Properties, Purification, and Applications of Phosphogypsum: A Comprehensive Review Towards Circular Economy
Tóm tắt
Phosphogypsum (PG) is a by-product produced during the wet process of phosphoric acid (H3PO4) production from natural phosphate rocks. Approximately 4–6 tons of PG is produced per ton of phosphoric acid production, where worldwide PG generation exceeds 300 million tons annually. The vast majority of produced PG is discarded irresponsibly, leading to significant environmental and health consequences. Thus, PG storage has led to having stockpiles in excess of 6 billion tons worldwide which urged governments to find methods for utilization. Thus, in this review, the researchers have conducted a comprehensive examination of properties, purification technologies, and applications. Under the context of circular economy, PG could be a mineral resource of secondary raw materials. The amount of PG produced and stockpiled in various countries is reported. Evaluation of PG characteristics in different countries and the various applications of PG which include cement industry, ceramic and brick production, agricultural applications, and rare element recovery conversion are reported in this study. The outcome of this study could be valuable for future studies and benefit researchers and industries working on the properties and purification of PG and its utilization.
Từ khóa
Tài liệu tham khảo
El Afifi, E.M., Hilal, M.A., Attallah, M.F., EL-Reefy, S.A.: Characterization of phosphogypsum wastes associated with phosphoric acid and fertilizers production. J Environ Radioact. 100, 407–412 (2009). https://doi.org/10.1016/j.jenvrad.2009.01.005
Ajam, L., Ben El Haj Hassen, A., Reguigui, N.: Phosphogypsum utilization in fired bricks: radioactivity assessment and durability. Journal of Building Engineering. 26, 100928 (2019). https://doi.org/10.1016/j.jobe.2019.100928
Akin Altun I, Sert Y (2004) Utilization of weathered phosphogypsum as set retarder in Portland cement. Cem Concr Res 34:677–680. https://doi.org/10.1016/j.cemconres.2003.10.017
Al-Hwaiti M, Ibrahim KA, Harrara M (2019) Removal of heavy metals from waste phosphogypsum materials using polyethylene glycol and polyvinyl alcohol polymers. Arab J Chem 12:3141–3150. https://doi.org/10.1016/j.arabjc.2015.08.006
Al-Hwaiti, M., Carney, V., Ranville, J.F., Ross, P.E.: Heavy metal assessment of phosphogypsum waste stockpile material from Jordan1. 22nd American Society of Mining and Reclamation Annual National Conference 2005. 1, 1–22 (2005). https://doi.org/10.21000/jasmr05010001
Al-Masri MS, Amin Y, Ibrahim S, Al-Bich F (2004) Distribution of some trace metals in Syrian phosphogypsum. Appl Geochem 19:747–753. https://doi.org/10.1016/j.apgeochem.2003.09.014
Aly MM, Mohammed NA (1999) Recovery of lanthanides from Abu Tartur phosphate rock. Egypt Hydrometallurgy 52:199–206. https://doi.org/10.1016/S0304-386X(99)00018-3
Amrani M, Taha Y, Kchikach A, Benzaazoua M, Hakkou R (2020) Phosphogypsum recycling: new horizons for a more sustainable road material application. Journal of Building Engineering 30:101267. https://doi.org/10.1016/j.jobe.2020.101267
Andrade Neto, J.S., Bersch, J.D., Silva, T.S.M., Rodríguez, E.D., Suzuki, S., Kirchheim, A.P.: Influence of phosphogypsum purification with lime on the properties of cementitious matrices with and without plasticizer. Constr Build Mater. 299, (2021). https://doi.org/10.1016/j.conbuildmat.2021.123935
Antonick PJ, Hu Z, Fujita Y, Reed DW, Das G, Wu L, Shivaramaiah R, Kim P, Eslamimanesh A, Lencka MM, Jiao Y, Anderko A, Navrotsky A, Riman RE (2019) Bio- and mineral acid leaching of rare earth elements from synthetic phosphogypsum. J Chem Thermodyn 132:491–496. https://doi.org/10.1016/j.jct.2018.12.034
Bensalah H, Bekheet MF, Alami Younssi S, Ouammou M, Gurlo A (2018) Hydrothermal synthesis of nanocrystalline hydroxyapatite from phosphogypsum waste. J Environ Chem Eng 6:1347–1352. https://doi.org/10.1016/j.jece.2018.01.052
Bituh T, Petrinec B, Skoko B, Vučić Z, Marović G (2015) Measuring and modelling the radiological impact of a phosphogypsum deposition site on the surrounding environment. Arh Hig Rada Toksikol 66:31–40. https://doi.org/10.1515/aiht-2015-66-2587
Bituh T, Petrinec B, Skoko B, Babic D, Raseta D (2021) Phosphogypsum and its potential use in Croatia: challenges and opportunities Fosfogips i njegovo potencijalno koristenje u Republici Hrvatskoj izazovi i prilike. Arh Hig Rada Toksikol 72:93–100. https://doi.org/10.2478/aiht-2021-72-3504
Bouargane B, Marrouche A, El Issiouy S, Biyoune MG, Mabrouk A, Atbir A, Bachar A, Bellajrou R, Boukbir L, Bakiz B (2019) Recovery of Ca(OH)2, CaCO3, and Na2SO4 from Moroccan phosphogypsum waste. J Mater Cycles Waste Manag 21:1563–1571. https://doi.org/10.1007/s10163-019-00910-9
