Prospecting the biodiversity of the fungal family Ustilaginaceae for the production of value-added chemicals
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kirk PM, Ainsworth GC, Bisby GR: Ainsworth and Bisby’s Dictionary of the Fungi. C.A.B. International, Wallingford; 2008.
Bakkeren G, Kämper J, Schirawski J: Sex in smut fungi: structure, function and evolution of mating-type complexes. Fungal Genet Biol 2008, 45: 15–21. 10.1016/j.fgb.2008.04.005
Banuett F: Genetics of Ustilago maydis , a fungal pathogen that induces tumors in maize. Annu Rev Genet 1995, 29: 179–208. 10.1146/annurev.ge.29.120195.001143
Ghareeb H, Becker A, Iven T, Feussner I, Schirawski J: Sporisorium reilianum infection changes inflorescence and branching architectures of maize. Plant Physiol 2011,156(4):2037–2052. 10.1104/pp.111.179499
Feldbrügge M, Kellner R, Schipper K: The biotechnological use and potential of plant pathogenic smut fungi. Appl Microbiol Biotechnol 2013,97(8):3253–3265. 10.1007/s00253-013-4777-1
Guevarra ED, Tabuchi T: Accumulation of itaconic, 2-hydroxyparaconic, itatartaric, and malic acids by strains of the genus Ustilago . Agric Biol Chem 1990,54(9):2353–2358. 10.1271/bbb1961.54.2353
Ikeda M, Bhattacharjee AK, Kondoh T, Nagashima T, Tamaki N: Synergistic effect of cold mannitol and Na + /Ca 2+ exchange blocker on blood–brain barrier opening. Biochem Biophys Res Commun 2002,291(3):669–674. 10.1006/bbrc.2002.6495
Moon HJ, Jeya M, Kim IW, Lee JK: Biotechnological production of erythritol and its applications. Appl Microbiol Biotechnol 2010,86(4):1017–1025. 10.1007/s00253-010-2496-4
Aurich ADI, Barth GPD, Bodinus C, Kreyss E, Specht R: Process for the biotechnological production of itaconic acid. 2009, patent number DE102008011854 A1.
Willke T, Vorlop KD: Biotechnological production of itaconic acid. Appl Microbiol Biotechnol 2001,56(3–4):289–295. 10.1007/s002530100685
Geilen FMA, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W: Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system. Angew Chem 2010,122(32):5642–5646. 10.1002/ange.201002060
Tsao GT, Cao NJ, Du J, Gong CS, et al.: Production of multifunctional organic acids from renewable resources. In Recent Progress in Bioconversion of Lignocellulosics. Volume 65. Edited by: Tsao GT, Brainard AP, Bungay HR, Cao NJ, Cen P, Chen Z, Du J, Foody B, Gong CS, Hall P. Springer, Berlin Heidelberg; 1999:243–280. Advances in Biochemical Engineering/Biotechnology 10.1007/3-540-49194-5_10
Zeikus JG, Jain MK, Elankovan P: Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 1999,51(5):545–552. 10.1007/s002530051431
Bölker M, Basse CW, Schirawski J: Ustilago maydis secondary metabolism - from genomics to biochemistry. Fungal Genet Biol 2008, 45: 88–93. 10.1016/j.fgb.2008.05.007
Günther M, Hirth T, Zibek S, Rupp S: Produktion von Biotensiden mit Pseudozyma -Stämmen. BIOspektrum 2013,19(7):813–815. 10.1007/s12268-013-0393-y
Morita T, Fukuoka T, Imura T, Kitamoto D: Production of glycolipid biosurfactants by basidiomycetous yeasts. Biotechnol Appl Biochem 2009, 53: 39–49. 10.1042/BA20090033
Kubicek CP, Punt P, Visser J: Production of Organic Acids by Filamentous Fungi. In Industrial Applications. Volume 10. Edited by: Hofrichter M. Springer, Berlin Heidelberg; 2011:215–234. The Mycota 10.1007/978-3-642-11458-8_10
