Properties of vapor-deposited and solution-processed targets for laser-driven inertial confinement fusion experiments
Tóm tắt
Tài liệu tham khảo
2016, Demonstration of fuel hot-spot pressure in excess of 50 Gbar for direct-drive, layered deuterium-tritium implosions on OMEGA, Phys. Rev. Lett., 117, 025001, 10.1103/PhysRevLett.117.025001
Regan, 2016, Demonstration of fuel hot-spot pressure in excess of 50 Gbar for direct-drive, layered deuterium-tritium implosions on OMEGA, Phys. Rev. Lett., 117, 059903(E), 10.1103/PhysRevLett.117.059903
2016, Demonstrating ignition hydrodynamic equivalence in direct-drive cryogenic implosions on OMEGA, J. Phys. Conf. Ser., 717, 012008, 10.1088/1742-6596/717/1/012008
2018, The national direct-drive program: OMEGA to the national ignition facility, Fusion Sci. Technol., 73, 89, 10.1080/15361055.2017.1397487
1997, The PAMS/GDP process for production of ICF target mandrels, Fusion Technol., 31, 381, 10.13182/FST31-381
1991, Development of deuterated polystyrene shells for laser fusion by means of a density-matched emulsion method, J. Vac. Sci. Technol. A, 9, 2145, 10.1116/1.577241
2017, Quantitative submicron particulate characterization by dark-field microscopy, Fusion Sci. Technol., 73, 119, 10.1080/15361055.2017.1406236
ImageJ, http://rsbweb.nih.gov/ij/ (27 January 2014).
2008, National ignition facility target design and fabrication, laser part, Beams, 26, 479, 10.1017/S0263034608000499
1999, Bounce coating induced domes on glow discharge polymer coated shells, Fusion Technol., 35, 202, 10.13182/FST99-A11963923
1995, Prediction of phase separation during the drying of polymer shells, Fusion Technol., 28, 1773, 10.13182/FST95-A30411
