (1992) Male sterility in soybean and maize: developmental comparison. Nucleus 35(1):1–18 Kiang A, Connolly V, McDonnell D, Kavanagh T (1993) Cytoplasmic male sterility (CMS) in Lolium perenne L. 1. Development as a diagnostic probe for the male-sterile cytoplasm. Theor Appl Genet 86:781–787 Kiang AS, Kavanagh TA (1996) Cytoplasmic male sterility (CMS) in Lolium perenne L. 2. The mitochondrial genome of a CMS line is rearranged and contains a chimaeric atp 9 gene. Theor Appl Genet 92(3):308–315 McDermott P (2008) The mitochondrial genome of a cytoplasmic male sterile line of perennial ryegrass (Lolium perenne L.) contains an integrated linear plasmid-like element. Theor Appl Genet 117(3):459 Ruge B, Linz A, Gaue I, Baudis H, Leckband G, Wehling F (2002) Molecular characterization of cytoplasmic male sterility in Lolium perenne. In: Braunschweig-FAL (ed) Proc. 24th EUCARPIA Fodder crops and amenity grasses section meeting, vol 59. Vortr. Pfl.-Züchtg, pp 121–127 Moore ERB (1997) 16S rRNA gene sequence analyses and inter-and intrageneric relationships of Xanthomonas species and Stenotrophomonas maltophilia. FEMS Microbiol Lett 151(2):145 Chase CD (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial–nuclear interactions. Trends Genet 23(2):81 Choi IY (2007) A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics 176(1):685 Gabay-Laughnan S, Kuzmin EV, Monroe JM, Roark LM, Newton KJ (2009) Characterization of a novel thermo-sensitive restorer of fertility for CMS-S in maize. Genetics. doi:10.1534/genetics.108.099895 Cui X (1996) The rf 2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science 272(5266):1334 Burton GW (1948) The performance of various mixtures of hybrid and parent inbred pearl millet. J Amer Soc Agron 40:908–915 Brummer EC (1999) Capturing heterosis in forage crop cultivar development. Crop Sci 39(4) Van Daele I (2008) Mapping of markers related to self-incompatibility, disease resistance, and quality traits in Lolium perenne L. Genome 51(8):644 Todd J, Wu Y, Goad C (2011) Switchgrass selfing confirmed by SSR markers. 2011 International Annual Meetings. ASA CSSA SSSA, San Antonio Thorogood D, Hayward MD (1991) The genetic control of self-compatibility in an inbred line of Lolium perenne L. Heredity 67:175–181 Thorogood D, Hayward MD (1992) Self-compatibility in Lolium temulentum L: its genetic control and transfer into L. perenne L. ans L. multiflorim Lam. Heredity 68:71–78 Wricke G (1978) Pseudo-Selbstkompatibilität beim Roggen und ihre Ausnutzung in der Züchtung. Z Pflanzenzuecht 81:140–148 Boelt B, Studer B (eds) (2009) Breeding for grasses seed yield. Fodder crops and amenity grasses. Springer, New York Duvick DN (1959) The use of cytoplasmic male-sterility in hybrid seed production. Econ Bot 13(3):167 Connolly V, Wright-Turner R (1984) Induction of cytoplasmic male-sterility into ryegrass (Lolium perenne). Theor Appl Genet 68:229–453 McLaughlin SB (2002) High-value renewable energy from prairie grasses. Environ Sci Technol 36(10):2122 Perrin R (2008) Farm-scale production cost of switchgrass for biomass. BioEnergy Res 1(1):91