Couturier M, Navarro D, Olive C, Chevret D, Haon M, Favel A, Lesage-Meessen L, Henrissat B, Coutinho PM, Berrin JG: Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis . BMC Genomics 2012, 13: 57. 10.1186/1471-2164-13-57
Geiser E, Wierckx N, Zimmermann M, Blank LM: Identification of an endo-1,4-beta-xylanase of Ustilago maydis . BMC Biotechnol 2013, 13: 59. 10.1186/1472-6750-13-59
Gray KA, Zhao LS, Emptage M: Bioethanol. Curr Opin Chem Biol 2006,10(2):141–146. 10.1016/j.cbpa.2006.02.035
Klement T, Milker S, Jäger G, Grande PM, de Maria PD, Büchs J: Biomass pretreatment affects Ustilago maydis in producing itaconic acid. Microb Cell Factories 2012, 11: 43. 10.1186/1475-2859-11-43
Giltrap NJ, Lewis DH: Inhibition of growth of ectomycorrhizal fungi in culture by phosphate. New Phytol 1981,87(4):669–675. 10.1111/j.1469-8137.1981.tb01701.x
Hilger AB, Thomas KI, Krause HH: The effects of several buffers on growth and phosphorus nutrition of selected ectomycorrhizal fungi. Soil Biol Biochem 1986,18(1):61–67. 10.1016/0038-0717(86)90104-5
Kim HS, Jeon JW, Kim BH, Ahn CY, Oh HM, Yoon BD: Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, by Candida sp. SY16 using fed-batch fermentation. Appl Microbiol Biotechnol 2006,70(4):391–396. 10.1007/s00253-005-0092-9
Magnuson JK, Lasure LL: Organic acid production by filamentous fungi. In Advances in fungal biotechnology for industry, agriculture and medicine. Edited by: Tkacz JS, Lange L. Kluwer Academic/Plenum Publishers, New York; 2004:307–340. 10.1007/978-1-4419-8859-1_12
Vickers CE, Blank LM, Kromer JO: Chassis cells for industrial biochemical production. Nat Chem Biol 2010,6(12):875–877. 10.1038/nchembio.484
Hewald S, Linne U, Scherer M, Marahiel MA, Kämper J, Bölker M: Identification of a gene cluster for biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis . Appl Environ Microbiol 2006,72(8):5469–5477. 10.1128/AEM.00506-06
Teichmann B, Liu LD, Schink KO, Bölker M: Activation of the ustilagic acid biosynthesis gene cluster in Ustilago maydis by the C 2 H 2 zinc finger transcription factor Rua1. Appl Environ Microbiol 2010,76(8):2633–2640. 10.1128/AEM.02211-09
Terfrüchte M, Joehnk B, Fajardo-Somera R, Braus GH, Riquelme M, Schipper K, Feldbrügge M: Establishing a versatile Golden Gate cloning system for genetic engineering in fungi. Fungal Genet Biol 2014, 62: 1–10. 10.1016/j.fgb.2013.10.012
Okabe M, Lies D, Kanamasa S, Park EY: Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus . Appl Microbiol Biotechnol 2009,84(4):597–606. 10.1007/s00253-009-2132-3
Park YS, Itida M, Ohta N, Okabe M: Itaconic acid production using an air-lift bioreactor in repeated batch culture of Aspergillus terreus . J Ferment Bioeng 1994,77(3):329–331. 10.1016/0922-338X(94)90245-3
Kautola H, Rymowicz W, Linko Y-Y, Linko P: Itaconic acid production by immobilized Aspergillus terreus with varied metal additions. Appl Microbiol Biotechnol 1991,35(2):154–158. 10.1007/BF00184679
Kautola H, Vahvaselkä M, Linko YY, Linko P: Itaconic acid production by immobilized Aspergillus terreus from xylose and glucose. Biotechnol Lett 1985,7(3):167–172. 10.1007/BF01027812
