Propylene glycol-assisted seed layer-free hydrothermal synthesis of nanostructured WO3 thin films for electrochromic applications
Tóm tắt
This research article presents an overview of the hydrothermal synthesis of nanostructured tungsten oxide (WO3) and its electrochromic (EC) performance. A remarkable evolution in the past few years of producing pure and fine WO3 nanostructures using mild hydrothermal synthesis has received great attention. The hydrothermal process is highly suited for producing monodispersed nanoparticles with control over size and morphology, low processing temperature, and easy synthesis. In this article, we developed a facile seed layer-free hydrothermal approach for preparing WO3 thin films with improved EC performance. Structural and morphological properties were studied using X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The electrochemical stability of the propylene glycol-assisted nanostructured WO3 film was examined in lithium per chlorate-propylene carbonate (LiClO4-PC) electrolyte for prolonged color/bleach cycles. The results showed an improvement in electrochemical stability with fast response time.
Tài liệu tham khảo
Jiao Z, Wang J, Ke L, Liu X, Demir HV, Yang MF, Sun XW (2012) Electrochim Acta 63:153–160
Liu Z, Miyauchi M, Yamazaki T, Shen Y (2009) Sens Actuators B 140:514–519
Jiao Z, Sun XW, Wang J, Ke L, Demir HV (2010) J Phys D Appl Phys 43:285501–285506
Jiao Z, Wang J, Ke L, Sun XW, Demir HV (2011) ACS Appl Mater Interfaces 3:229–236
Miyauchi M, Nakajima A, Watanabe T, Hashimoto K (2002) Chem Mater 14:2812–2816
Li XL, Liu JF, Li YD (2003) Inorg Chem 42:921–924
Teoh LG, Shieh J, Lai WH, Hung IM, Hon MH (2005) J Alloy Compd 396:251–254
Hibino M, Han WC, Kudo T (2000) Solid State Ion 135:61–69
Zhang B, Liu JD, Guan SK, Wan YZ, Zhang YZ, Chen RF (2007) J Alloy Compd 439:55–58
Kobosew NI, Nekrassov NZ (1930) Electrochem 36:529–544
Zhang J, Tu JP, Xia XH, Wang XL, Gu CD (2011) J Mater Chem 21:5492–5498
Li H, Shi G, Wang H, Zhang Q, Li Y (2014) J Mater Chem A 2:11305–11310
Song X, Zhao Y, Zheng Y (2006) Mater Lett 60:3405–3408
Zheng F, Zhang M, Guo M (2013) Thin Solid Films 534:45–53
Nah YC, Ghicov A, Kim D, Schmuki P (2008) Electrochem Commun 10:1777–1780
Shibuya M, Miyauchi M (2009) Chem Phys Lett 473:126–130
Houweling ZS, Harks PPRML, Kuang Y, van derWerf CHM, Geus JW, Schropp REI (2015) Thin Solid Films 575:76–83
Chien AT (1998) Hydrothermal epitaxy of perovskite thin films, doctor of philosophy. University of California, California
Jiao Z, Wang X, Wang J, Ke L, Demir HV, Koh TW, Sun XW (2012) Chem Commun 48:365–367
Zhao ZG, Miyauchi M (2008) Angew Chem Int Ed 47:7051–7055
Rajagopal DN, Mangalaraj D, Djaoued Y, Robichaud J, Khyzhun OY (2009) Nanoscale Res Lett 4:8–14
Huang K, Pan Q, Yang F, Ni S, Wei X, He D (2008) J Phys D: Appl Phys 41:155417–155420
Stoycheva T, Vallejos S, Blackman C, Moniz SJA, Calderer J, Correig X (2012) Sens Actuators B Chem 161:406–413
Kumar VB, Mohanta D (2011) Bull Mater Sci 34:435–442
Deepa M, Srivastava AK, Sood KN, Agnihotry SA (2006) Nanotechnology 17:2625–2630
Karimi M, Sahraiyan B, Naghipour F, Sheikholeslami Z, Davoodi MG (2013) Int J Agric Crop Sci 5(11):1209–1213
Pourfarzad A, Khodaparast MHH, Karimi M, Mortazavi SA, Davoodi MG, Sourki AH, Jahromi SHR (2011) J Food Process Eng 34:1435–1448
The Dow Chemical Company (2003) A guide to glycols. http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_091b/0901b8038091b508.pdf?filepath=propyleneglycol/pdfs/noreg/117-01682.pdf&fromPage=GetDoc. Accessed 26 Sept 2016
Onnow DR, Kullman L, Granqvist CG (1996) J Appl Phys 80:423–430
Her YC, Chang CC (2014) Cryst Eng Comm 16:5379–5386
Maheswari SP, Habib MA (1988) Sol Energy Mater 18:75–82
Kim YS, Wang F, Hickner M, Zawodzinski TA, McGrath JE (2003) J Membr Sci 212:263–282
Snejdrova E, Dittrich M (2012) Pharmaceutically Used Plasticizers. In: Luqman M (ed) Recent Advances in Plasticizers. InTech, Europe, pp 45–68
Prabhu N, Agilan S, Muthukumarasamy N, Senthilkumaran CK (2013) Dig J Nanomater Biostruct 8:1483–1490