Proposal and analysis of relative stability in mixed CNT bundle for sub-threshold interconnects
Tài liệu tham khảo
Li, 2009, Carbon nanomaterials for next-generation interconnects and passives: physics, status, and prospects, IEEE Trans. Electron. Dev., 56, 1799, 10.1109/TED.2009.2026524
Kaushik, 2007, “Waveform analysis and delay prediction for a CMOS gate driving RLC interconnect load,” Integration, VLSI J, 40, 394, 10.1016/j.vlsi.2006.06.001
Rossi, 2007, Modeling crosstalk effects in CNT bus architecture, IEEE Trans. Nanotechnol., 6, 133, 10.1109/TNANO.2007.891814
Pu, 2009, Crosstalk prediction of single- and double-walled carbon-nanotube (SWCNT/DWCNT) bundle interconnects, IEEE Trans. Electron. Dev., 56, 560, 10.1109/TED.2009.2014429
Koo, 2007, Performance comparison between carbon nanotubes, optical and Cu for future high-performance on-chip interconnect applications, IEEE Trans. Electron. Dev., 54, 3206, 10.1109/TED.2007.909045
Naeemi, 2008, Performance modeling for single- and multiwall carbon nanotubes as signal and power interconnects in gigascale systems, IEEE Trans. Electron. Dev., 55, 2574, 10.1109/TED.2008.2003028
Li, 2008, Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects, IEEE Trans. Electron. Dev., 55, 1328, 10.1109/TED.2008.922855
Sarto, 2010, Single-conductor transmission line model of multiwalled carbon nanotubes, IEEE Trans. Nanotechnol., 9, 82, 10.1109/TNANO.2009.2023516
Haruehanroengra, 2007, Analyzing conductance of mixed carbon nanotube bundles for interconnect applications, IEEE Electron. Device Lett., 28, 756, 10.1109/LED.2007.901584
Agrawal, 2016, Comprehensive model for high-speed current-mode signaling in next genertaion MWCNT bundle interconnect using FDTD technique, IEEE Trans. Nanotechnol., 15, 590, 10.1109/TNANO.2016.2558475
Kumar, 2018, An efficient crosstalk model for coupled multi-walled carbon nanotube interconnects, IEEE Trans. Electromagn C., 60, 487, 10.1109/TEMC.2017.2719052
Zhu, 2006, Growth and electrical characterization of high-aspect-ratio carbon nanotube arrays, Carbon, 44, 253, 10.1016/j.carbon.2005.07.037
Cheung, 2002, Diameter-controlled synthesis of carbon nanotubes, J. Phys. Chem. B, 106, 2429, 10.1021/jp0142278
Pable, 2012, Interconnect design for subthreshold circuits, IEEE Trans. Nanotechnol., 11, 633, 10.1109/TNANO.2012.2189015
Subash, 2013, A new spatially rearranged bundle of mixed carbon nanotube as VLSI interconnection, IEEE Trans. Nanotechnol., 12, 3, 10.1109/TNANO.2011.2159014
Sathyakam, 2011, Transient analysis of mixed carbon nanotube bundle interconnects, Electron. Lett., 47, 1134, 10.1049/el.2011.1705
Das, 2011, Crosstalk overshoot/undershoot analysis and its impact on gate-oxide reliability in multi-wall carbon nanotube interconnects, J. Comput. Electron., 10, 360, 10.1007/s10825-011-0371-x
Majumder, 2014, Frequency response and bandwidth analysis of multi-layer graphene nanoribbon and multi-walled carbon nanotube interconnects, Micro & Nano Lett., 9, 557, 10.1049/mnl.2013.0742
Majumder, 2014, Analysis of delay and dynamic crosstalk in bundled carbon nanotube interconnects, IEEE Trans. Electromagn C., 56, 1666, 10.1109/TEMC.2014.2318017
Singh, 2018, “Modeling of mixed CNT bundle for sub–threshold interconnects, in Proc. IEEE EDAPS, 1
Fathi, 2009, A novel approach for stability analysis in carbon nanotube interconnects, IEEE Electron. Device Lett., 30, 475, 10.1109/LED.2009.2017388
Kumar, 2015, Time and frequency domain analysis of MLGNR interconnects, IEEE Trans. Nanotechnol., 14, 484, 10.1109/TNANO.2015.2408353
Nasiri, 2010, Stability analysis in graphene nanoribbon interconnects, IEEE Electron. Device Lett., 31, 1458, 10.1109/LED.2010.2079312
Nasiri, 2012, Stability analysis in multiwall carbon nanotube bundle interconnects, Microelectron. Reliab., 52, 3026, 10.1016/j.microrel.2012.06.147
