Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Thúc đẩy quá trình hồi phục vết thương tiểu đường qua việc tiêm dưới da tế bào gốc trung mô từ thạch Wharton lấy từ dây rốn
Tóm tắt
Hồi phục vết thương là một vấn đề lớn ở bệnh nhân tiểu đường, và các phương pháp điều trị hiện tại gặp phải nhiều khó khăn với hiệu quả hạn chế. Nghiên cứu hiện tại đã xem xét lợi ích của tế bào gốc trung mô thạch Wharton (WJ-MSCs) lấy từ dây rốn người trong quá trình hồi phục vết thương ở chuột mắc tiểu đường. Sau 30 ngày gây bệnh tiểu đường, một vết cắt hình tròn đã được tạo ra trên da của chuột, và các phương pháp điều trị được thực hiện trong 21 ngày. Hai nhóm được nghiên cứu, bao gồm nhóm Đối chứng và nhóm WJ-MSCs. Các nhóm nghiên cứu đã được lấy mẫu vào ngày thứ 7, 14 và 21 sau khi gây thương. Hình ảnh siêu âm mô học của lớp da biểu bì và trung bì tại khu vực vết thương được đánh giá về độ dày và độ đặc cũng như độ đàn hồi của da. Kết quả của chúng tôi vào các ngày thứ 7, 14, và 21 sau thương cho thấy rằng việc đóng vết thương, độ dày và độ đặc của lớp biểu bì và trung bì mới, cũng như độ đàn hồi của da tại vết thương đã được hồi phục, đều cao hơn đáng kể ở nhóm WJ-MSCs so với nhóm Đối chứng. Việc tiêm dưới da WJ-MSCs vào vết thương tiểu đường có thể thúc đẩy quá trình hồi phục một cách hiệu quả. Dựa trên điều này, các tế bào này có thể được sử dụng cùng với các phương pháp điều trị khác trong việc hồi phục các loại vết thương mãn tính khác nhau.
Từ khóa
#tế bào gốc trung mô #thạch Wharton #hồi phục vết thương #bệnh tiểu đường #vết thương mãn tínhTài liệu tham khảo
Ramachandran A, Snehalatha C, Shetty AS, Nanditha A (2012) Trends in prevalence of diabetes in Asian countries. World J Diabetes 3(6):110–117
Bondor CI, Veresiu IA, Florea B, Vinik EJ, Vinik AI, Gavan NA (2016) Epidemiology of diabetic foot ulcers and amputations in romania: results of a cross-sectional quality of life questionnaire based survey. J Diabetes Res 2016:5439521
Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94(3):311–321
Qing C (2017) The molecular biology in wound healing & non-healing wound. Chinese J Traumatol 20(4):189–193
Nasiry D, Khalatbary AR, Abdollahifar MA, Amini A, Bayat M, Noori A et al (2021) Engraftment of bioengineered three-dimensional scaffold from human amniotic membrane-derived extracellular matrix accelerates ischemic diabetic wound healing. Arch Dermatol Res 313(7):567–582
Frykberg RG, Banks J (2015) Challenges in the treatment of chronic wounds. Adv Wound Care 4(9):560–582
Jeffcoate WJ, Price PE, Phillips CJ, Game FL, Mudge E, Davies S et al (2009) Randomised controlled trial of the use of three dressing preparations in the management of chronic ulceration of the foot in diabetes. Health Technol Assessm (Winchester, England). 13(54):1–86
Greaves NS, Iqbal SA, Baguneid M, Bayat A (2013) The role of skin substitutes in the management of chronic cutaneous wounds. Wound Repair Regener 21(2):194–210
Moura LI, Dias AM, Carvalho E, de Sousa HC (2013) Recent advances on the development of wound dressings for diabetic foot ulcer treatment–a review. Acta Biomater 9(7):7093–7114
Perez-Favila A, Martinez-Fierro ML, Rodriguez-Lazalde JG, Cid-Baez MA, Zamudio-Osuna MJ, Martinez-Blanco MDR et al (2019) Current therapeutic strategies in diabetic foot ulcers. Medicina (Kaunas) 55(11):714
Wu Q, Chen B, Liang Z (2016) Mesenchymal stem cells as a prospective therapy for the diabetic foot. Stem Cells Int 2016:4612167
Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J (2019) Mesenchymal stem cells for regenerative medicine. Cells 8(8):886
Rohban R, Pieber TR (2017) Mesenchymal stem and progenitor cells in regeneration: tissue specificity and regenerative potential. Stem Cells Int 2017:5173732
Abdollahifar MA, Azad N, Faraji Sani M, Raoofi A, Abdi S, Aliaghaei A et al (2021) (2021) Impaired spermatogenesis caused by busulfan is partially ameliorated by treatment with conditioned medium of adipose tissue derived mesenchymal stem cells. Biotechnic Histochem. https://doi.org/10.1080/105202951905182
Khosrotehrani K (2013) Mesenchymal stem cell therapy in skin: why and what for? Exp Dermatol 22(5):307–310
Liu S, Yuan M, Hou K, Zhang L, Zheng X, Zhao B et al (2012) Immune characterization of mesenchymal stem cells in human umbilical cord Wharton’s jelly and derived cartilage cells. Cell Immunol 278(1–2):35–44
Nekanti U, Rao VB, Bahirvani AG, Jan M, Totey S, Ta M (2010) Long-term expansion and pluripotent marker array analysis of Wharton’s jelly-derived mesenchymal stem cells. Stem Cells Developm 19(1):117–130
Fong CY, Chak LL, Biswas A, Tan JH, Gauthaman K, Chan WK et al (2011) Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev Rep 7(1):1–16
Choi M, Lee HS, Naidansaren P, Kim HK, Cha JH et al (2013) Proangiogenic features of Wharton’s jelly-derived mesenchymal stromal/stem cells and their ability to form functional vessels. Int J Biochem Cell Biol 45(3):560–570
Dash SN, Dash NR, Guru B, Mohapatra PC (2014) Towards reaching the target: clinical application of mesenchymal stem cells for diabetic foot ulcers. Rejuvenation Res 17(1):40–53
Zhang S, Chen L, Zhang G, Zhang B (2020) Umbilical cord-matrix stem cells induce the functional restoration of vascular endothelial cells and enhance skin wound healing in diabetic mice via the polarized macrophages. Stem Cell Res Ther 11(1):1–15
Raoofi A, Sadeghi Y, Piryaei A, Sajadi E, Aliaghaei A, Rashidiani-Rashidabadi A et al (2021) Bone marrow mesenchymal stem cell condition medium loaded on PCL nanofibrous scaffold promoted nerve regeneration after sciatic nerve transection in male rats. Neurotox Res 39(5):1470–1486
Kouhbananinejad SM, Derakhshani A, Vahidi R, Dabiri S, Fatemi A, Armin F et al (2019) A fibrinous and allogeneic fibroblast-enriched membrane as a biocompatible material can improve diabetic wound healing. Biomater Sci 7(5):1949–1961
Jalalie L, Rezaee MA, Rezaie MJ, Jalili A, Raoofi A, Rustamzade A (2021) Human umbilical cord mesenchymal stem cells improve morphometric and histopathologic changes of cyclophosphamide-injured ovarian follicles in mouse model of premature ovarian failure. Acta Histochem 123(1):151658
Seyed Sharifi SH, Nasiry D, Mahmoudi F, Etezadpour M, Ebrahimzadeh MA (2021) Evaluation of sambucus ebulus fruit extract in full-thickness diabetic wound healing in rats. Jf Mazandaran Univer Med Sci 31(200):11–25
Nasiry D, Khalatbary AR, Ebrahimzadeh MA (2017) Anti-inflammatory and wound-healing potential of golden chanterelle mushroom, Cantharellus cibarius (Agaricomycetes). Int J Med Mushrooms 19(10):893–903
Jackson WM, Nesti LJ, Tuan RS (2012) Concise review: clinical translation of wound healing therapies based on mesenchymal stem cells. Stem Cells Transl Med 1(1):44–50
Fong CY, Tam K, Cheyyatraivendran S, Gan SU, Gauthaman K, Armugam A et al (2014) Human Wharton’s jelly stem cells and its conditioned medium enhance healing of excisional and diabetic wounds. J Cell Biochem 115(2):290–302