Bouargane B, Biyoune MG, Mabrouk A, Bachar A, Bakiz B, Ait Ahsaine H, Mançour Billah S, Atbir A (2020) Experimental investigation of the effects of synthesis parameters on the precipitation of calcium carbonate and portlandite from Moroccan phosphogypsum and pure gypsum using carbonation route. Waste Biomass Valorization 11:6953–6965. https://doi.org/10.1007/s12649-019-00923-3
Bouargane B, Laaboubi K, Biyoune MG, Bakiz B, Atbir A (2023) Effective and innovative procedures to use phosphogypsum waste in different application domains: review of the environmental, economic challenges and life cycle assessment. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-023-01617-8
Bruckner L, Elwert T, Schirmer T (2020) Extraction of rare earth elements from phospho-gypsum: concentrate digestion, leaching, and purification. Metals (basel) 10:2–7. https://doi.org/10.3390/met10010131
Cánovas CR, Chapron S, Arrachart G, Pellet-Rostaing S (2019) Leaching of rare earth elements (REEs) and impurities from phosphogypsum: a preliminary insight for further recovery of critical raw materials. J Clean Prod 219:225–235. https://doi.org/10.1016/j.jclepro.2019.02.104
Cao W, Yi W, Peng J, Li J, Yin S (2022) Recycling of phosphogypsum to prepare gypsum plaster: effect of calcination temperature. J Build Eng 45:103511. https://doi.org/10.1016/j.jobe.2021.103511
Cárdenas-Escudero C, Morales-Flórez V, Pérez-López R, Santos A, Esquivias L (2011) Procedure to use phosphogypsum industrial waste for mineral CO 2 sequestration. J Hazard Mater 196:431–435. https://doi.org/10.1016/j.jhazmat.2011.09.039
Chaalal O, Madhuranthakam CMR, Moussa B, Hossain MM (2020) Sustainable approach for recovery of sulfur from phophogypsum. ACS Omega 5:8151–8157. https://doi.org/10.1021/acsomega.0c00420
Chen X, Gao J, Liu C, Zhao Y (2018) Effect of neutralization on the setting and hardening characters of hemihydrate phosphogypsum plaster. Constr Build Mater 190:53–64. https://doi.org/10.1016/j.conbuildmat.2018.09.095
Chernysh YY, Plyatsuk LD (2018) Phosphogypsum utilization in the dephosphotation treatment of wastewater and sewage sludge. In: Sobczuk H, Kowalska B (eds) Water supply and waste-water disposal. Lublin University of Technology, Ukkraine, pp 8–18
Chernysh Y, Balintova M, Plyatsuk L, Holub M, Demcak S (2018) The influence of phosphogypsum addition on phosphorus release in biochemical treatment of sewage sludge. Int J Environ Res Public Health 15:1–14. https://doi.org/10.3390/ijerph15061269
Chernysh Y, Yakhnenko O, Chubur V, Roubík H (2021) Phosphogypsum recycling: a review of environmental issues, current trends, and prospects. Applied Sciences (switzerland) 11:1–22. https://doi.org/10.3390/app11041575
Contreras M, Teixeira SR, Santos GTA, Gázquez MJ, Romero M, Bolívar JP (2018) Influence of the addition of phosphogypsum on some properties of ceramic tiles. Constr Build Mater 175:588–600. https://doi.org/10.1016/j.conbuildmat.2018.04.131
Crusciol, C.A.C., Artigiani, A.C.C.A., Arf, O., Carmeis Filho, A.C.A., Soratto, R.P., Nascente, A.S., Alvarez, R.C.F.: Soil fertility, plant nutrition, and grain yield of upland rice affected by surface application of lime, silicate, and phosphogypsum in a tropical no-till system. Catena (Amst). 137, 87–99 (2016). https://doi.org/10.1016/j.catena.2015.09.009
Cuadri AA, Navarro FJ, García-Morales M, Bolívar JP (2014) Valorization of phosphogypsum waste as asphaltic bitumen modifier. J Hazard Mater 279:11–16. https://doi.org/10.1016/j.jhazmat.2014.06.058
Cuadri, A.A., Navarro, F.J., García-Morales, M., Partal, P.: New foamed/modified bitumen using phosphogypsum waste. (2017). https://doi.org/10.14311/ee.2016.018
Da Conceição FT, Bonotto DM (2006) Radionuclides, heavy metals and fluorine incidence at Tapira phosphate rocks, Brazil, and their industrial (by) products. Environ Pollut 139:232–243. https://doi.org/10.1016/j.envpol.2005.05.014
Degirmenci N (2008) The using of waste phosphogypsum and natural gypsum in adobe stabilization. Constr Build Mater 22:1220–1224. https://doi.org/10.1016/j.conbuildmat.2007.01.027
Deǧirmenci N (2008) Utilization of phosphogypsum as raw and calcined material in manufacturing of building products. Constr Build Mater 22:1857–1862. https://doi.org/10.1016/j.conbuildmat.2007.04.024
Ding C, Sun T, Shui Z, Xie Y, Ye Z (2022) Physical properties, strength, and impurities stability of phosphogypsum-based cold-bonded aggregates. Constr Build Mater 331:127307. https://doi.org/10.1016/j.conbuildmat.2022.127307
Diouri C, Echehbani I, Lahlou K, EL Omari K, Alaoui A (2022) Valorization of Moroccan phosphogypsum in road engineering: parametric study. Mater Today Proc 58:1054–1058. https://doi.org/10.1016/j.matpr.2022.01.084
El Issiouy S, Atbir A, Mançour-Billah S, Bellajrou R, Boukbir L, El Hadek M (2013) Thermal treatment of Moroccan phosphogypsum. MATEC Web of Conferences 3:2–6. https://doi.org/10.1051/matecconf/20130301030
El Nouhy H, Khattab E, Zeedan S (2016) Behavior of cement pastes and mortar containing phosphogypsum. Key Eng Mater 668:181–188. https://doi.org/10.4028/www.scientific.net/KEM.668.181
