Promotion of fibrovascular tissue ingrowth into porous sponges by basic fibroblast growth factor

Springer Science and Business Media LLC - Tập 11 - Trang 213-218 - 2000
Masaya Yamamoto1, Yasuhiko Tabata1, Hideo Kawasaki1, Yoshito Ikada1
1Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan

Tóm tắt

Fibrovascular tissue ingrowth into poly(vinyl alcohol) (PVA) sponges of different pore sizes was investigated by incorporating basic fibroblast growth factor (bFGF) into the sponges. The average pore size of PVA sponges used in this study was 30, 60, 110, 250, 350, and 700 μm and gelatin microspheres were employed as release carrier of bFGF. The sponges were subcutaneously implanted into the back of mice after incorporating free bFGF or gelatin microspheres containing bFGF into the sponges. Fibrovascular tissue infiltrated with time into the sponge pores and the extent of fibrous tissue ingrowth showed a maximum at a pore size around 250 μm 1 and 6 weeks after implantation. Significant promotion of the growth of fibrous tissue by bFGF was observed only at 3 weeks post-implantation (p < 0.05). New capillaries were formed in the tissue at any time, as long as bFGF was given to the sponges. Both empty gelatin microspheres and phosphate buffered solution neither promoted tissue ingrowth nor induced capillary formation in the sponges. It was concluded that bFGF was essential to induce the fibrovascular tissue ingrowth into the pores of PVA sponges. ©2000 Kluwer Academic Publishers

Từ khóa


Tài liệu tham khảo

M. S. WIDMER and A. G. MIKOS, in “Frontiers in tissue engineering”, edited by C. W. Patrick Jr, A. G. MIKOS and L. V. Mcintire (Pergamon, Elsevier Science Ltd, Oxford, 1998) p. 107.

B. E. CHAIGNAUD, R. LANGER and J. P. VACANTI, in “Synthetic Biodegradable Polymer Scaffolds”, edited by A. Atala, D. J. Mooney, J. P. Vacanti and R. Langer (Birkhaser, Boston, 1997) p. 1.

L. E. FREED, J. C. MARQUIS, A. NOHRIA, J. EMMANUAL, A. G. MIKOS and R. LANGER, J.Biomed.Mater.Res. 27 (1993) 11.

A. G. MIKOS, G. SARAKINOS, S. M. LEITE, J. P. VACANTI and R. LANGER, Biomaterials 14 (1993) 323.

A. G. MIKOS, G. SARAKINOS, M. D. LYMAN, D. E. INGBER, J. P. VACANTI and R. LANGER, Biotech.Bioeng. 42 (1993) 716.

M. C. WAKE, C. W. PATRICK and A. G. MIKOS, Cell Transplant. 3 (1994) 339.

R. C. THOMSON, M. J. YASZEMSKI, J. M. POWERS and A. G. MIKOS, J.Biomater.Sci.Polymer Edn. 7 (1995) 23.

B. P. ROBINSON, J. O. HPLLINGER, E. H. SZACHOWICZ and J. BREKKE, Otolaryngol.Head Neck Surg. 112 (1995) 707.

D. J. MOONEY, P. M. KAUFMANN, K. SANO, K. M. MCNAMARA, J. P. VACANTI and R. LANGER, Transplant.Proc. 26 (1994) 3425.

D. J. MOONEY, K. SANO, P. M. KAUFMANN, K. MAJAHOD, B. SCHLOO, J. P. VACANTI and R. LANGER, J.Biomed.Mater.Res. 37 (1997) 413.

S. P. ANDRADE, R. D. P. MACHADO, A. S. TEIXEIRA, A. V. BELO, A. M. TARSO and W. T. BERALDO, Microvasc.Res. 54 (1997) 253.

J. W. WANG and P. ASPENBERG,Clin.Orthop.Rel.Res. 333 (1996) 252.

J. J. KLAWITTER and S. F. HULBERT,J.Biomed.Mater.Res.Symp. 2 (1971) 161.

S. GOGOLEWSKI and A. J. PENNINGS, Macromol.Chem.Rapid Commun. 4 (1983) 675.

I. V. YANNAS, E. LEE, D. P. ORGILL, E. M. SKRABUT and G. F. MURPHY, Proc.Natl.Acad.Sci.USA 86 (1989) 933.

G. AHRENDT, D. E. CHICKERING and J. P. RANIERI, Tissue Eng 4 (1998) 117.

M. E. NIMNI,Biomaterials 18 (1997) 1201.

Y. TABATA and Y. IKADA, Adv.Drug Delivery Review 31 (1998) 287.

Y. TABATA, S. HIJIKATA and Y. IKADA, J.Control.Release 31 (1994) 189.

Y. TABATA, S. HIJIKATA, M. MUNIRUZZAMAN and Y. IKADA,J.Biomater.Sci.Polymer Edn. 10 (1999) 79.

P. BUNTROCK, K. D. JENTZSCH and G. HENDER, Exp.Pathol. 21 (1982) 62.

G. S. MCGEE, J. M. CAVIDSON, A. BUCKLEY, A. SOMMER, S. C. WOODWARD, A. M. AQUINO, R. BARBOUR and A. A. DEMETRIOUS, J.Surg.Res. 45 (1988) 145.

Y. TABATA, K. YAMADA, S. MIYAMOTO, I. NAGATA, H. KIKUCHI, I. AOYAMA, M. TAMURA and Y. IKADA, Biomaterials 19 (1998) 807.

Y. TAMADA and Y. IKADA, in “Polymer in Medicine 2”, edited by E. Chiellini, P. Giusti, C. Migliaresi and L. Nicolais (Plenum Publishing Co., New York, 1986) p. 101.