Properties of neighborhood for certain classes associated with complex order and m-q-p-valent functions with higher order
Tóm tắt
Từ khóa
Tài liệu tham khảo
Al-Aboudi, F.: On univalent functions defined by a generalized Sălăgean operator. Internat. J. Math. Math. Sci. 27, 481–494 (2004)
Ahmad, B., Khan, M.G., Frasin, B.A., Aouf, M.K., Abdeljawad, T., Mashwani, W.K., Arif, M.: On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Math. 6(4), 3037–3052 (2021). https://doi.org/10.3934/math.2021185
Altintaş, O., Ozkan, O., Srivastava, H.M.: Neighborhoods of a class of analytic functions with negative coefficients. Appl. Math. Comput. 13(3), 63–67 (2000)
Altintaş, O., Ozkan, O., Srivastava, H.M.: Neighborhoods of a certain family of multivalent functions with negative coefficients. Comput. Math. Appl. 47, 1667–1672 (2004)
Altintaş, O., Irmak, H., Srivastava, H.M.: Neighborhoods of certain subclasses of multivalently analytic functions defined by using a differential operator. Comput. Math. Appl. 55(3), 331–338 (2008)
Aouf, M.K. : Neighborhoods of certain classes of analytic functions with negative coefficients, Internat. J. Math. Math. Sci., Art ID 3825, 1–6 (2006)
Aouf, M.K.: Neighborhood of a certain family of multivalent functions defined by using a fractional derivative operator. Bull. Belgian Math. Soc. Simon Stevin 16, 31–40 (2009)
Aouf, M.K.: Generalization of certain subclasses of multivalent functions with negative coefficients defined by using a differential operator. Comput. Math. Modell. 50(9–10), 1367–1378 (2009)
Aouf, M.K.: On certain multivalent functions with negative coefficients defined by using a differential operator. Indian J. Math. 51(2), 433–451 (2009)
Aouf, M.K.: A subclass of uniformly convex functions with negative coefficients. Math. Tome 52(2), 99–111 (2010)
Aouf, M.K., Bulboaca, T., Mostafa, M.O.: Subordination properties of p-valent functions defined by Săl ăgean operator. Complex Var. Ellip. Eq. 55(1–3), 185–199 (2010)
Aouf, M.K., Cho, N.E.: On a certain subclasses of analytic functions with negative coefficients. Tr. J. Math. 22, 15–32 (1998)
Aouf, M.K., Hossen, H.M., Srivastava, H.M.: Some families multivalent functions. Comput. Math. Appl. 39(7–8), 39–48 (2000)
Aouf, M.K., Madian, S.M.: Inclusion and properties neighborhood for certain p-valent functions associated with complex order and q-p-valent Cătaş operator. J. Taibah Univ. Sci. 14(1), 1226–1232 (2020)
Aouf, M.K., Madian, S.M.: Certain classes of analytic functions Associated With q-Analogue of p-valent catas operator. Moroccan J. Pure Appl. Anal. 7(3), 430–447 (2021)
Aouf, M.K., Madian, S.M.: Subordination factor sequence results for Starlike and convex classes defined by q-Căta ş operator. Afrika Matematika (2021). https://doi.org/10.1007/s13370-021-00896-4
Aouf, M.K., Mostafa, A.O.: Some properties of a subclass of uniformly convex functions with negative coefficients. Demonstratio Math. 41(2), 353–370 (2006)
Aouf, M.K., Mostafa, A.O.: On a subclass of n-p-valent prestarlike functions. Comput. Math. Appl. 55(4), 851–861 (2008)
Aouf, M.K., Mostafa, A.O.: Neighborhood of a certain p-valent analytic prestarlike functions. Comput. Math. Appl. 55(4), 851–861 (2008)
Aouf, M.K., Mostafa, A.O., Al-Quhali, F.Y.: Properties for class of $$\beta$$-uniformly univalent functions defined by Sălăgean type q- difference operator, Int. J. Open Probl. Complex Anal. 2, 1–16 (2019)
Aouf, M.K., Shamandy, A., Mostafa, A.O.: F-El-Emam, Subordination results associated with uniformly convex and starlike functions. Proc. Pak. Acad. Sci. 46(2), 97–101 (2009)
Aouf, M.K., Shamandy, A., Mostafa, A.O., Madian, S.M.: Neighborhood properties for certain p-valent analytic functions associated with complex order. Indian J. Math. 52(3), 491–506 (2010)