El Rafie S, El Ghytany HH, Ramadan R, Gaber MH (2019) Treatment and purification of phosphogypsum. Egypt J Chem 62:243–250. https://doi.org/10.21608/ejchem.2019.13267.1934
El Zrelli R, Rabaoui L, Daghbouj N, Abda H, Castet S, Josse C, van Beek P, Souhaut M, Michel S, Bejaoui N, Courjault-Radé P (2018) Characterization of phosphate rock and phosphogypsum from Gabes phosphate fertilizer factories (SE Tunisia): high mining potential and implications for environmental protection. Environ Sci Pollut Res 25:14690–14702. https://doi.org/10.1007/s11356-018-1648-4
El-Didamony H, Gado HS, Awwad NS, Fawzy MM, Attallah MF (2013) Treatment of phosphogypsum waste produced from phosphate ore processing. J Hazard Mater 244–245:596–602. https://doi.org/10.1016/j.jhazmat.2012.10.053
Ennaciri Y, Bettach M, El Alaoui-Belghiti H (2020b) Conversion of Moroccan phosphogypsum waste into nano-calcium fluoride and sodium hydrogen sulfate monohydrate. J Mater Cycles Waste Manag 22:2039–2047. https://doi.org/10.1007/s10163-020-01088-1
Ennaciri Y, Bettach M, El Alaoui-Belghiti H (2020c) Recovery of nano-calcium fluoride and ammonium bisulphate from phosphogypsum waste. Int J Environ Stud 77:297–306. https://doi.org/10.1080/00207233.2020.1737426
Ennaciri, Y., Bettach, M., Cherrat, A., Zdah, I., El Alaoui-Belghiti, H. (2020a). Study of the physical-chemical properties of the Moroccan phosphogypsum: a review. Materiaux et Techniques. 108. https://doi.org/10.1051/mattech/2020029
Erdem E, Ölmez H (1993) The mechanical properties of supersulphated. Cem Concr Res 23:115–121
Essabir H, Nekhlaoui S, Bensalah MO, Rodrigue D, Bouhfid R, el Qaiss A (2017) kacem: Phosphogypsum waste used as reinforcing fillers in polypropylene based composites: structural, mechanical and thermal properties. J Polym Environ 25:658–666. https://doi.org/10.1007/s10924-016-0853-9
Felfoul HS, Reguigui N, Ouézdou MB, Clastres P (2005) Radioactivité naturelle du phosphogypse tunisien. In: Proceedings of the first symposium on nuclear sciences and technology JSTN-2005, Hammamet, Tunisia. https://www.researchgate.net/publication/313474004
Filho JAP, Chaves HC, Ghermandi A, Dias AJG, de Carvalho D, Machado Ribeiro JP (2023) The use of phosphogypsum for soil bricks manufacturing as an alternative for its sustainable destination. Arab J Geosci 16(5):305. https://doi.org/10.1007/s12517-023-11371-8
Folek S, Walawska B, Wilczek B, Miśkiewicz J (2011) Use of phosphogypsum in road construction. Pol J Chem Technol 13:18–22. https://doi.org/10.2478/v10026-011-0018-5
Fuleihan NF (2012) Phosphogypsum disposal - the pros & cons of wet versus dry stacking. Procedia Eng 46:195–205. https://doi.org/10.1016/j.proeng.2012.09.465
Gaidučis S, Žvironaite J, Mačiulaitis R, Jakovlev G (2011) Resistance of phosphogypsum cement pozzolanic compositions against the influence of water. Medziagotyra 17:308–313. https://doi.org/10.5755/j01.ms.17.3.599
Garbaya, H., Jraba, A., Khadimallah, M.A., Elaloui, E.: The development of a new phosphogypsum-based construction material: a study of the physicochemical, mechanical and thermal characteristics. Materials. 14, (2021). https://doi.org/10.3390/ma14237369
Garg M, Jain N, Singh M (2009) Development of alpha plaster from phosphogypsum for cementitious binders. Constr Build Mater 23:3138–3143. https://doi.org/10.1016/j.conbuildmat.2009.06.024
Garg M, Minocha AK, Jain N (2011) Environment hazard mitigation of waste gypsum and chalk: use in construction materials. Constr Build Mater 25:944–949. https://doi.org/10.1016/j.conbuildmat.2010.06.088
Gasser MS, Ismail ZH, Abu Elgoud EM, Abdel Hai F, Ali OI, Aly HF (2019) Process for lanthanides-Y leaching from phosphogypsum fertilizers using weak acids. J Hazard Mater 378:120762. https://doi.org/10.1016/j.jhazmat.2019.120762
Godinho-Castro AP, Testolin RC, Janke L, Corrêa AXR, Radetski CM (2012) Incorporation of gypsum waste in ceramic block production: proposal for a minimal battery of tests to evaluate technical and environmental viability of this recycling process. Waste Manage 32:153–157. https://doi.org/10.1016/j.wasman.2011.08.019
Gong S, Li X, Song F, Lu D, Chen Q (2020) Preparation and application in HDPE of nano-CaSO4 from phosphogypsum. ACS Sustain Chem Eng 8:4511–4520. https://doi.org/10.1021/acssuschemeng.9b07632
Grabas K, Pawełczyk A, Stręk W, Szełęg E, Stręk S (2019) Study on the properties of waste apatite phosphogypsum as a raw material of prospective applications. Waste Biomass Valorization 10:3143–3155. https://doi.org/10.1007/s12649-018-0316-8
Guan Q, Sui Y, Liu C, Wang Y, Zeng C, Yu W, Gao Z, Zang Z, Chi RA (2022) Characterization and leaching kinetics of rare earth elements from phosphogypsum in hydrochloric acid. Minerals 12:1–18. https://doi.org/10.3390/min12060703
Hamdi A, Ben Jamaa N, Kallel Kammoun I (2020) Potential use of phosphogypsum in paving blocks. Green Mater 9:97–107. https://doi.org/10.1680/jgrma.20.00001
