Prosopis tamarugo Phil.: a native tree from the Atacama Desert groundwater table depth thresholds for conservation
Tóm tắt
Prosopis tamarugo Phil. is a legume tree native to the Atacama Desert, Chile. Tamarugo has physiological characteristics that are highly adapted to extreme life conditions in the Pampa del Tamarugal. Null precipitation makes tamarugo completely dependent on groundwater, developing in areas where the groundwater depth is closest to the surface. Groundwater extraction for domestic consumption, mining, and agriculture affects the desert ecosystem by lowering the water table. Measuring and describing the impacts on vegetation through the monitoring of physiological variables along with groundwater depletion in salt flats where extraction wells are located has contributed to a better understanding of tamarugo response to this stress factor. Integrated variables such as green canopy fraction, normalized difference vegetation index (NDVI), 18O isotope enrichment in foliar tissue, and twig growth proved to be far more reactive toward groundwater depth increase and presented lower error values. These variables respond to mechanisms that tamarugo has to maintain a stable water condition when water offer (water table depth (WTD)) decreases regarding water demand (transpiration). Defoliation along with twig growth diminishment would combine toward a canopy reduction strategy in order to reduce water demand. Green biomass loss, beyond a certain WTD, would lead to complete drying of the tamarugo. Up to 10 m of groundwater table depth, Tamarugo grows, has photosynthetic activity, and has the ability to perform pulvinary movements. Beyond 20 m of water table depth, tamarugo survival is compromised and hydraulic failure is inferred to occur. The current scenario is of groundwater over-exploitation; if economic efforts will be made to conserve and/or restore tamarugo, habitat groundwater extraction is a key element in effective management. Reaching of the thresholds depends on the adequate authority management of groundwater. The objectives of this review are (a) to review information collected from scientific studies regarding tamarugo condition and its response, over time, to WTD increase, (b) to identify WTD thresholds that affect tamarugo’s functioning, and (c) to propose a sequence of physiological events triggered by groundwater (GW) depletion.
Tài liệu tham khảo
Acevedo E, Pastenes J (1983) Distribución de Prosopis tamarugo Phil. En la Pampa del Tamarugal (Desierto de Atacama). Terra Aridae 2:317–335
Acevedo E, Sotomayor D, Zenteno V (1985) Parámetros ambientales y comportamiento hídrico de Prosopis tamarugo Phil. en la localidad de Refresco (Pampa del Tamarugal). In: Habit M (ed) Estado Actual Sobre el Conocimiento de Prosopis tamarugo. FAO, Arica, p 483
Acevedo E, Ortiz M, Franck N, Sanguineti P (2007) Relaciones hídricas de Prosopis tamarugo Phil. Uso de isótopos estables (Water Relations of Prosopis Tamarugo Phil. Use of Stable Isotopes)., Universidad de Chile, Agronomical Science issue N°14. The University of Chile, Santiago, Chile, p 82
Aravena R, Acevedo E (1985) Estudio de la relación hídrica de Prosopis tamarugo Phil. mediante isótopos estables, oxígeno-18 y deuterio. (Study of the water relations of Prosopis Tamarugo Phil using stable isotopes, oxigen-18 and deuterium). In: Habit M (ed) Estado Actual Sobre el Conocimiento de Prosopis tamarugo. FAO, Arica, p 483
Barbour MM, Fischer RA, Sayre KD, Farquhar GD (2000) Oxygen isotope ratio of leaf and grain material correlates with stomatal conductance and grain yield in irrigated wheat. Aust J Plant Physiol 27:625–637
Barbour M (2007) Stable oxygen isotope composition of plant tissue: a review. Funct Plant Biol 34:83–94
Campillo UR, Hojas A (1975) Hidrogeología de la Pampa del Tamarugal. Instituto de Investigación de Recursos Naturales. Corporación de Fomento de la Producción, Santiago, p 61
Chávez RO (2014) Assessing water stress of desert vegetation using remote sensing: the case of the tamarugo forest in the Atacama Desert (Northern Chile), PhD thesis Wageningen University for the degree of doctor in the year 2014., p 174
Chávez RO, Clevers JG, Herold M, Acevedo E, Ortiz M (2013a) Assessing water stress of desert tamarugo trees using in situ data and very high spatial resolution remote sensing. Remote Sens 5(10):5064–5088
Chávez RO, Clevers JG, Herold M, Acevedo E, Ortiz M (2013b) Modelling the spectral response of the desert tree Prosopis tamarugo to water stress. Int J Appl Earth Obs Geoinf 21:53–65
DGA (2011) Actualización de la oferta y la demanda de recursos hídricos subterráneos del sector hidrogeológico de aprovechamiento común Pampa del Tamarugal. Ministerio de Obras Públicas, Dirección General de Aguas, Santiago, p 92
DICTUC (2006) Estudio hidrológico para actualización de la estimación de la recarga de los acuíferos de la Pampa del Tamarugal, Sur Viejo y Llamara. Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Departamento de Ingeniería Hidráulica y Ambiental, Santiago, SOQUIMICH
Deshayes M, Guyon D, Jean H, Stach N, Jolly A, Hagolle O (2006) The contribution of remote sensing to the assessment of drought effects in forest ecosystems. Ann For Sci 63(6):579–595
Elmore AJ, Manning SJ, Mustard JF, Craine JM (2006) Decline in alkali meadow vegetation cover in California: the effects of groundwater extraction and drought. J Appl Ecol 43(4):770–779
Ezcurra E (2006) Global deserts outlook. UNEP/Earthprint, San Diego, p p154
Farquhar GD, O’Leary M, Berry J (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137
Habit M (1985) Estado Actual del Conocimiento sobre Prosopis tamarugo Phil. FAO, Santiago, p 483, Oficina Regional para América Latina y El Caribe
Hsiao TC, Acevedo, E (1974) Plant responses to water deficits, water use efficiency, and drought resistance. Agricultural Meteorology 14:59–84.
