Properties of CMAS glass from desert sand

Ceramics International - Tập 41 - Trang 3901-3909 - 2015
Narottam P. Bansal1, Sung R. Choi2
1Materials and Structures Division, NASA Glenn Research Center, Cleveland, OH 44135, USA
2Naval Air Systems Command, Patuxent River, MD 20670, USA

Tài liệu tham khảo

Harder, 2011, Chemical and mechanical consequences of environmental barrier coating exposure to calcium-magnesium-aluminosilicate, J. Am. Ceram. Soc., 94, S178, 10.1111/j.1551-2916.2011.04448.x Mercer, 2005, A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration, Acta Mater., 53, 1029, 10.1016/j.actamat.2004.11.028 Liu, 2013, Calcium-magnesium-aluminosilicate corrosion behaviors of rare-earth disilicates at 1400°C, J. Eur. Ceram. Soc., 33, 3419, 10.1016/j.jeurceramsoc.2013.05.030 Schulz, 2013, Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS (CaO-MgO-Al2O3-SiO2) and volcanic ash deposits, Surf. Coat. Tech., 235, 165, 10.1016/j.surfcoat.2013.07.029 Chen, 2006, Calcium-magnesium-alumina-silicate (CMAS) delamination mechanisms in EB-PVD thermal barrier coatings, Surf. Coat. Tech., 200, 3418, 10.1016/j.surfcoat.2004.12.029 Ahlborg, 2013, Calcium-magnesium aluminosilicate (CMAS) reactions and degradation mechanisms of advanced environmental barrier coatings, Surf. Coat. Tech., 237, 79, 10.1016/j.surfcoat.2013.08.036 ASTM, 2006 ASTM C1259, 2001 ASTM, 2006 Bansal, 2006, Boron nitride nanotubes-reinforced glass composites, J. Am. Ceram. Soc., 89, 388, 10.1111/j.1551-2916.2005.00701.x Choi, 2007, Mechanical and microstructural characterization of boron nitride nanotubes-reinforced SOFC seal glass composite, Mater. Sci. Eng. A, 460-461, 509, 10.1016/j.msea.2007.01.084 Choi, 2005, Mechanical properties of SOFC seal glass composites, Ceram. Eng. Sci. Proc, 26, 275 Bansal, 1984, Determination of reaction kinetic parameters from variable temperature DSC or DTA, J. Therm. Anal, 29, 115, 10.1007/BF02069946 Bansal, 1983, Kinetics of crystallization of ZrF4-BaF2-LaF3 glass by differential scanning calorimetry, J. Am. Ceram. Soc., 66, 233, 10.1111/j.1151-2916.1983.tb15704.x Bansal, 1985, The influence of glass composition on the crystal growth kinetics of heavy metal fluoride glasses, J. Non-Cryst. Solids, 70, 379, 10.1016/0022-3093(85)90108-5 Bansal,, 1989, Crystallization kinetics of barium aluminosilicate glasses, J. Mater. Res., 4, 1257, 10.1557/JMR.1989.1257 Hyatt, 1996, Crystal growth kinetics in BaO.Al2O3.2SiO2 and SrO.Al2O3.2SiO2 glasses, J. Mater. Sci., 31, 172, 10.1007/BF00355142 Bansal, 2005, Crystallization kinetics of a solid oxide fuel cell seal glass by differential thermal analysis, J. Power Sources, 147, 107, 10.1016/j.jpowsour.2005.01.010 Bahadur, 2004, Influence of nucleating agents on the chemical interaction of MgO-Al2O3-SiO2-B2O3 glass sealants with components of SOFCs, J. Electrochem. Soc., 151, A558, 10.1149/1.1647570 Varshneya, 1994, 188 Beman, 1956, Polymer characterization: a typical copolyamide system, J. Polym. Sci, 21, 223, 10.1002/pol.1956.120219805 Bansal, 1986 Giordano, 2008, Viscosity of magmatic liquids: a model, Earth Planet. Sci. Lett, 271, 123, 10.1016/j.epsl.2008.03.038 Miyoshi, 1985, Study on fracture toughness evaluation for structural ceramics, T. Jpn. Soc. Mech. Eng., 51A, 2487 Marshall, 1981, Reply to comment on elastic/plastic indentation damage in ceramics: the median/radial crack system, J. Am. Ceram. Soc., 64, C182, 10.1111/j.1151-2916.1981.tb15909.x Anstis, 1981, A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements, J. Am. Ceram. Soc., 64, 533, 10.1111/j.1151-2916.1981.tb10320.x Quinn, 1992, Fracture toughness of advanced ceramics at room temperature, J. Res. Natl. Inst. Stand., 97, 579, 10.6028/jres.097.026 Quinn, 2007, On the vickers indentation fracture toughness test, J. Am. Ceram. Soc., 90, 673, 10.1111/j.1551-2916.2006.01482.x