Aouf, M.K., Seoudy, T.M.: Convolution properties for classes of bounded analytic functions with complex order defined by q-derivative operator,. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 113, 1279–1288 (2019)
Cătaş, A.: On certain classes of p-valent functions defined by multiplier transformations, Proceedings of the Internat. Symposium on Geometry Function Theory and Appl., Istambul, Turkey, (2007)
Chen, M.-P., Irmak, H., Srivastava, H.M.: Some families of multivalently analytic functions with negative coefficient. J. Math. Anal. Appl. 214, 674–690 (1997)
Cho, N.E., Kim, I.H.: Multiplier transformations and strongly close-to-convex functions. Bull. Korean Math. Soc. 40, 399–410 (2003)
Cho, N.E., Srivastava, H.M.: Argument estimates of certain analytic functions defined by a class of multiplier transformations. Math. Comput. Model. 37, 39–49 (2003)
El-Ashwah, R.M., Aouf, M.K., El-Deeb, S.M.: Inclusion and neighborhood properties of certain subclasses of p-valent functions of complex order defined by convolution. Annales Univ. Mariae Curie-Skłodo. Lublin. Polonia 65(1), 33–48 (2011)
Frasin, B.A.: Neighborhood of certain multivalent functions with negative coefficients. Appl. Math. Comput. 193, 1–6 (2007)
Goodman, A.W.: On the Schwarz–Christoffel transformation and p-valent functions. Trans. Amer. Math. Soc. 68, 204–223 (1950)
Goodman, A.W.: Univalent functions and non analytic curves. Proc. Amer. Math. Soc. 8, 598–601 (1957)
Govindaraj, M., Sivasubaramanian, S.: On a class of analytic functions related to conic domain involving q-calculus. Anal. Math. 43(3), 475–487 (2017)
Kanas, S., Răducanu, D.: Some class of analytic functions related to conic domains. Math. slovaca. 64(5), 1183–1196 (2014)
Khan, Q., Arif, M., Raza, M., Srivastava, G., Tang, H., ur Rehman, S.: Some applications of a new integral operator in q-analog for multivalent functions. Mathematics 7(12), 1178 (2019). https://doi.org/10.3390/math7121178
Mostafa, A.O., Aouf, M.K.: Neighborhoods of certain p-valent analytic functions with complex order. Comput. Math. Appl. 58, 1183–1189 (2009)
Murugusundaramoorthy, G., Srivastava, H.M.: Neighborhoods of certain classes of analytic functions of complex order. J. Inequal. Pure Appl. Math. 5(2), 1–8 (2004)
Orhan, H., Kamali, M.: Neighborhoods of a class of analytic functions with negative coefficients. Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 21(1), 55–61 (2005)
Sălăgean, G.S.: Subclasses of univalent functions, In Lecture Notes in Math., Vol. 1013, 362-372, Springer-Verlag, Berlin, Heidelberg and New York, (1983)
Srivastava, H.M.: Univalent functions, fractional calculus, and associated generalized hypergeometric functions, in Univalent Functions; Fractional Calculus; and Their Applications (H. M. Srivastava and S. Owa, Editors), Halsted Press (Ellis Horwood Limited,Chichester), pp. 329–354, Wiley, New York, Chichester, Brisbane and Toronto, (1989)
Srivastava, H.M.: Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A: Sci. 44, 327–344 (2020)
Srivastava, H.M., Bansal, D.: Close-to-convexity of a certain family of q-Mittag-Leffler functions. J. Nonlinear Var. Anal. 1(1), 61–69 (2017)
Srivastava, H.M., Mostafa, A.O., Aouf, M.K., Zayed, H.M.: Basic and fractional q- calculus and associated Fekete-Szgo problem for p-valent q- starlike functions and p-valent q-convex functions of complex order. Miskolc Math. Notes 20(1), 489–509 (2019)
Srivastava, H.M., Tahir, M., Khan, B., Ahmad, Q.Z., Khan, N.: Some general classes of q-starlike functions associated with the Janowski functions. Symmetry 11, 292 (2019). https://doi.org/10.3390/sym11020292