Properties (DN(φ, ψ)) and (Ω (φ, ψ)) for Fréchet spaces

Springer Science and Business Media LLC - Tập 66 Số 5 - Trang 388-396 - 1996
Markus Poppenberg1
1Fachbereich Mathematik, Universität Dortmund, Dortmund

Tóm tắt

Từ khóa


Tài liệu tham khảo

R. S. Hamilton, The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc.7, 65–222 (1982).

L.Hörmander, The Analysis of Linear Partial Differential Operators I. Grundlehren der mathematischen Wissensch.256, Berlin-Heidelberg-New York-Tokyo 1983.

K. Nyberg, A tame splitting Theorem for Köthe spaces. Arch. Math.52, 471–481 (1989).

M. Poppenberg, Characterization of the subspaces of (s) in the tame category. Arch. Math.54, 274–283 (1990).

M. Poppenberg, Characterization of the quotient spaces of (s) in the tame category. Math. Nachr.150, 127–141 (1991).

M.Poppenberg, Der Satz über Inverse Funktionen in einigen Klassen von Frecheträumen, Habilitationsschrift, Dortmund 1994.

M. Poppenberg andD. Vogt, A Tarne Splitting Theorem for Exact Sequences of Fréchet Spaces. Math. Z.219, 141–161 (1995).

D. Vogt, Charakterisierung der Unterräume vons. Math. Z.155, 109–117 (1977).

D. Vogt, Subspaces and quotient spaces of (s). In: Functional Analysis: Surveys and Recent Results, North-Holland Math. Stud.27, 167–187 (1977).

D.Vogt, Interpolation of nuclear operators and a splitting theorem for exact sequences of Fréchet spaces. Preprint.

D.Vogt, Tame splitting pairs. Preprint.

D. Vogt, On two classes of (F)-spaces. Arch. Math.45, 255–266 (1985).

D. Vogt andM. J. Wagner, Charakterisierung der Quotientenräume vons und eine Vermutung von Martineau. Studia Math.67, 225–240 (1980).