Promotion of Mitochondrial Protection by Emodin in Methylglyoxal-Treated Human Neuroblastoma SH-SY5Y Cells: Involvement of the AMPK/Nrf2/HO-1 Axis

Neurotoxicity Research - Tập 39 Số 2 - Trang 292-304 - 2021
Marcos Roberto de Oliveira1, