Proper orthogonal and dynamic mode decomposition analyses of nonlinear combustion instabilities in a solid-fuel ramjet combustor
Tóm tắt
Từ khóa
Tài liệu tham khảo
M. Richman, J. Kenyon, R. Sega, High speed and hypersonic science and technology, in: 41st AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. Exhib., 2005: p. 4099.
Schulte, 1986, Fuel regression and flame stabilization studies of solid-fuel ramjets, J. Propuls. Power., 2, 301, 10.2514/3.22886
Schulte, 1987, Temperature and concentration measurements in a solid fuel ramjet combustion chamber, J. Propuls. Power., 3, 114, 10.2514/3.22962
Pelosi-Pinhas, 2003, Bypass-regulated solid fuel ramjet combustor in variable flight conditions, J. Propuls. Power., 19, 73, 10.2514/2.6082
Gong, 2017, Numerical and experimental investigation of the effect of geometry on combustion characteristics of solid-fuel ramjet, Acta Astronaut., 141, 110, 10.1016/j.actaastro.2017.09.027
Zvuloni, 1989, Geometric effects on the combustion in solid fuel ramjets, J. Propuls. Power., 5, 32, 10.2514/3.23111
Li, 2018, Investigation of the effect of geometry of combustor on combustion characteristics of solid-fuel ramjet with swirl flow, Appl. Therm. Eng., 145, 229, 10.1016/j.applthermaleng.2018.09.035
U.G. Hegde, D. Reuter, B.R. Daniel, B.T. Zinn, Flame Driving of Longitudinal Instabilities in Dump Type Ramjet Combustors AIM 24th Aerospace Sciences Meeting FLAME DRIVING OF LONGITUDINAL INSTABILITIES IN DUMP TYPE, (1986). https://doi.org/10.2514/6.1986-371.
Crump, 1986, Longitudinal combustion instabilities in ramjet engines identification of acoustic modes, J. Propuls. Power., 2, 105, 10.2514/3.22852
Liou, 1997, Flammability limits and probability density functions in simulated solid-fuel ramjet combustors, J. Propuls. Power., 13, 643, 10.2514/2.5229
SCHADOW, 1989, Large-scale coherent structures as drivers of combustion instability, Combust. Sci. Technol., 64, 167, 10.1080/00102208908924029
Yu, 1991, Low-frequency pressure oscillations in a model ramjet combustor, J. Fluid Mech., 232, 47, 10.1017/S0022112091003622
Zhao, 2019, Investigation of flame flashback phenomenon in a supersonic crossflow with ethylene injection upstream of cavity flameholder, Aerosp. Sci. Technol., 87, 190, 10.1016/j.ast.2019.02.018
Ouyang, 2017, The influence of cavity parameters on the combustion oscillation in a single-side expansion scramjet combustor, Acta Astronaut., 137, 52, 10.1016/j.actaastro.2017.03.018
T. Laser, C. Engineering, M. Street, Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection, 26 (2018) 32103–32110.
Sampaolo, 2020, Quartz-enhanced photoacoustic spectroscopy for hydrocarbon trace gas detection and petroleum exploration, Fuel., 277, 118118, 10.1016/j.fuel.2020.118118
J. Peng, Z. Cao, X. Yu, S. Yang, Y. Yu, H. Ren, Y. Ma, S. Zhang, S. Chen, Y. Zhao, Analysis of combustion instability of hydrogen fueled scramjet combustor on high-speed OH-PLIF measurements and dynamic mode decomposition, Int. J. Hydrogen Energy. 45 (2020) 13108–13118. https://doi.org/https://doi.org/10.1016/j.ijhydene.2020.02.216.
J.O. Connor, Disturbance-Field Decomposition in a Transversely Forced Swirl Flow and Flame, 33 (2017). https://doi.org/10.2514/1.B36223.
P.J.S.L. Li, M.P.J.O. Pust, Applications of the dynamic mode decomposition, (2011) 249–259. https://doi.org/10.1007/s00162-010-0203-9.