Hammas-Nasri I, Horchani-Naifer K, Férid M, Barca D (2016) Rare earths concentration from phosphogypsum waste by two-step leaching method. Int J Miner Process 149:78–83. https://doi.org/10.1016/j.minpro.2016.02.011
Hassen S, Anna Z, Elaloui E, Belgacem N, Mauret E (2012) Study of the valorization of phosphogypsum in the region of Gafsa as filler in paper. In: Materials science and engineering. p 27. https://doi.org/10.1088/1757-899X/28/1/012018
Havanagi V, Sinha AK, Parvathi GS (2018) Characterization of phosphogypsum waste for road construction. In: Proceedings of the Indian Geotechnical Conference, vol 40, pp 1–5. https://www.researchgate.net/publication/329706937_Characterization_of_Phosphogypsum_waste_for_Road_construction
Hentati O, Abrantes N, Caetano AL, Bouguerra S, Gonçalves F, Römbke J, Pereira R (2015) Phosphogypsum as a soil fertilizer: ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants. J Hazard Mater 294:80–89. https://doi.org/10.1016/j.jhazmat.2015.03.034
Huang Y, Lin ZS (2010) Investigation on phosphogypsum-steel slag-granulated blast-furnace slag-limestone cement. Constr Build Mater 24:1296–1301. https://doi.org/10.1016/j.conbuildmat.2009.12.006
Huang X, Zhao X, Bie S, Yang C (2016a) Hardening performance of phosphogypsum-slag-based material. Procedia Environ Sci 31:970–976. https://doi.org/10.1016/j.proenv.2016.03.002
Huang Y, Lu J, Chen F, Shui Z (2016b) The chloride permeability of persulphated phosphogypsum-slag cement concrete. Journal Wuhan University of Technology, Materials Science Edition 31:1031–1037. https://doi.org/10.1007/s11595-016-1486-5
Huang Y, Qian J, Kang X, Yu J, Fan Y, Dang Y, Zhang W, Wang S (2019) Belite-calcium sulfoaluminate cement prepared with phosphogypsum: Influence of P 2 O 5 and F on the clinker formation and cement performances. Constr Build Mater 203:432–442. https://doi.org/10.1016/j.conbuildmat.2019.01.112
Husein Malkawi, D.A., Husein Malkawi, A.I., Bani-Hani, K.A.: Slope stability analysis for the phosphogypsum stockpiles: a case study for the sustainable management of the phosphogypsum stacks in Aqaba Jordan. Sustainability (Switzerland). 14, (2022). https://doi.org/10.3390/su142315763
Irmenci NDEĞ, Okucu A (2007) Usability of fly ash and phosphogypsum in manufacturing of building products. pp 273–278. https://www.researchgate.net/publication/332014388_USABILITY_OF_FLY_ASH_AND_PHOSPHOGYPSUM_IN_MANUFACTURING_OF_BUILDING_PRODUCTS
Kacimi L, Simon-Masseron A, Ghomari A, Derriche Z (2006) Reduction of clinkerization temperature by using phosphogypsum. J Hazard Mater 137:129–137. https://doi.org/10.1016/j.jhazmat.2005.12.053
Kadirova ZC, Hojamberdiev M, Bo L, Hojiyev R, Okada K (2014) Ion uptake properties of low-cost inorganic sorption materials in the CaO-Al2O3-SiO2 system prepared from phosphogypsum and kaolin. J Clean Prod 83:483–490. https://doi.org/10.1016/j.jclepro.2014.06.084
Karim AA, Kumar M, Ray A, Hariprasad D, Dhal NK (2021) Biomass mediated conversion of acidic phosphogypsum into alkaline material through thermal treatments. J Sci Ind Res (india) 80:924–928
Kazragis A (2004) High-temperature decontamination and utilization of phosphogypsum. J Environ Eng Landsc Manag 12:138–145. https://doi.org/10.1080/16486897.2004.9636835
Kogan VE, Zgonnik PV, Chernyaev VA (2018) Composite oil absorbents in the polyurethane foam – phosphogypsum system. Int J Civ Eng Technol 9:963–972
Kowalska E, Kawinska B (2002) The use of phosphogypsum as a filler for thermoplastics, Part II: phosphogypsum as a filler for polyamide 6 and for PVC. J Reinf Plast Compos 21:1043–1052. https://doi.org/10.1177/073168402128987581
Kulczycka J, Kowalski Z, Smol M, Wirth H (2016) Evaluation of the recovery of rare earth elements (REE) from phosphogypsum waste - case study of the WIZÓW chemical plant (Poland). J Clean Prod 113:345–354. https://doi.org/10.1016/j.jclepro.2015.11.039
Kurkinen S, Virolainen S, Sainio T (2021) Recovery of rare earth elements from phosphogypsum waste in resin-in-leach process by eluting with biodegradable complexing agents. Hydrometallurgy 201:105569. https://doi.org/10.1016/j.hydromet.2021.105569
Kuzmanović P, Todorović N, Forkapić S, Petrović LF, Knežević J, Nikolov J, Miljević B (2020) Radiological characterization of phosphogypsum produced in Serbia. Radiat Phys Chem 166:108463. https://doi.org/10.1016/j.radphyschem.2019.108463
Kuzmanović, P., Todorović, N., Mrđa, D., Forkapić, S., Petrović, L.F., Miljević, B., Hansman, J., Knežević, J.: The possibility of the phosphogypsum use in the production of brick: radiological and structural characterization. J Hazard Mater. 413, (2021). https://doi.org/10.1016/j.jhazmat.2021.125343
Lassaad, A., Kammoun, Z.: Pressed non-fired bricks from phosphogypsum waste for non-load bearing wall. Stavební obzor - Civil Engineering Journal. 30, 716–728 (2021). https://doi.org/10.14311/CEJ.2021.03.0055
Li X, Du J, Gao L, He S, Gan L, Sun C, Shi Y (2017) Immobilization of phosphogypsum for cemented paste backfill and its environmental effect. J Clean Prod 156:137–146. https://doi.org/10.1016/j.jclepro.2017.04.046
