Tính chất của các lớp film Au mỏng bị làm khô bằng nhiệt trên nền thủy tinh phủ ITO phục vụ ứng dụng cảm biến sinh học

Plasmonics - Tập 12 - Trang 1939-1946 - 2016
Katarzyna Grochowska1, Katarzyna Siuzdak1, Jakub Karczewski2, Mariusz Szkoda1,3, Gerard Śliwiński1
1Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdańsk, Poland
2Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Poland
3Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland

Tóm tắt

Các cấu trúc nano kim loại quý đang được chú ý đặc biệt do những tính chất quang học và điện tử độc đáo của chúng được ứng dụng trong công nghệ nano, y học, sinh hóa và quang phổ tăng cường bề mặt. Trong nghiên cứu này, các cấu trúc hạt nano vàng (NP) được tạo ra cho ứng dụng cảm biến sinh học thông qua quá trình làm khô được điều tra dựa trên các điều kiện chuẩn bị của chúng. Các cấu trúc được sản xuất từ các lớp film Au mỏng (5–30 nm) được phun lên các nền thủy tinh phủ ITO. Quá trình làm khô được thực hiện bằng cách xử lý nhiệt trong không khí. Kiểm tra SEM của các cấu trúc cho thấy sự phân tách của các lớp film Au thành các hạt nano hình tròn. Kích thước của NP không vượt quá 80 nm và hình dạng của chúng có thể được điều chỉnh bằng thời gian làm khô. Trong quang phổ hấp thụ, các đỉnh rộng tập trung xung quanh 550–620 nm được quy cho sự hấp thụ cộng hưởng của các plasmon bề mặt và thời gian ước tính của sự suy giảm cộng hưởng nằm trong khoảng 2.24–3.65 fs. Các giá trị tín hiệu lớn quan sát được trong quang phổ Raman và hiệu suất điện hóa xác nhận rằng vật liệu được sản xuất có thể đóng vai trò như một điện cực cho các ứng dụng cảm biến.

Từ khóa

#kim loại quý #hạt nano vàng #quang phổ #cảm biến sinh học #phim mỏng #xử lý nhiệt