Bagheri, 2015, Crosstalk bandwidth and stability analysis in graphene nanoribbon interconnects, Microelectron. Reliab., 55, 1262, 10.1016/j.microrel.2015.05.004
Majumder, 2012, Dynamic crosstalk effect in mixed CNT bundle interconnects, Electron. Lett., 48, 384, 10.1049/el.2012.0536
Ismail, 2000, Equivalent Elmore delay for RLC trees, IEEE Trans. Computer-Aided Design, 19, 83, 10.1109/43.822622
Kumbhare, 2019, Analytical study of bundled MWCNT and edged MLGNR interconnects: impact on propagation delay and area, IEEE Trans. Nanotechnol., 18, 606, 10.1109/TNANO.2019.2920679
Naeemi, 2006, Compact physical models for multiwall carbon nanotube interconnects, IEEE Electron. Device Lett., 27, 338, 10.1109/LED.2006.873765
D'Amore, 2010, High-frequency effective impedance of micro-wires based on carbon nanotube technology, IEEE 9th Int. Symp. Electromagn. Compat., Poland, 14
Antonini, 2011, Skin and proximity effects modeling in micro-wires based on carbon nanotube bundles, 26
Wu, 2009, Contact resistance in carbon nanostructure via interconnects, Appl. Phys. Lett., 94, 10.1063/1.3123164
Park, 2003, Electron-phonon scattering in metallic single-walled carbon nanotubes, Nano Lett., 4, 517, 10.1021/nl035258c
Zhao, 2014, Comparative study on multilayer graphene nanoribbon (MLGNR) interconnects, IEEE Trans. Electromagn C., 56, 638, 10.1109/TEMC.2014.2301196
D'Amore, 2010, Fast transient analysis of next-generation interconnects based on carbon nanotubes, IEEE Trans. Electromagn C., 52, 496, 10.1109/TEMC.2010.2045383
Sarto, 2010, Comparative analysis of TL models for multilayer graphene nanoribbon and multiwall carbon nanotube interconnects, Proc. IEEE Int. Symp. Electromagn. Compat., 212
Sahoo, 2015, Modeling and analysis of crosstalk induced effects in multiwalled carbon nanotube bundle interconnects: an ABCD parameter-based approach, IEEE Trans. Nanotechnol., 14, 259, 10.1109/TNANO.2014.2388252
Alioto, 2010, Understanding DC behavior of subthreshold CMOS logic through closed-form analysis, IEEE Trans. Circ. Syst., 57, 1597
Lu, 2015, Electrical modeling and characterization of shield differential through silicon vias, IEEE Trans. Electron. Dev., 62, 1544, 10.1109/TED.2015.2410312
Cheng, 2017, Investigation of Copper-carbon nanotube composites as global VLSI interconnects, IEEE Trans. Nanotechnol., 16, 891, 10.1109/TNANO.2017.2756928
Cui, 2012, Signal transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects, IEEE Trans. Electromagn C., 54, 126, 10.1109/TEMC.2011.2172947
Raychowdhury, 2006, Modeling of metallic carbon-nanotube interconnects for circuit simulations and a comparison with Cu interconnects for scaled technologies, IEEE Trans. Comput. Aided Des. Integrated Circ. Syst., 25, 58, 10.1109/TCAD.2005.853702
Nieuwoudt, 2006, Evaluating the impact of resistance in carbon nanotube bundles for VLSI interconnect using diameter-dependent modeling techniques, IEEE Trans. Electron. Dev., 53, 2460, 10.1109/TED.2006.882035
Das, 2011, Analysis of crosstalk in single- and multiwall carbon nanotube interconnects and its impact on gate oxide reliability, IEEE Trans. Nanotechnol., 10, 1362, 10.1109/TNANO.2011.2146271
Qian, 2008, Stability analysis for coupled multilayer graphene nanoribbon interconnects, Microelectron. J., 39, 1834
Xu, 2010, Compact AC modeling and performance analysis of through-silicon vias in 3-D ICs, IEEE Trans. Electron. Dev., 57, 3405, 10.1109/TED.2010.2076382
Zhao, 2009, Field-based capacitance modeling for sub-65-nm on-chip interconnect, IEEE Trans. Electron. Dev., 56, 1862, 10.1109/TED.2009.2026162
Jamal, 2011, Ultra-low power single-wall carbon nanotube interconnects for subthreshold circuits, IEEE Trans. Nanotechnol., 10, 99, 10.1109/TNANO.2010.2095428