Li, B., Shu, J., yang, L., Tao, C., Chen, M., Liu, Z., Liu, R.: An innovative method for simultaneous stabilization/solidification of PO43− and F− from phosphogypsum using phosphorus ore flotation tailings. J Clean Prod. 235, 308–316 (2019). https://doi.org/10.1016/j.jclepro.2019.06.340
Liang, H., Zhang, P., Jin, Z., DePaoli, D.: Rare earths recovery and gypsum upgrade from Florida phosphogypsum. Minerals and metallurgical processing. 34, 201–206 (2017). https://doi.org/10.19150/mmp.7860
Liu S, Ouyang J, Ren J (2020) Mechanism of calcination modification of phosphogypsum and its effect on the hydration properties of phosphogypsum-based supersulfated cement. Constr Build Mater 243:118226. https://doi.org/10.1016/j.conbuildmat.2020.118226
Liu H, Nie C, Li H, Xie G, Cao J (2022) Hydrophobically modified phosphogypsum and its application in polypropylene composites. Constr Build Mater 347:128500. https://doi.org/10.1016/j.conbuildmat.2022.128500
Liu, Y., Zhang, Q., Chen, Q., Qi, C., Su, Z., Huang, Z.: Utilisation of water-washing pre-treated phosphogypsum for cemented paste backfill. Minerals. 9, (2019). https://doi.org/10.3390/min9030175
Lokshin EP, Tareeva OA, Elizarova IR (2015) Sorption of rare-earth elements from phosphogypsum sulfuric acid leaching solutions. Theor Found Chem Eng 49:773–778. https://doi.org/10.1134/S0040579515050127
Lu SQ, Lan PQ, Wu SF (2016) Preparation of nano-CaCO3 from phosphogypsum by gas-liquid-solid reaction for CO2 sorption. Ind Eng Chem Res 55:10172–10177. https://doi.org/10.1021/acs.iecr.6b02551
Lütke SF, Oliveira MLS, Waechter SR, Silva LFO, Cadaval TRS, Duarte FA, Dotto GL (2022) Leaching of rare earth elements from phosphogypsum. Chemosphere 301:134661. https://doi.org/10.1016/j.chemosphere.2022.134661
Lutskiy, D., Litvinova, T., Ignatovich, A., Fialkovskiy, I.: Complex processing of phosphogypsum - a way of recycling dumps with reception of commodity production of wide application. Journal of Ecological Engineering. 19, 221–225 (2018). https://doi.org/10.12911/22998993/83562
Ma B, Jin Z, Su Y, Lu W, Qi H, Hu P (2020) Utilization of hemihydrate phosphogypsum for the preparation of porous sound absorbing material. Constr Build Mater 234:117346. https://doi.org/10.1016/j.conbuildmat.2019.117346
Maazoun, H., Bouassida, M.: Phosphogypsum management challenges in Tunisia. Springer International Publishing (2019)
Macías F, Cánovas CR, Cruz-Hernández P, Carrero S, Asta MP, Nieto JM, Pérez-López R (2017) An anomalous metal-rich phosphogypsum: characterization and classification according to international regulations. J Hazard Mater 331:99–108. https://doi.org/10.1016/j.jhazmat.2017.02.015
Maierdan Y, Haque MA, Chen B, Maimaitiyiming M, Ahmad MR (2020) Recycling of waste river sludge into unfired green bricks stabilized by a combination of phosphogypsum, slag, and cement. Constr Build Mater 260:120666. https://doi.org/10.1016/j.conbuildmat.2020.120666
Malanchuk Z, Moshynskyi V, Malanchuk Y, Korniienko V, Koziar M (2020) Results of research into the content of rare earth materials in man-made phosphogypsum deposits. Key Eng Mater 844:77–87. https://doi.org/10.4028/www.scientific.net/KEM.844.77
Mashifana TP (2019) Chemical treatment of phosphogypsum and its potential application for building and construction. In: Procedia manufacturing. pp 641–648. https://doi.org/10.1016/j.promfg.2019.06.007
Matveeva VA, Smirnov YD, Suchkov DV (2022) Industrial processing of phosphogypsum into organomineral fertilizer. Environ Geochem Health 44:1605–1618. https://doi.org/10.1007/s10653-021-00988-x
Mechi N, Khiari R, Ammar M, Elaloui E, Belgacem MN (2017) Preparation and application of Tunisian phosphogypsum as fillers in papermaking made from Prunus amygdalus and Tamarisk sp. Powder Technol 312:287–293. https://doi.org/10.1016/j.powtec.2017.02.055
Mei F, Hou J, Liu Z (2012) Research on activity characteristics on composite cementitious materials based on phosphogypsum. Procedia Eng 43:9–15. https://doi.org/10.1016/j.proeng.2012.08.003
Moalla R, Gargouri M, Khmiri F, Kamoun L, Zairi M (2018) Phosphogypsum purification for plaster production: a process optimization using full factorial design. Environmental Engineering Research 23:36–45. https://doi.org/10.4491/eer.2017.055
Mohamed KR, Mousa SM, El Bassyouni GT (2014) Fabrication of nano structural biphasic materials from phosphogypsum waste and their in vitro applications. Mater Res Bull 50:432–439. https://doi.org/10.1016/j.materresbull.2013.11.023
Mousa S, Hanna A (2013) Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste. Mater Res Bull 48:823–828. https://doi.org/10.1016/j.materresbull.2012.11.067
Mukaba JL, Eze CP, Pereao O, Petrik LF (2021) Rare earths’ recovery from phosphogypsum: an overview on direct and indirect leaching techniques. Minerals 11. https://doi.org/10.3390/min11101051