Montanucci P, di Pasquali C, Ferri I, Pescara T, Pennoni I, Siccu P et al (2017) Human umbilical cord wharton jelly-derived adult mesenchymal stem cells, in biohybrid scaffolds, for experimental skin regeneration. Stem cells international 2017:1472642
Yavari K, Abolhassani S, Mohammadnejad J (2016) Human umbilical cord blood stem cells differentiate into keratinocytes under in vitro conditions and culturing dif-ferentiated cells on bacterial cellulose film. Int J Stem Cell Res Transplant 4(7):216–219
Shokrgozar MA, Fattahi M, Bonakdar S, Ragerdi Kashani I, Majidi M, Haghighipour N et al (2012) Healing potential of mesenchymal stem cells cultured on a collagen-based scaffold for skin regeneration. Iran Biomed J 16(2):68–76
Ghaneialvar H, Arjmand S, Sahebghadam Lotfi A, Soleimani M, Mashhadi AF (2017) Influence of adipose derived mesenchymal stem cells on the effective inflammatory factors of diabetic wound healing in animal models. J Mazandaran Univer Med Sci 27(148):12–21
Millán-Rivero JE, Martínez CM, Romecín PA, Aznar-Cervantes SD, Carpes-Ruiz M, Cenis JL et al (2019) Silk fibroin scaffolds seeded with Wharton’s jelly mesenchymal stem cells enhance re-epithelialization and reduce formation of scar tissue after cutaneous wound healing. Stem Cell Res Ther 10(1):126
Hocking AM, Gibran NS (2010) Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Exp Cell Res 316(14):2213–2219
Duff M, Demidova O, Blackburn S, Shubrook J (2015) Cutaneous manifestations of diabetes mellitus. Clin Diabet Public Am Diabet Assoc 33(1):40–48
Argyropoulos AJ, Robichaud P, Balimunkwe RM, Fisher GJ, Hammerberg C, Yan Y et al (2016) Alterations of Dermal connective tissue collagen in diabetes: molecular basis of aged-appearing skin. PLoS ONE 11(4):e0153806
Regulski MJ (2017) Mesenchymal stem cells: “guardians of inflammation.” Wounds Compend Clin Res Pract 29(1):20–27
Godwin J, Kuraitis D, Rosenthal N (2014) Extracellular matrix considerations for scar-free repair and regeneration: insights from regenerative diversity among vertebrates. Int J Biochem Cell Biol 56:47–55
Jung JA, Yoon YD, Lee HW, Kang SR, Han SK (2018) Comparison of human umbilical cord blood-derived mesenchymal stem cells with healthy fibroblasts on wound-healing activity of diabetic fibroblasts. Int Wound J 15(1):133–139
Azari O, Babaei H, Molaei M, Nematollahi-Mahani S, Layasi S (2008) The use of Wharton’s jelly-derived mesenchymal stem cells to accelerate second-intention cutaneous wound healing in goat. Iranian J Veterin Surg 3(3):15–27
Zhang S, Chen L, Zhang G, Zhang B (2020) Umbilical cord-matrix stem cells induce the functional restoration of vascular endothelial cells and enhance skin wound healing in diabetic mice via the polarized macrophages. Stem Cell Res Ther 11(1):39
Pashoutan Sarvar D, Shamsasenjan K, Akbarzadehlaleh P, Movassaghpour A, Timari H, Aqmasheh S (2017) The application of Mesenchymal stem cell-derived vesicles in regenerative medicine. Scient J Iran Blood Transfus Organ 14(3):237–248
Jonidi Shariatzadeh F, Gheydari K, Solouk A, Bonakdar S (2018) Use of stem cells in cartilage tissue regeneration and engineering: a review. Pathobiol Res 21(1):41–63
Li F, Huang Q, Chen J, Peng Y, Roop DR, Bedford JS et al (2010) Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci Signal 3(110):ra13
McAndrews KM, McGrail DJ, Ravikumar N, Dawson MR (2015) Mesenchymal stem cells induce directional migration of invasive breast cancer cells through TGF-β. Sci Rep 5:16941