Proposal and analysis of relative stability in mixed CNT bundle for sub-threshold interconnects

Integration - Tập 80 - Trang 29-40 - 2021
Ashish Singh1, Rajeevan Chandel1, Rohit Dhiman1
1Electronics and Communication Engineering Department, National Institute of Technology, Hamirpur, HP 177 005 India

Tài liệu tham khảo

Li, 2009, Carbon nanomaterials for next-generation interconnects and passives: physics, status, and prospects, IEEE Trans. Electron. Dev., 56, 1799, 10.1109/TED.2009.2026524 Kaushik, 2007, “Waveform analysis and delay prediction for a CMOS gate driving RLC interconnect load,” Integration, VLSI J, 40, 394, 10.1016/j.vlsi.2006.06.001 Rossi, 2007, Modeling crosstalk effects in CNT bus architecture, IEEE Trans. Nanotechnol., 6, 133, 10.1109/TNANO.2007.891814 Pu, 2009, Crosstalk prediction of single- and double-walled carbon-nanotube (SWCNT/DWCNT) bundle interconnects, IEEE Trans. Electron. Dev., 56, 560, 10.1109/TED.2009.2014429 Koo, 2007, Performance comparison between carbon nanotubes, optical and Cu for future high-performance on-chip interconnect applications, IEEE Trans. Electron. Dev., 54, 3206, 10.1109/TED.2007.909045 Naeemi, 2008, Performance modeling for single- and multiwall carbon nanotubes as signal and power interconnects in gigascale systems, IEEE Trans. Electron. Dev., 55, 2574, 10.1109/TED.2008.2003028 Li, 2008, Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects, IEEE Trans. Electron. Dev., 55, 1328, 10.1109/TED.2008.922855 Sarto, 2010, Single-conductor transmission line model of multiwalled carbon nanotubes, IEEE Trans. Nanotechnol., 9, 82, 10.1109/TNANO.2009.2023516 Haruehanroengra, 2007, Analyzing conductance of mixed carbon nanotube bundles for interconnect applications, IEEE Electron. Device Lett., 28, 756, 10.1109/LED.2007.901584 Agrawal, 2016, Comprehensive model for high-speed current-mode signaling in next genertaion MWCNT bundle interconnect using FDTD technique, IEEE Trans. Nanotechnol., 15, 590, 10.1109/TNANO.2016.2558475 Kumar, 2018, An efficient crosstalk model for coupled multi-walled carbon nanotube interconnects, IEEE Trans. Electromagn C., 60, 487, 10.1109/TEMC.2017.2719052 Zhu, 2006, Growth and electrical characterization of high-aspect-ratio carbon nanotube arrays, Carbon, 44, 253, 10.1016/j.carbon.2005.07.037 Cheung, 2002, Diameter-controlled synthesis of carbon nanotubes, J. Phys. Chem. B, 106, 2429, 10.1021/jp0142278 Pable, 2012, Interconnect design for subthreshold circuits, IEEE Trans. Nanotechnol., 11, 633, 10.1109/TNANO.2012.2189015 Subash, 2013, A new spatially rearranged bundle of mixed carbon nanotube as VLSI interconnection, IEEE Trans. Nanotechnol., 12, 3, 10.1109/TNANO.2011.2159014 Sathyakam, 2011, Transient analysis of mixed carbon nanotube bundle interconnects, Electron. Lett., 47, 1134, 10.1049/el.2011.1705 Das, 2011, Crosstalk overshoot/undershoot analysis and its impact on gate-oxide reliability in multi-wall carbon nanotube interconnects, J. Comput. Electron., 10, 360, 10.1007/s10825-011-0371-x Majumder, 2014, Frequency response and bandwidth analysis of multi-layer graphene nanoribbon and multi-walled carbon nanotube interconnects, Micro & Nano Lett., 9, 557, 10.1049/mnl.2013.0742 Majumder, 2014, Analysis of delay and dynamic crosstalk in bundled carbon nanotube interconnects, IEEE Trans. Electromagn C., 56, 1666, 10.1109/TEMC.2014.2318017 Singh, 2018, “Modeling of mixed CNT bundle for sub–threshold interconnects, in Proc. IEEE EDAPS, 1 Fathi, 2009, A novel approach for stability analysis in carbon nanotube interconnects, IEEE Electron. Device Lett., 30, 475, 10.1109/LED.2009.2017388 Kumar, 2015, Time and frequency domain analysis of MLGNR interconnects, IEEE Trans. Nanotechnol., 14, 484, 10.1109/TNANO.2015.2408353 Nasiri, 2010, Stability analysis in graphene nanoribbon interconnects, IEEE Electron. Device Lett., 31, 1458, 10.1109/LED.2010.2079312 Nasiri, 2012, Stability analysis in multiwall carbon nanotube bundle interconnects, Microelectron. Reliab., 52, 3026, 10.1016/j.microrel.2012.06.147 Bagheri, 2015, Crosstalk bandwidth and stability analysis in graphene nanoribbon interconnects, Microelectron. Reliab., 55, 1262, 10.1016/j.microrel.2015.05.004 Majumder, 2012, Dynamic crosstalk effect in mixed CNT bundle interconnects, Electron. Lett., 48, 384, 10.1049/el.2012.0536 Ismail, 2000, Equivalent Elmore delay for RLC trees, IEEE Trans. Computer-Aided Design, 19, 83, 10.1109/43.822622 Kumbhare, 2019, Analytical study of bundled MWCNT and edged MLGNR interconnects: impact on propagation delay and area, IEEE Trans. Nanotechnol., 18, 606, 10.1109/TNANO.2019.2920679 Naeemi, 2006, Compact physical models for multiwall carbon nanotube interconnects, IEEE Electron. Device Lett., 27, 338, 10.1109/LED.2006.873765 D'Amore, 2010, High-frequency effective impedance of micro-wires based on carbon nanotube technology, IEEE 9th Int. Symp. Electromagn. Compat., Poland, 14 Antonini, 2011, Skin and proximity effects modeling in micro-wires based on carbon nanotube bundles, 26 Wu, 2009, Contact resistance in carbon nanostructure via interconnects, Appl. Phys. Lett., 94, 10.1063/1.3123164 Park, 2003, Electron-phonon scattering in metallic single-walled carbon nanotubes, Nano Lett., 4, 517, 10.1021/nl035258c Zhao, 2014, Comparative study on multilayer graphene nanoribbon (MLGNR) interconnects, IEEE Trans. Electromagn C., 56, 638, 10.1109/TEMC.2014.2301196 D'Amore, 2010, Fast transient analysis of next-generation interconnects based on carbon nanotubes, IEEE Trans. Electromagn C., 52, 496, 10.1109/TEMC.2010.2045383 Sarto, 2010, Comparative analysis of TL models for multilayer graphene nanoribbon and multiwall carbon nanotube interconnects, Proc. IEEE Int. Symp. Electromagn. Compat., 212 Sahoo, 2015, Modeling and analysis of crosstalk induced effects in multiwalled carbon nanotube bundle interconnects: an ABCD parameter-based approach, IEEE Trans. Nanotechnol., 14, 259, 10.1109/TNANO.2014.2388252 Alioto, 2010, Understanding DC behavior of subthreshold CMOS logic through closed-form analysis, IEEE Trans. Circ. Syst., 57, 1597 Lu, 2015, Electrical modeling and characterization of shield differential through silicon vias, IEEE Trans. Electron. Dev., 62, 1544, 10.1109/TED.2015.2410312 Cheng, 2017, Investigation of Copper-carbon nanotube composites as global VLSI interconnects, IEEE Trans. Nanotechnol., 16, 891, 10.1109/TNANO.2017.2756928 Cui, 2012, Signal transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects, IEEE Trans. Electromagn C., 54, 126, 10.1109/TEMC.2011.2172947 Raychowdhury, 2006, Modeling of metallic carbon-nanotube interconnects for circuit simulations and a comparison with Cu interconnects for scaled technologies, IEEE Trans. Comput. Aided Des. Integrated Circ. Syst., 25, 58, 10.1109/TCAD.2005.853702 Nieuwoudt, 2006, Evaluating the impact of resistance in carbon nanotube bundles for VLSI interconnect using diameter-dependent modeling techniques, IEEE Trans. Electron. Dev., 53, 2460, 10.1109/TED.2006.882035 Das, 2011, Analysis of crosstalk in single- and multiwall carbon nanotube interconnects and its impact on gate oxide reliability, IEEE Trans. Nanotechnol., 10, 1362, 10.1109/TNANO.2011.2146271 Qian, 2008, Stability analysis for coupled multilayer graphene nanoribbon interconnects, Microelectron. J., 39, 1834 Xu, 2010, Compact AC modeling and performance analysis of through-silicon vias in 3-D ICs, IEEE Trans. Electron. Dev., 57, 3405, 10.1109/TED.2010.2076382 Zhao, 2009, Field-based capacitance modeling for sub-65-nm on-chip interconnect, IEEE Trans. Electron. Dev., 56, 1862, 10.1109/TED.2009.2026162 Jamal, 2011, Ultra-low power single-wall carbon nanotube interconnects for subthreshold circuits, IEEE Trans. Nanotechnol., 10, 99, 10.1109/TNANO.2010.2095428