Naresha R, Laxminarayana P, Suneetha Devi KB, Sailaja V (2016) Yield and moisture studies of rabi groundnut as influenced by moisture regimes and phosphogypsum levels. https://www.researchgate.net/publication/323747943_Yield_and_Moisture_Studies_of_Rabi_Groundnut_as_Influenced_by_Moisture_Regimes_and_Phosphogypsum_Levels
Ngo HTT, Dang VQ, Ho LS, Doan TX (2022) Utilization phosphogypsum as a construction material for road base: a case study in Vietnam. Innov Infrastruct Solut 7:1–10. https://doi.org/10.1007/s41062-021-00695-7
Nisti MB, De Campos MP, Mazzilli BP (2014) Natural radionuclides content and radon exhalation rate from Brazilian phosphogypsum piles. J Radioanal Nucl Chem 299:261–264. https://doi.org/10.1007/s10967-013-2752-z
Nizevičienė D, Vaičiukynienė D, Vaitkevičius V (2016) Rudžionis: Effects of waste fluid catalytic cracking on the properties of semi-hydrate phosphogypsum. J Clean Prod 137:150–156. https://doi.org/10.1016/j.jclepro.2016.07.037
Palla S, Sharma P, Rao MVR, Ramakrishna S, Vanguri S, Mohapatra BN (2022) Solar thermal treatment of phosphogypsum and its impact on the mineralogical modification for effective utilization in cement production. Journal of Building Engineering 51:104218. https://doi.org/10.1016/j.jobe.2022.104218
Pérez-López R, Nieto JM, López-Coto I, Aguado JL, Bolívar JP, Santisteban M (2010) Dynamics of contaminants in phosphogypsum of the fertilizer industry of Huelva (SW Spain): from phosphate rock ore to the environment. Appl Geochem 25:705–715. https://doi.org/10.1016/j.apgeochem.2010.02.003
Podbiera-Matysik K, Gorazda K, Wzorek Z (2015) Potential management of waste phosphogypsum with particular focus on recovery of rare earth metals. Pol J Chem Technol 17:55–61. https://doi.org/10.1515/pjct-2015-0009
Qiao D, Qian J, Wang Q, Danga Y, Zhangc H, Zenga D (2010) Utilization of sulfate-rich solid wastes in rural road construction in the Three Gorges Reservoir. Resour Conserv Recycl 54:1368–1376. https://doi.org/10.1016/j.resconrec.2010.05.013
Rakhila Y, Mestari A, Azmi S, Elmchaouri A (2018) Elaboration and Characterization of New 11:1552–1563
Rashad AM (2015) Potential use of phosphogypsum in alkali-activated fly ash under the effects of elevated temperatures and thermal shock cycles. J Clean Prod 87:717–725. https://doi.org/10.1016/j.jclepro.2014.09.080
Raut SP, Patil US, Madurwar MV (2022) Utilization of phosphogypsum and rice husk to develop sustainable bricks. Mater Today Proc 60:595–601. https://doi.org/10.1016/j.matpr.2022.02.122
Reguigui N, Sfar Felfoul H, Ben Ouezdou M, Clastres P (2005) Radionuclide levels and temporal variation in phosphogypsum. J Radioanal Nucl Chem 264:719–722. https://doi.org/10.1007/s10967-005-0778-6
Ren K, Cui N, Zhao S, Zheng K, Ji X, Feng L, Cheng X, Xie N (2021) Low-carbon sustainable composites from waste phosphogypsum and their environmental impacts. Crystals 11(7):719. https://doi.org/10.3390/cryst11070719
Rentería-Villalobos M, Vioque I, Mantero J, Manjón G (2010) Radiological, chemical and morphological characterizations of phosphate rock and phosphogypsum from phosphoric acid factories in SW Spain. J Hazard Mater 181:193–203. https://doi.org/10.1016/j.jhazmat.2010.04.116
de Rezende LR, Curado T, da S, Silva MV, Mascarenha MM dos A, Metogo DAN, Neto MPC, Bernucci LLB (2017) Laboratory study of phosphogypsum, stabilizers, and tropical soil mixtures. J Mater Civ Eng 29:1–16. https://doi.org/10.1061/(asce)mt.1943-5533.0001711
Rosales J, Pérez SM, Cabrera M, Gázquez MJ, Bolivar JP, de Brito J, Agrela F (2020) Treated phosphogypsum as an alternative set regulator and mineral addition in cement production. J Clean Prod 244. https://doi.org/10.1016/j.jclepro.2019.118752
Rychkov VN, Kirillov EV, Kirillov SV, Semenishchev VS, Bunkov GM, Botalov MS, Smyshlyaev DV, Malyshev AS (2018) Recovery of rare earth elements from phosphogypsum. J Clean Prod 196:674–681. https://doi.org/10.1016/j.jclepro.2018.06.114
Saadaoui E, Ghazel N, Ben Romdhane C, Massoudi N (2017) Phosphogypsum: potential uses and problems–a review. Int J Environ Stud 74:558–567. https://doi.org/10.1080/00207233.2017.1330582
Samet M, Karray F, Mhiri N, Kamoun L, Sayadi S, Gargouri-Bouzid R (2019) Effect of phosphogypsum addition in the composting process on the physico-chemical proprieties and the microbial diversity of the resulting compost tea. Environ Sci Pollut Res 26:21404–21415. https://doi.org/10.1007/s11356-019-05327-3
Shabelskaya N, Medvedev R, Gaidukova Y, Astachova M (2019) Phosphogypsum recycling into inorganic dyes. E3S Web of Conferences 140:1–4. https://doi.org/10.1051/e3sconf/201914001002
Shen W, Zhou M, Zhao Q (2007) Study on lime-fly ash-phosphogypsum binder. Constr Build Mater 21:1480–1485. https://doi.org/10.1016/j.conbuildmat.2006.07.010
Shen W, Gan G, Dong R, Chen H, Tan Y, Zhou M (2012) Utilization of solidified phosphogypsum as Portland cement retarder. J Mater Cycles Waste Manag 14:228–233. https://doi.org/10.1007/s10163-012-0065-x