Tài liệu tham khảo

Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217 Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment. J Phys Chem B 107:668–677 Prasad PN (2004) Nanophotonics. John Wiley & Sons, Inc, Hoboken Plante MC, LaPierre RR (2008) Au-assisted growth of GaAs nanowires by gas source molecular beam epitaxy: tapering, sidewall faceting and crystal structure. J Cryst Growth 310:356–363 Gu YL, St-Pierre J, Ploehn HJ (2008) Pt/glassy carbon model catalyst prepared from PS-b-P2VP micellar templates. Langmuir 24:12680–12689 Haes AJ, Hall WP, Chang L, Klein WL, Duyne RP (2004) A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease. Nano Lett 4:1029–1034 Malek K, Brzozka A, Rygula A, Sulka G (2014) SERS imaging of silver coated nanostructured Al and Al2O3 substrates. The effect of nanostructure. J Raman Spectrosc 45:281–291 Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 927–934. doi:10.1039/B207789B Karim W, Tschupp SA, Oezaslan M, Schmidt TJ, Gobrecht J, van Bokhoven JA, Ekinci Y (2015) High-resolution and large-area nanoparticle arrays using EUV interference lithography. Nanoscale 7:7386–7393 Marrian CRK, Tennant DM (2003) Nanofabrication. J Vac Sci Technol A 21:S207–S215 Tsuda T, Sakamoto T, Nishimura Y, Seino S, Imanishi A, Kuwabata S (2012) Various metal nanoparticles produced by accelerated electron beam irradiation of room-temperature ionic liquid. Chem Commun 48:1925–1927 Noriki T, Abe S, Kajikawa K, Shimoyo M (2015) Patterning technique for gold nanoparticles on substrates using a focused electron beam. Beilstein J Nanotechnol 6:1010–1015 Garcia R, Knoll AW, Riedo E (2014) Advanced scanning probe lithography. Nat Nanotechnol 9:577–587 Oh Y-J, Kim J-H, Thompson CV, Ross CA (2013) Templated assembly of Co-Pt nanoparticles via thermal and laser-induced dewetting of bilayer metal films. Nanoscale 5:401–407 Grochowska K, Śliwiński G (2012) Quality investigation of Au nanoarrays for biosensing applications. Solid State Phenom 183:81–88 Ruffino F, Carria E, Kimiagar S, Crupi I, Simone F, Grimaldi MG (2012) Formation and evolution of nanoscale metal structures on ITO surface by nanosecond laser irradiations of thin Au and Ag films. Sci Adv Mater 4:708–718 Grochowska K, Nedyalkov N, Atanasov P, Śliwiński G (2011) Nanostructuring of thin Au films by means of short UV laser pulses. Opto-Electron Rev 19:327–332 Nikov RG, Nedyalkov NN, Atanasov PA, Hirsch D, Rauschenbach B, Grochowska K, Śliwiński G (2016) Characterization of Ag nanostructures fabricated by laser-induced dewetting of thin films. Appl Surf Sci 374:36–41 Grochowska K, Siuzdak K, Karczewski J, Śliwiński G (2015) Functionalization of indium-tin-oxide electrodes by laser-nanostructured gold thin films for biosensing applications. Appl Surf Sci 357:1684–1691 Kerkache L, Layadi A, Dogheche E, Remiens DD (2006) Physical properties of RF sputtered ITO thin films and annealing effect. J Phys D Appl Phys 39:184–189 Park J-O, Lee J-H, Kim J-J, Cho S-H, Cho YK (2005) Crystallization of indium tin oxide thin films prepared by RF-magnetron sputtering without external heating. Thin Solid Films 474:127–132 Jung YS, Lee DW, Jeon DY (2004) Influence of dc magnetron sputtering parameters on surface morphology of indium tin oxide thin films. Appl Surf Sci 221:136–142 Wang L, Mao W, Ni D, Di J, Wu Y, Tu Y (2008) Direct electrodeposition of gold nanoparticles onto indium/tin oxide film coated glass and its application for electrochemical biosensor. Electrochem Commun 10:673–676 Zhang J, Oyama M (2004) A hydrogen peroxide sensor based on the peroxidase activity of hemoglobin immobilized on gold nanoparticles-modified ITO electrode. Electrochim Acta 50:85–90 Wu M, Yuan D, Yu J, Chen H (2013) Sensitive electrochemiluminescence biosensor based on Au-ITO hybrid bipolar electrode amplification system for cell surface protein detection. Anal Chem 85:11960–11965 Grochowska K, Siuzdak K, Śliwiński G (2015) Properties of indium tin oxide electrode modified by a laser nanostructured thin Au film for biosensing. Eur J Inorg Chem 7:1275–1281 Botta R, Upender G, Bansal C (2015) Silver nanocluster films on ITO coated glass as novel substrates for the detection of molecules using surface enhanced Raman scattering (SERS). IOP Conf Ser: Mater Sci Eng 73:012143 Shu H, Chang G, Wang Z, Li P, Zhang Y, He Y (2015) Pulse laser deposition fabricating gold nanoclusters on a glassy carbon surface for nonenzymatic glucose sensing. Anal Sci 31:609–616 Chen H, Wang Y, Qu J, Dong S (2007) Self-assembled silver nanoparticle monolayer on glassy carbon: an approach to SERS substrate. J Raman Spectrosc 38:1444–1448 El-Sayed HA, Horwood CA, Owusu-Ansah E, Shi YJ, Birss VI (2015) Gold nanoparticle array formation on dimpled Ta templates using pulsed laser-induced thin film dewetting. Phys Chem Chem Phys 17:11062–11069 Krishna H, Shirato N, Favazza C, Kalyanaraman R (2011) Pulsed laser-induced self-organization by dewetting of metallic films. J Mater Res 26:154–169 Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal Chem 79:4215–4221 Simsek E (2009) Effective refractive index approximation and surface plasmon resonance modes of metal nanoparticle chains and arrays. PIERS Online 5:629–632 Hoggard A, Wang L-Y, Ma L, Fang Y, You G, Olson J, Liu Z, Chang W-S, Ajayan PM, Link S (2013) Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and grapheme. ACS Nano 7:11209–11217 Bigot I-Y, Halte W, Merle J-C, Daunois A (2000) Electron dynamics in metallic nanoparticles. Chem Phys 251:181–203 Imamova SE, Dikovska A, Nedyalkov NN, Atanasov PA, Sawczak M, Jendrzejewski R, Śliwiński G (2010) Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy. J Optoelectron Adv Mater 12:500–504 Fazio E, Neri F, D’Andrea C, Ossi PM, Santo N, Trusso S (2011) SERS activity of pulsed laser ablated silver thin films with controlled nanostructure. J Raman Spectrosc 42:1298–1304 Gupta R, Weimer WA (2003) High enhancement factor gold films for surface enhanced Raman spectroscopy. Chem Phys Lett 374:302–306 Grochowska K, Siuzdak K, Atanasov PA, Bittencourt C, Dikovska A, Nedyalkov NN, Śliwiński G (2014) Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films. Beilstein J Nanotechnol 5:2102–2112 Ballarin B, Cassani MC, Maccato C, Gasparotto A (2011) RF-sputtering preparation of gold-nanoparticles-modified ITO electrodes for electrocatalytic applications. Nanotechnology 22:275711 Wang J, Cao X, Wang X, Yang S, Wang R (2014) Electrochemical oxidation and determination of glucose in alkaline media based on Au (111)-like nanoparticle array on indium tin oxide electrode. Electrochim Acta 138:174–186 Kim YN, Shin HG, Song JK, Cho DH, Lee HS, Jung YG (2005) Thermal degradation behavior of indium tin oxide thin films deposited by radio frequency magnetron sputtering. J Mater Res 20:1574–1579 Kalyanasudaram K (2010) Dye sensitized solar cells. EPFL Press, Lausanne Pasta M, Mantia FL, Cui Y (2010) Mechanism of glucose electrochemical oxidation on gold surface. Electrochim Acta 55:5561–5568