Kautola H, Vassilev N, Linko YY: Continuous itaconic acid production by immobilized biocatalysts. J Biotechnol 1990,13(4):315–323. 10.1016/0168-1656(90)90079-Q
Horitsu H, Takahashi Y, Tsuda J, Kawai K, Kawano Y: Production of itaconic acid by Aspergillus terreus immobilized in polyacrylamide gels. Eur J Appl Microbiol Biotechnol 1983,18(6):358–360. 10.1007/BF00504745
Yahiro K, Takahama T, Jai S, Park Y, Okabe M: Comparison of air-lift and stirred tank reactors for itaconic acid production by Aspergillus terreus . Biotechnol Lett 1997,19(7):619–621. 10.1023/A:1018374428391
Okabe M, Ohta N, Park YS: Itaconic acid production in an air-lift bioreactor using a modified draft tube. J Ferment Bioeng 1993,76(2):117–122. 10.1016/0922-338X(93)90067-I
Kuenz A, Gallenmuller Y, Willke T, Vorlop KD: Microbial production of itaconic acid: developing a stable platform for high product concentrations. Appl Microbiol Biotechnol 2012,96(5):1209–1216. 10.1007/s00253-012-4221-y
Hevekerl A, Kuenz A, Vorlop K-D: Filamentous fungi in microtiter plates—an easy way to optimize itaconic acid production with Aspergillus terreus . Appl Microbiol Biotechnol 2014, 1–7.
Guevarra ED, Tabuchi T: Production of 2-hydroxyparaconic and itatartaric acids by Ustilago cynodontis and simple recovery process of the acids. Agric Biol Chem 1990,54(9):2359–2365. 10.1271/bbb1961.54.2359
Levinson WE, Kurtzman CP, Kuo TM: Production of itaconic acid by Pseudozyma antarctica NRRL Y-7808 under nitrogen-limited growth conditions. Enzym Microb Technol 2006,39(4):824–827. 10.1016/j.enzmictec.2006.01.005
Hallsworth JE, Magan N: Culture age, temperature, and pH affect the polyol and trehalose contents of fungal propagules. Appl Environ Microbiol 1996,62(7):2435–2442.
Jäger G: Biocatalytic conversion of cellulose towards itaconic acid, Dissertation. Rheinisch-Westfälische Technische Hochschule Aachen; 2012.
Zapata-Morín PA, Fuentes-Dávila G, Adame-Rodríguez JM, Aréchiga-Carvajal ET: Effect of pH and carbon source on the vegetative growth of Ustilago cynodontis (Pass.) Henn. in a solid and liquid culture medium. Revista Mexicana de Fitopatología 2010,28(2):159–161.
Durieu-Trautmann O, Tavlitzki J: Reversible and permanent effects of the carbon sources and various antibiotics on the morphology and metabolic properties of Ustilago cynodontis cells. J Cell Biol 1975,66(1):102–113. 10.1083/jcb.66.1.102
Maassen N, Panakova M, Wierckx N, Geiser E, Zimmermann M, Bölker M, Klinner U, Blank LM: Influence of carbon and nitrogen concentration on itaconic acid production by the smut fungus Ustilago maydis . Eng Life Sci 2013,14(2):129–134. 10.1002/elsc.201300043
Klement T, Büchs J: Itaconic acid - a biotechnological process in change. Bioresour Technol 2013, 135: 422–431. 10.1016/j.biortech.2012.11.141
Duetz WA, Ruedi L, Hermann R, O’Connor K, Büchs J, Witholt B: Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates. Appl Environ Microbiol 2000,66(6):2641–2646. 10.1128/AEM.66.6.2641-2646.2000
Willis RB, Montgomery ME, Allen PR: Improved method for manual, colorimetry determination of total Kjeldahl nitrogen using salicylate. J Agric Food Chem 1996,44(7):1804–1807. 10.1021/jf950522b
Teichmann B: The cellobiose lipid ustilagic acid from Ustilago maydis: biosynthesis and transcriptional regulation, Dissertation. Philipps University Marburg; 2009.