Silva MV, de Rezende LR, Mascarenha MM dos A, de Oliveira RB (2019) Phosphogypsum, tropical soil and cement mixtures for asphalt pavements under wet and dry environmental conditions. Resour Conserv Recycl 144:123–136. https://doi.org/10.1016/j.resconrec.2019.01.029
Singh M (2005) Role of phosphogypsum impurities on strength and microstructure of selenite plaster. Constr Build Mater 19:480–486. https://doi.org/10.1016/j.conbuildmat.2004.07.010
Singh M, Garg M, Verma CL, Handa SK, Kumar R (1996) An improved process for the purification of phosphogypsum. Constr Build Mater 10:597–600. https://doi.org/10.1016/S0950-0618(96)00019-0
Sinha E, Panigrahi S (2009) Effect of plasma treatment on structure, wettability of jute fiber and flexural strength of its composite. J Compos Mater 43:1791–1802. https://doi.org/10.1177/0021998309338078
Sudhakar P, Ramesh Babu V, Babu BR (2016) Study on subgrade characteristics of black cotton soil treated with lime and phosphogypsum. Int Res J Eng Technol 1524–1529. https://www.irjet.net/archives/V3/i12/IRJET-V3I12330.pdf
Sun M, Sun Q, Zhang J, Sheng J (2022) Surface modification of phosphogypsum and application in polyolefin composites. Environ Sci Pollut Res 66177–66190. https://doi.org/10.1007/s11356-022-20414-8
Syczewski MD, Borkowski A, Gąsiński A, Raczko J, Mordak K, Grądziel I, Magdalena Krzesicka, Kałaska M, Siuda R (2023) Phosphogypsum and clay mineral/phosphogypsum ceramic composites as useful adsorbents for uranium uptake. Appl Geochem 123. https://doi.org/10.1016/j.apgeochem.2020.104793
Taha R, Seals R (1992) Engineering properties and potential uses of by-product phosphogypsum. Utilization of waste materials in civil engineering construction. ASCE, pp 250–263
Taher MA (2007) Influence of thermally treated phosphogypsum on the properties of Portland slag cement. Resour Conserv Recycl 52:28–38. https://doi.org/10.1016/j.resconrec.2007.01.008
Tayar SP, Palmieri MC, Bevilaqua D (2022) Sulfuric acid bioproduction and its application in rare earth extraction from phosphogypsum. Miner Eng 185:107662. https://doi.org/10.1016/j.mineng.2022.107662
Tayibi H, Choura M, López FA, Alguacil FJ, López-Delgado A (2009) Environmental impact and management of phosphogypsum. J Environ Manage 90:2377–2386. https://doi.org/10.1016/j.jenvman.2009.03.007
Thakur Y, Tyagi A, Sarkar S (2023) Utilization of industrial waste phosphogypsum as geomaterial: a review. J Hazard Toxic Radioact Waste 27:1–23. https://doi.org/10.1061/jhtrbp.hzeng-1181
Thermal behaviour of Moroccan phosphogypsum (1997) Saloua Sebbahi, Chameikh, M.L.O., Sahban, F., Aride, J., Benarafa, L., Belkbir, L. Thermochim Acta 302:69–75
Tian T, Yan Y, Hu Z, Xu Y, Chen Y, Shi J (2016) Utilization of original phosphogypsum for the preparation of foam concrete. Constr Build Mater 115:143–152. https://doi.org/10.1016/j.conbuildmat.2016.04.028
Türkel S, Aksin E (2012) A comparative study on the use of fly ash and phosphogypsum in the brick production. Sadhana - Academy Proceedings in Engineering Sciences 37:595–607. https://doi.org/10.1007/s12046-012-0099-8
Vaičiukynienė D, Nizevičienė D, Kielė A, Janavičius E, Pupeikis D (2018) Effect of phosphogypsum on the stability upon firing treatment of alkali-activated slag. Constr Build Mater 184:485–491. https://doi.org/10.1016/j.conbuildmat.2018.06.213
Valkov AV, Andreev VA, Anufrieva AV, Makaseev YN, Bezrukova SA, Demyanenko NV (2014) Phosphogypsum technology with the extraction of valuable components. Procedia Chem 11:176–181. https://doi.org/10.1016/j.proche.2014.11.031
Valorization of phosphogypsum as hydraulic binder (2008) Kuryatnyk, T., Angulski da Luz, C., Ambroise, J., Pera. J J Hazard Mater 160:681–687. https://doi.org/10.1016/j.jhazmat.2008.03.014
Villalón Fornés I, Vaičiukynienė D, Nizevičienė D, Doroševas V, Dvořák K (2021) A method to prepare a high-strength building material from press-formed phosphogypsum purified with waste zeolite. J Build Eng 34. https://doi.org/10.1016/j.jobe.2020.101919
Virolainen S, Repo E, Sainio T (2019) Recovering rare earth elements from phosphogypsum using a resin-in-leach process: selection of resin, leaching agent, and eluent. Hydrometallurgy 189:105125. https://doi.org/10.1016/j.hydromet.2019.105125
Walawalkar M, Nichol CK, Azimi G (2016b) Process investigation of the acid leaching of rare earth elements from phosphogypsum using HCl, HNO3, and H2SO4. Hydrometallurgy 166:195–204. https://doi.org/10.1016/j.hydromet.2016.06.008
Walawalkar M, Azimi G, Nichol CK (2016) Leaching of rare earth elements from phosphogypsum (by-product of phosphate fertilizer production). https://doi.org/10.1016/j.hydromet.2016.06.008
Wang J, Dong F, Wang Z, Yang F, Du M, Fu K, Wang Z (2020a) A novel method for purification of phosphogypsum. Physicochem Probl Miner Process 56:975–983. https://doi.org/10.37190/PPMP/127854
