Properties of differences of meromorphic functions

Czechoslovak Mathematical Journal - Tập 61 - Trang 213-224 - 2011
Zong-Xuan Chen1,2, Kwang Ho Shon3,4
1Guangzhou, P. R. China
2School of Mathematical Sciences, South China Normal University, Guangzhou, P. R. China
3Pusan, Korea
4Department of Mathematics, College of Natural Sciences, Pusan National University, Pusan, Korea

Tóm tắt

Let f be a transcendental meromorphic function. We propose a number of results concerning zeros and fixed points of the difference g(z) = f(z + c) − f(z) and the divided difference g(z)/f(z).

Tài liệu tham khảo

M. Ablowitz, R. G. Halburd and B. Herbst: On the extension of Painlevé property to difference equations. Nonlinearity 13 (2000), 889–905. W. Bergweiler and J. K. Langley: Zeros of differences of meromorphic functions. Math. Proc. Camb. Phil. Soc. 142 (2007), 133–147. W. Bergweiler and A. Eremenko: On the singularities of the inverse to a meromorphic function of finite order. Rev. Mat. Iberoamericana 11 (1995), 355–373. Z. X. Chen and K. H. Shon: On zeros and fixed points of differences of meromorphic functions. J. Math. Anal. Appl. 344-1 (2008), 373–383. Y. M. Chiang and S. J. Feng: On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane. Ramanujan J. 16 (2008), 105–129. J. Clunie, A. Eremenko and J. Rossi: On equilibrium points of logarithmic and Newtonian potentials. J. London Math. Soc. 47-2 (1993), 309–320. J. B. Conway: Functions of One Complex Variable. New York, Spring-Verlag. A. Eremenko, J. K. Langley and J. Rossi: On the zeros of meromorphic functions of the form Σ ∞ k=1 a k/(z − z k). J. Anal. Math. 62 (1994), 271–286. G. Gundersen: Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates. J. London Math. Soc. 37-2 (1988), 88–104. R. G. Halburd and R. Korhonen: Difference analogue of the lemma on the logarithmic derivative with applications to difference equations. J. Math. Anal. Appl. 314 (2006), 477–487. R. G. Halburd and R. Korhonen: Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn. Math. 31 (2006), 463–478. W. K. Hayman: Meromorphic Functions. Oxford, Clarendon Press, 1964. W. K. Hayman: Slowly growing integral and subharmonic functions. Comment. Math. Helv. 34 (1960), 75–84. J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo and K. Tohge: Complex difference equations of Malmquist type. Comput. Methods Funct. Theory 1 (2001), 27–39. J. D. Hinchliffe: The Bergweiler-Eremenko theorem for finite lower order. Results Math. 43 (2003), 121–128. K. Ishizaki and N. Yanagihara: Wiman-Valiron method for difference equations. Nagoya Math. J. 175 (2004), 75–102. I. Laine: Nevanlinna Theory and Complex Differential Equations. Berlin, W. de Gruyter, 1993. L. Yang: Value Distribution Theory. Beijing, Science Press, 1993. C. C. Yang and H. X. Yi: Uniqueness Theory of Meromorphic Functions. Dordrecht, Kluwer Academic Publishers Group, 2003.