IREN (Instituto de Investigación de Recursos Naturales), Chile (1976) Inventario de los recursos naturales de la Primera Región, Tarpacá., Convenio IREN-SERPLAC, Primera Región. Informe No 36, Vol. I
JICA-DGA-PCI (1995) Study on the development of water resources in northern Chile. Gobierno de Chile, Santiago
Kahn D (1987) Physiological survey of Pakistan coast with special reference to pasture and forest development through biosaline technique., p 543, PhD Thesis, University of Karachi, Department of Botany
Lhener G, Delatorre J, Lütz C, Cardemil L (2001) Field studies on the photosynthesis of two desert Chilean plants: Prosopis chilensis and Prosopis tamarugo. Journal of Photochemistry and Photobiology B: Biology 64:36–44.
Liu CC, Welham CVJ, Zhang XQ, Wang RQ (2007) Leaflet movement of Robinia pseudoacacia in response to a changing light environment. Journal of Integrative Plant Biology 49:419–424
Mandre M (2002) Stress concepts and plants. Forestry Studies 36:9–17
McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739
Ministry of Environment (Ministerio del medio ambiente), Gobierno de Chile (2012) Clasificación de especies, fichas de proceso, Prosopis tamarugo. p 6.
Mooney H, Gulmon S, Rudel P, Ehleringer J (1980) Further observations on the water relations of Prosopis tamarugo of the northern Atacama Desert. Oecologia 44:177–180
Ortiz M (2010) Nivel Freático en la Pampa del Tamarugal y crecimiento de Prosopis tamarugo Phil. Tesis doctoral programa de doctorado en ciencias silvoagropecuarias y veterinarias, Universidad de Chile., p 92
Ortiz M, Morales L, Silva P, Acevedo E (2012) Estimación del nivel freático a partir del NDVI Landsat en La Pampa del Tamarugal (Chile). Teledetección 37:42–50
Pallardy SG (2008) Physiology of woody plants. Elsevier, Amsterdam/Boston/Heidelberg, p 454
Pastenes C, Porter V, Baginsky C, Norton P, González J (2004) Paraheliotropism can protect water stressed bean (Phaseolus vulgaris L.) plants against photoinhibition. J Plant Physiol 161:1315–1323
Pliscoff P, Leubert F (2006) Sinopsis bioclimática y vegetacional de Chile. Santiago. Editorial Universitaria, Santiago, p 316
PRAMAR (2007). Existencias y estado vital de Tamarugos y Algarrobos Blancos en la Pampa del Tamarugal y Salar de Llamara 58° Congreso de la Sociedad Agronómica de Chile, Arica, Chile, PRAMAR Ambiental Consultores.
Ramoliya P, Patel H, Joshi J, Pandey A (2006) Effect of salinization of soil on growth and nutrient accumulation in seedling of Prosopis cineraria. J Plant Nutr 29(2):283–303
Reinoso H, Sosa L, Ramírez L, Luna V (2004) Salt-induced changes in the vegetative anatomy of Prosopis strombulifera (Leguminoseae). Can J Bot 82(5):618–628
Rood SB, Patiño S, Coombs, K, Tyree MT (2000) Branch sacrifice: cavitation-associated drought adaptation of riparian cottonwoods. Trees 14:248–257.
Rood SB, Braatne JH, Hughes FMR (2003) Ecophysiology of riparian cottonwoods: stream flow dependency, water relations and restoration. Tree Physiol 23:1113–1124
Rojas R, Dassargues A (2007) Groundwater flow modelling of the regional aquifer of the Pampa del Tamarugal, northern Chile. Hydrogeology Journal 15:537–551.
Rojas R, Batelaan O, Feyen L, Dessargues A (2013) Assesment of conecptual model uncertainty for the regional acquifer Pampa del Tamarugal- North Chile. Hrydrology and Earth Systems Sciences 14:171–192.
Santibañez F, Luzio W, Verw W, Etienne M, Lailhacar S (1982) Análisis de los Ecosistemas de la I Región. CORFO, Santiago, p p195
Sperry JS (2000) Hydraulic constraints on plant gas exchange. Agric For Meteorol 104:13–23
Squella C (2013) Respuestas de Tamarugo (Prosopis tamarugo Phil.) a un estado hídrico decreciente en el Salar de Llamara, Msc thesis Universidad de Chile for the degree on Master in the year 2013., p 94
Sudzuki F (1969). Absorción foliar de humedad atmosferica en tamarugo, Prosopis tamarugo Phil. Universidad de Chile, Facultad de Agronomia, Boletín Tecnico. Boletin Tecnico de la Estación Experimental Agronómica de la Universidad de Chile 30:1–23
Sudzuki F (1985) Utilización de humedad ambiental por Prosopis tamarugo Phil. In: Mario H (ed) Estado actual sobre el conocimiento de Prosopis tamarugo. FAO, Arica, Chile, 11-15 de Junio de 1984. p 483
Thomas PA, Packham JR (2007) Ecology of woodlands and forests. Description, dynamics and diversity. Cambridge University Press, Cambridge, p 528
Wilson BF (2000) Apical control of branch growth and angle in woody plants. J Botany 87(5):601–607