Wang B, Lian G, Lee X, Gao B, Li L, Liu T, Zhang X, Zheng Y (2020b) Phosphogypsum as a novel modifier for distillers grains biochar removal of phosphate from water. Chemosphere 238:124684. https://doi.org/10.1016/j.chemosphere.2019.124684
Wędrychowicz M, Bydałek AW, Skrzekut T, Noga P, Gabryelewicz I, Madej P (2019) Analysis of the mechanical strength, structure and possibilities of using waste phosphogypsum in aluminum powder composites. SN Appl Sci 1:1–8. https://doi.org/10.1007/s42452-019-0995-1
Xiang J, Qiu J, Zheng P, Sun X, Zhao Y, Gu X (2022) Usage of biowashing to remove impurities and heavy metals in raw phosphogypsum and calcined phosphogypsum for cement paste preparation. Chem Eng J 451:138594. https://doi.org/10.1016/j.cej.2022.138594
Yang M, Qian J (2011) Activation of anhydrate phosphogypsum by K 2SO 4 and hemihydrate gypsum. Journal Wuhan University of Technology, Materials Science Edition 26:1103–1107. https://doi.org/10.1007/s11595-011-0371-5
Yang J, Liu W, Zhang L, Xiao B (2009) Preparation of load-bearing building materials from autoclaved phosphogypsum. Constr Build Mater 23:687–693. https://doi.org/10.1016/j.conbuildmat.2008.02.011
Yang L, Yan Y, Hu Z (2013a) Utilization of phosphogypsum for the preparation of non-autoclaved aerated concrete. Constr Build Mater 44:600–606. https://doi.org/10.1016/j.conbuildmat.2013.03.070
Yang L, Yan Y, Hu Z, Xie X (2013b) Utilization of phosphate fertilizer industry waste for belite–ferroaluminate cement production. Constr Build Mater 38:8–13. https://doi.org/10.1016/j.conbuildmat.2012.08.049
Yang L, Zhang Y, Yan Y (2016) Utilization of original phosphogypsum as raw material for the preparation of self-leveling mortar. J Clean Prod 127:204–213. https://doi.org/10.1016/j.jclepro.2016.04.054
Yang J, Ren Y, Lu J, Liu H, Zhang Z, Pang H, Bounkhong K (2021) Chemical looping gasification with a CuFe2O4-enhanced phosphogypsum oxygen carrier during reduction in a fluidized bed reactor. Chem Eng J 426:131346
Yilmaz VT, Isıldak O (1993) Influence of some set accelerating admixtures on the hydration of Portland cement containing phosphogypsum. Adv Cem Res 5:147–150. https://doi.org/10.1680/adcr.1993.5.20.147
Yasser R. Zaghloul: Investigation on utilization of phosphogypsum as a partial replacement of cement in concrete. International Journal of Engineering Research and. V8, (2019). https://doi.org/10.17577/ijertv8is110035
Zhang D, Luo H, Zheng L, Wang K, Li H, Wang Y, Feng H (2012) Utilization of waste phosphogypsum to prepare hydroxyapatite nanoparticles and its application towards removal of fluoride from aqueous solution. J Hazard Mater 241–242:418–426. https://doi.org/10.1016/j.jhazmat.2012.09.066
Zhang J, Wei C, Ran J, Li Y, Chen J (2022) Properties of polymer composite with large dosage of phosphogypsum and it’s application in pipeline. Polym Test 116:107742. https://doi.org/10.1016/j.polymertesting.2022.107742
Zhang, W., Zhang, F., Ma, L., Yang, J., Wei, Y., Kong, D.: CO2 capture and process reinforcement by hydrolysate of phosphogypsum decomposition products. Journal of CO2 Utilization. 36, 253–262 (2020). https://doi.org/10.1016/j.jcou.2019.11.020
Zhao L, Wan T, Yang X, Yang L, Kong X, Zhang Z, Wang X (2015) Effects of kaolinite addition on the melting characteristics of the reaction between phosphogypsum and CaS. J Therm Anal Calorim 119:2119–2126. https://doi.org/10.1007/s10973-015-4400-z
Zhao S, Ma L, Yang J, Zheng D, Liu H, Yang J (2017) Mechanism of CO2 capture technology based on the phosphogypsum reduction thermal decomposition process. Energy Fuels 31:9824–9832
Zhou L (2018) Preparation of calcium fluoride using phosphogypsum by orthogonal experiment. Open Chem 16:864–868. https://doi.org/10.1515/chem-2018-0093
Zhou J, Sheng Z, Li T, Shu Z, Chen Y, Wang Y (2016) Preparation of hardened tiles from waste phosphogypsum by a new intermittent pressing hydration. Ceram Int 42:7237–7245. https://doi.org/10.1016/j.ceramint.2016.01.117
Zhou J, Li X, Zhao Y, Shu Z, Wang Y, Zhang Y, Shen X (2020) Preparation of paper-free and fiber-free plasterboard with high strength using phosphogypsum. Constr Build Mater 243:118091. https://doi.org/10.1016/j.conbuildmat.2020.118091
Zirnea S, Lazar I, Foudjo BUS, Vasilache T, Lazar G (2013) Cluster analysis based of geochemical properties of phosphogypsum dump located near Bacau City in Romania. APCBEE Proc 5:317–322. https://doi.org/10.1016/j.apcbee.2013.05.054
Zmemla R, Benjdidia M, Naifar I, Sadik C, Elleuch B, Sdiri A (2022) A phosphogypsum-based road material with enhanced mechanical properties for sustainable environmental remediation. Environ Prog Sustain Energy 41:1–14. https://doi.org/10.1002/ep.13732
Zolotukhin S, Kukina O, Mishchenko V, Larionov S (2018) Waste-free phosphogypsum processing technology when extracting rare-earth metals. In: International scientific conference energy management of municipal facilities and sustainable energy technologies EMMFT 2018. Springer International Publishing, pp 339–351. https://doi.org/10.1007/978-3-030-19868-8_35