Lumley, 2007, Stochastic tools in turbulence, Courier Corporation
Muld, 2012, Flow structures around a high-speed train extracted using Proper Orthogonal Decomposition and Dynamic Mode Decomposition, Comput. Fluids., 57, 87, 10.1016/j.compfluid.2011.12.012
P.J. Schmid, K.E. Meyer, O. Pust, Dynamic Mode Decomposition and Proper Orthogonal Decomposition of flow in a lid-driven cylindrical cavity, (2009).
J.H. Tu, C.W. Rowley, D.M. Luchtenburg, S.L. Brunton, J.N. Kutz, On dynamic mode decomposition: Theory and applications, ArXiv Prepr. ArXiv1312.0041. (2013).
Pereira, 2010, Dynamic Characterization of an Actuated Bluff Body Wake, V Eur, Conf. Comput. Fluid Dyn. ECCOMAS CFD, 2010, 14
Rajasegar, 2018, Comprehensive Combustion Stability Analysis Using Dynamic Mode Decomposition, Energy and Fuels., 32, 9990, 10.1021/acs.energyfuels.8b02433
Nakaya, 2019, Analysis of supersonic combustion characteristics of ethylene/methane fuel mixture on high-speed measurements of CH∗chemiluminescence, Proc. Combust. Inst., 37, 3749, 10.1016/j.proci.2018.09.011
Philo, 2021, 100 kHz PIV in a liquid-fueled gas turbine swirl combustor at 1 MPa, Proc. Combust. Inst., 38, 1571, 10.1016/j.proci.2020.06.066
Huang, 2020, Combustion Dynamics in a Single-Element Lean Direct Injection Gas Turbine Combustor, Combust. Sci. Technol., 192, 2371, 10.1080/00102202.2019.1646732
Yang, 2020, Large eddy simulation calculated flame dynamics of one F-class gas turbine combustor, Fuel., 261, 116451, 10.1016/j.fuel.2019.116451
Pan, 2011, Dynamical mode decomposition of Gurney flap wake flow, Theor. Appl. Mech. Lett., 1, 012002, 10.1063/2.1101202
Statnikov, 2016, Analysis of characteristic wake flow modes on a generic transonic backward-facing step configuration, Eur. J. Mech. B/Fluids., 59, 124, 10.1016/j.euromechflu.2016.05.008
Cesur, 2014, Analysis of the wake dynamics of stiff and flexible cantilever beams using POD and DMD, Comput. Fluids., 101, 27, 10.1016/j.compfluid.2014.05.012
Devaraj, 2021, Investigation of local unstart in a hypersonic scramjet intake at a Mach number of 6, Aerosp. Sci. Technol., 115, 106789, 10.1016/j.ast.2021.106789
Nakaya, 2021, Experimental investigation of ethylene/air combustion instability in a model scramjet combustor using image-based methods, Proc. Combust. Inst., 38, 3869, 10.1016/j.proci.2020.07.129
Li, 2017, Dynamic Mode Decomposition of Turbulent Combustion Process in DLR Scramjet Combustor, J. Aerosp. Eng., 30, 04017034, 10.1061/(ASCE)AS.1943-5525.0000747
O. Musa, C. Xiong, Z. Changsheng, Z. Min, Combustion modeling of unsteady reacting swirling flow in solid fuel ramjet, in: 2017 Int. Conf. Mech. Syst. Control Eng., IEEE, 2017: pp. 115–120.
