Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression

Soviet Mining - Tập 51 Số 3 - Trang 487-496 - 2015
Hadi Haeri1
1Department of Mining Engineering, Bagh Branch, Islamic Azad University, Bagh, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Barton, N.R., Review of a New Shear Strength Criterion for Rock Joints, Engine Geo., 1973, pp. 287–332.

Hoek, E. and Bieniawski, Z.T., Brittle Rock Fracture Propagation in Rock under Compression, South Af. Council for Scientific and Industrial Research Pretoria, Int. J. Frac. Mech., 1965, vol. 1, pp. 137–155.

Bieniawski, Z.T., Mechanism of Brittle Fracture of Rock. Part II—Experimental Studies, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1967, vol. 4, pp. 407–423.

Bobet, A. and Einstein, H.H., Fracture Coalescence in Rock-Type Materials under Uniaxial and Biaxial Compression, Int. J. Rock Mech. Min. Sci., 1998a, vol. 35, pp. 863–888.

Huang, J.F., Chen, G.L., Zhao, Y.H., and Wang, R., An Experimental Study of the Strain Field Development prior to Failure of a Marble Plate under Compression, Tectonophysics., 1990, vol. 175, pp. 269–284.

Martynyuk, P.A., Sher, E.N., and Basheev, G.V., Microcrack Accumulation and Coalescence, J. Min. Sci., 1997, vol. 33, pp. 536–542.

Wong, R.H.C., Chau, K.T., Tang, C.A., and Lin, P., Analysis of Crack Coalescence in Rock-Like Materials Containing Three Flaws. Part I: Experimental Approach, Int. J. Rock Mech. Min. Sci., 2001, vol. 38, pp. 909–924.

Sahouryeh, E., Dyskin, A.V., and Germanovich, L.N., Crack Growth under Biaxial Compression, Engin. Fract. Mech., 2002, vol. 69, pp. 2187–2198.

Podgórski, J., Influence Exerted by Strength Criterion on the Direction of Crack Propagation in the Elastic-Brittle Material, J. Min. Sci., 2002, vol. 38, pp. 374–380.

Suknev, S.V., Elshin, V.K., and Novopashin, M.D., Experimental Investigation into Processes of Crack Formation in Rock Samples with Hole, J. Min. Sci., 2003, vol. 39, pp. 460–466.

Zubkov, V.V., Koshelev, V.F., and Lin’kov, A.M., Numerical Modeling of Hydraulic Fracture Initiation and Development, J. Min. Sci., 2007, vol. 43, pp. 40–56.

Martynyuk, P.A. and Sher, E.N., Development of a Crack Created by Hydraulic Fracturing in a Compressed Block Structure Rock, J. Min. Sci., 2011, vol. 46, pp. 510–515.

Yang, S.Q., Crack Coalescence Behavior of Brittle Sandstone Samples Containing Two Coplanar Fissures in the Process of Deformation Failure, Engin. Fract. Mech., 2011, vol. 78, pp. 3059–3081.

Lee, H. and Jeon, S., An Experimental and Numerical Study of Fracture Coalescence in Pre-Cracked Specimens under Uniaxial Compression, Int. J. Solids and Structures., 2011, vol. 48, pp. 979–999.

Sher, E.N. and Kolykhalov, I.V., Propagation of Closely Spaced Hydraulic Fractures, J. Min. Sci., 2012, vol. 47, pp. 741–750.

Haeri, H., Shahriar, K, Marji, M.F, and Moarefvand, P., On the HDD Analysis of Micro Cracks Initiation, Propagation and Coalescence in Brittle Substances, Arab. J. Geosci., 2014, vol.8, pp. 2841–2852.

Tang, C.A., Lin, P., Wong R.H.C., and Chau, K.T., Analysis of Crack Coalescence in Rock-Like Materials Containing Three Flaws. Part II: Numerical Approach, Int. J. Rock Mech. Min. Sci., vol. 38, pp. 909–924.

Haeri, H., Shahriar, K., Marji, M.F., Moarefvand, P., An Experimental and Numerical Study of Crack Propagation and Cracks Coalescence in the Pre-Cracked Rock-Like Disc Specimens under Compression, Int. J. Rock Mech, Min. Sci., 2014, vol. 67c, pp. 20–28.

Erdogan, F. and Sih, G.C., On the Crack Extension in Plates under Loading and Transverse Shear, J. Fluids Eng., 1963, vol. 85, pp. 519–525.

Hussian, M.A., Pu, E.L., and Underwood, J.H., Strain Energy Release Rate for a Crack under Combined Mode I and Mode II, Fracture Analysis, ASTM STP 560, Am. Soc. Testing and Materials., 1974, pp. 2–28.

Sih, G.C., Strain–Energy–Density Factor Applied to Mixed Mode Crack Problems, Int. J. Fract., 1974, vol. 10, pp. 305–321.

Shen, B. and Stephansson, O., Modification of the G-criterion for Crack Propagation Subjected to Compression, Eng. Fract. Mech., 1994, vol. 47, pp. 177–189.

Marji, M.F., Hosseinin-Nasab, H., and Kohsary, A.H., On the Uses of Special Crack Tip Elements in Numerical Rock Fracture Mechanics, Int. J. Solids and Structures., 2006, vol. 43, pp. 1669–1692.

Marji, M.F., On the Use of Power Series Solution Method in the Crack Analysis of Brittle Materials by Indirect Boundary Element Method, Eng. Fract. Mech., 2013, vol. 98, pp. 365–382.

Atkinson, C., Smelser, R.E., and Sanchez, J., Combined Mode Fracture via the Cracked Brazilian Disk, Int. J. Fract., 1982, vol. 18, pp. 279–291.

Crouch, S.L., Analysis of Stresses and Displacements around Underground Excavations: An Application of the Displacement Discontinuity Method, Univ. Minnesota Geomechanics Report, Minnesota., 1967a.

Irwin, G.R., Analysis of Stress and Strains near the End of a Crack, J. Appl. Mech., 1957, vol. 24, pp. 361–364.

Marji, M.F. and Dehghani, I., Kinked Crack Analysis by a Hybridized Boundary Element/Boundary Collocation Method, Int. J. Solids and Structures., 2010, vol. 47, pp. 922–933.

Marji, M.F., Hosseini-nasab, H., and Hosseinmorsgedy, A., Numerical Modeling of the Mechanism of Crack Propagation in Rocks under TBM Disc Cutters, J. Mech. Mater. Struct., 2009, vol. 2, pp. 439–457.

Shou K.J. and Crouch, S.L., A Higher Order Displacement Discontinuity Method for Analysis of Crack Problems, Int. J Rock Mech. Min. Sci. and Geomech., Abstr., 1995, vol. 32, pp. 49–55.