Properties of differences of meromorphic functions
Tóm tắt
Let f be a transcendental meromorphic function. We propose a number of results concerning zeros and fixed points of the difference g(z) = f(z + c) − f(z) and the divided difference g(z)/f(z).
Tài liệu tham khảo
M. Ablowitz, R. G. Halburd and B. Herbst: On the extension of Painlevé property to difference equations. Nonlinearity 13 (2000), 889–905.
W. Bergweiler and J. K. Langley: Zeros of differences of meromorphic functions. Math. Proc. Camb. Phil. Soc. 142 (2007), 133–147.
W. Bergweiler and A. Eremenko: On the singularities of the inverse to a meromorphic function of finite order. Rev. Mat. Iberoamericana 11 (1995), 355–373.
Z. X. Chen and K. H. Shon: On zeros and fixed points of differences of meromorphic functions. J. Math. Anal. Appl. 344-1 (2008), 373–383.
Y. M. Chiang and S. J. Feng: On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane. Ramanujan J. 16 (2008), 105–129.
J. Clunie, A. Eremenko and J. Rossi: On equilibrium points of logarithmic and Newtonian potentials. J. London Math. Soc. 47-2 (1993), 309–320.
J. B. Conway: Functions of One Complex Variable. New York, Spring-Verlag.
A. Eremenko, J. K. Langley and J. Rossi: On the zeros of meromorphic functions of the form Σ ∞ k=1 a k/(z − z k). J. Anal. Math. 62 (1994), 271–286.
G. Gundersen: Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates. J. London Math. Soc. 37-2 (1988), 88–104.
R. G. Halburd and R. Korhonen: Difference analogue of the lemma on the logarithmic derivative with applications to difference equations. J. Math. Anal. Appl. 314 (2006), 477–487.
R. G. Halburd and R. Korhonen: Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn. Math. 31 (2006), 463–478.
W. K. Hayman: Meromorphic Functions. Oxford, Clarendon Press, 1964.
W. K. Hayman: Slowly growing integral and subharmonic functions. Comment. Math. Helv. 34 (1960), 75–84.
J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo and K. Tohge: Complex difference equations of Malmquist type. Comput. Methods Funct. Theory 1 (2001), 27–39.
J. D. Hinchliffe: The Bergweiler-Eremenko theorem for finite lower order. Results Math. 43 (2003), 121–128.
K. Ishizaki and N. Yanagihara: Wiman-Valiron method for difference equations. Nagoya Math. J. 175 (2004), 75–102.
I. Laine: Nevanlinna Theory and Complex Differential Equations. Berlin, W. de Gruyter, 1993.
L. Yang: Value Distribution Theory. Beijing, Science Press, 1993.
C. C. Yang and H. X. Yi: Uniqueness Theory of Meromorphic Functions. Dordrecht, Kluwer Academic Publishers Group, 2003.