Proposal of three novel species of soil bacteria, Variovorax ureilyticus, Variovorax rhizosphaerae, and Variovorax robiniae, in the family Comamonadaceae
Tóm tắt
Từ khóa
Tài liệu tham khảo
Davis, D.H., Douroroff, M., Stanier, R.Y., and Mandel, M. 1969 Proposal to reject the genus Hydrogenomonas: Taxonomic implications. Int. J. Syst. Evol. Microbiol. 19, 375–390
Ezaki, T., Hashimoto, Y., and YabuuchiI, E. 1989 Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Evol. Microbiol. 39, 224–229
Felsenstein, J. 1981 Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17, 368–376
Felsenstein, J. 1985 Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791
Fitch, W.M. 1971 Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Zool. 20, 406–416
Frank, J.A., Reich, C.I., Sharma, S., Weisbaum, J.S., Wilson, B.A., and Olsen, G.J. 2008 Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74, 2461–2470
Gao, J.L., Yuan, M., Wang, X.M., Qiu, T.L., Li, J.W., Liu, H.C., Li, X.A., Chen, J., and Sun, J.G. 2015 Variovorax guangxiensis sp. nov., an aerobic, 1-aminocyclopropane-1-carboxylate deaminase producing bacterium isolated from banana rhizosphere. Antonie van Leeuwenhoek 107, 65–72
Han, J.I., Choi, H.K., Lee, S.W., Orwin, P.M., Kim, J., LaRoe, S.L., Kim, T., O’Neil, J., Leadbetter, J.R., Lee, S.Y., et al. 2011 Complete genome sequence of the metabolically versatile plant growthpromoting endophyte Variovorax paradoxus S110 J. Bacteriol. 193, 1183–1190
Im, W.T., Liu, Q.M., Lee, K.J., Kim, S.Y., Lee, S.T., and Yi, T.H. 2010 Variovorax ginsengisoli sp. nov., a denitrifying bacterium isolated from soil of a ginseng field. Int. J. Syst. Evol. Microbiol. 60, 1565–1569
Jiang, F., Chen, L., Belimov, A.A., Shaposhnikov, A.I., Gong, F., Meng, X., Hartung, W., Jeschke, D.W., Davies, W.J., and Dodd, I.C. 2012 Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum. J. Exp. Bot. 63, 6421–6430
Jin, L., Kim, K.K., Ahn, C.Y., and Oh, H.M. 2012 Variovorax defluvii sp. nov., isolated from sewage. Int. J. Syst. Evol. Microbiol. 62, 1779–1783
Kämpfer, P., Busse, H.J., McInroy, J.A., and Glaeser, S.P. 2015 Variovorax gossypii sp. nov., isolated from Gossypium hirsutum. Int. J. Syst. Evol. Microbiol. 65, 4335–4340
Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., et al. 2012 Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721
Kim, B.Y., Weon, H.Y., Yoo, S.H., Lee, S.Y., Kwon, S.W., Go, S.J., and Stackebrandt, E. 2006 Variovorax soli sp. nov., isolated from greenhouse soil. Int. J. Syst. Evol. Microbiol. 56, 2899–2901
Krieg, N.R. and Padgett, P.J. 2011 Phenotypic and physiological characterization methods, pp. 15–61 In Rainey, F. and Oren, A. (eds.), Methods in microbiology, vol. 38, 1st edn., Academic Press, Elsevier’s Science & Technology Rights Department in Oxford, UK.
Kumar, S., Stecher, G., and Tamura, K. 2016 MEGA7 Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874
Kurth, C., Schieferdecker, S., Athanasopoulou, K., Seccareccia, I., and Nett, M. 2016 Variochelins, lipopeptide siderophores from Variovorax boronicumulans discovered by genome mining. J. Nat. Prod. 79, 865–872
Leadbetter, J.R. and Greenberg, E.P. 2000 Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182, 6921–6926
Lin, P.H., Su, S.C., Tsai, Y.C., and Lee, C.Y. 2002 Identification and characterization of a new gene from Variovorax paradoxus Iso1 encoding N-acyl-D-amino acid amidohydrolase responsible for D-amino acid production. Eur. J. Biochem. 269, 4868–4878
Mesbah, M., Premachandran, U., and Whitman, W.B. 1989 Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Evol. Microbiol. 39, 159–167
Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984 An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241
Miwa, H., Ahmed, I., Yoon, J., Yokota, A., and Fujiwara, T. 2008 Variovorax boronicumulans sp. nov., a boron-accumulating bacterium isolated from soil. Int. J. Syst. Evol. Microbiol. 58, 286–289
Nguyen, T.M. and Kim, J. 2016a. Description of Variovorax humicola sp. nov., isolated from a forest topsoil. Int. J. Syst. Evol. Microbiol. 66, 2520–2527
Nguyen, T.M. and Kim, J. 2016b. Rhodococcus pedocola sp. nov. and Rhodococcus humicola sp. nov., two antibiotic-producing actinomycetes isolated from soil. Int. J. Syst. Evol. Microbiol. 66, 2362–2369
Nguyen, T.M. and Kim, J. 2017 A rapid and simple method for identifying bacterial polar lipid components in wet biomass. J. Microbiol. 55, 635–639
Pitcher, D.G., Saunders, N.A., and Owen, R.J. 1989 Rapid extraction of genomic DNA with guanidinium thiocyanate. Lett. Appl. Microbiol. 8, 151–156
Rohde, M. 2011 Microscopy, pp. 61–100 In Rainey, F. and Oren, A. (eds.), Methods in microbiology, vol. 38, 1st edn., Academic Press, Elsevier’s Science & Technology Rights Department in Oxford, UK.
Saitou, N. and Nei, M. 1987 The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425
Sasser, M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101 Newark, DE: MIDI Inc., Delaware, USA.
Satola, B., Wubbeler, J.H., and Steinbuchel, A. 2013 Metabolic characteristics of the species Variovorax paradoxus. Appl. Microbiol. Biotechnol. 97, 541–560
Sierra, G. 1957 A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek 23, 15–22
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997 The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882
Tschech, A. and Pfennig, N. 1984 Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch. Microbiol. 137, 163–167
Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., et al. 1987 Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Evol. Microbiol. 37, 463–464
Widdel, F. and Pfennig, N. 1981 Studies on dissimilatory sulfatereducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch. Microbiol. 129, 395–400
Willems, A., De Ley, J., Gillis, M., and Kersters, K. 1991 NOTES: Comamonadaceae, a new family encompassing the Acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davi. 1969). Int. J. Syst. Evol. Microbiol. 41, 445–450