Kuo, 2005, Principles of combustion
Zhang, 2004, A block LU-SGS implicit dual time-stepping algorithm for hybrid dynamic meshes, Comput. Fluids., 33, 891, 10.1016/j.compfluid.2003.10.004
Kim, 2001, Methods for the accurate computations of hypersonic flows: I. AUSMPW+ scheme, J. Comput. Phys., 174, 38, 10.1006/jcph.2001.6873
Menter, 1994, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., 32, 1598, 10.2514/3.12149
Li, 2021, Numerical Investigation of Inlet Thermodynamic Conditions on Solid Fuel Ramjet Performances, Int. J. Aerosp. Eng., 2021, 1
Lehr, 1972, Experiments on shock-induced combustion, Astronaut. Acta., 17, 589
Musa, 2017, Effect of inlet conditions on swirling turbulent reacting flows in a solid fuel ramjet engine, Appl. Therm. Eng., 113, 186, 10.1016/j.applthermaleng.2016.11.023
Li, 2017, Numerical prediction of combustion instability limit cycle oscillations for a combustor with a long flame, Combust. Flame., 185, 28, 10.1016/j.combustflame.2017.06.018
Li, 2017, The one-dimensional acoustic field in a duct with arbitrary mean axial temperature gradient and mean flow, J. Sound Vib., 400, 248, 10.1016/j.jsv.2017.03.047
Li, 2020, Analytical solutions for the acoustic field in a thin annular duct with temperature gradient and mean flow, J. Sound Vib., 467, 10.1016/j.jsv.2019.115043
Zhao, 2013, Thermoacoustic instability of a laminar premixed flame in Rijke tube with a hydrodynamic region, J. Sound Vib., 332, 3419, 10.1016/j.jsv.2013.01.031
DOWLING, 1997, Nonlinear self-excited oscillations of a ducted flame, J. Fluid Mech., 346, 271, 10.1017/S0022112097006484
Hemchandra, 2012, Premixed flame response to equivalence ratio fluctuations: Comparison between reduced order modeling and detailed computations, Combust. Flame., 159, 3530, 10.1016/j.combustflame.2012.08.003
Brevis, 2011, Shallow-flow visualization analysis by proper orthogonal decomposition, J. Hydraul. Res., 49, 586, 10.1080/00221686.2011.585012
SCHMID, 2010, Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656, 5, 10.1017/S0022112010001217
Kutz, 2016
Jovanović, 2014, Sparsity-promoting dynamic mode decomposition, Phys. Fluids., 26, 24103, 10.1063/1.4863670
Higham, 2018, Implications of the selection of a particular modal decomposition technique for the analysis of shallow flows, J. Hydraul. Res., 56, 796, 10.1080/00221686.2017.1419990
Li, 2021, Numerical Investigations on Solid-fueled Ramjet Inlet Thermodynamic Properties Effects on Generating Self-sustained Combustion Instability, Aerospace Science and Technology, 119, 107097, 10.1016/j.ast.2021.107097
Dowling, 1995, The calculation of thermoacoustic oscillations, Journal of sound and vibration, 180, 557, 10.1006/jsvi.1995.0100
Chen, 2021, Multi-physics coupling in thermoacoustic devices: A review, Renewable and Sustainable Energy Reviews, 146, 111170, 10.1016/j.rser.2021.111170
Zou, 2021, Numerical investigation on regression rate and thrust regulation behaviors of a combined solid rocket motor with aluminum-based fuel, Aerospace Science and Technology, 119, 107102, 10.1016/j.ast.2021.107102
Zhao, 2018, A review of cavity-based trapped vortex, ultra-compact, high-g, inter-turbine combustors, Progress in Energy and Combustion Science, 66, 42, 10.1016/j.pecs.2017.12.001
Ma, 2021, Experimental and theoretical studies on thermoacoustic limit cycle oscillation in a simplified solid rocket motor using flat flame burner, Acta Astronautica, 189, 26, 10.1016/j.actaastro.2021.08.017
Han, 2021, Effects of baffle designs on damping acoustic oscillations in a solid rocket motor, Aerospace Science and Technology, 115, 106827, 10.1016/j.ast.2021.106827
Han, 2021, Study on combustion oscillation characteristics of micron aluminum particles, Powder Technology, 394, 782, 10.1016/j.powtec.2021.09.024
Zhao, 2019, Characterizing hydrogen-fuelled pulsating combustion on thermodynamic properties of a combustor, Communications Physics, 2, 1, 10.1038/s42005-019-0142-8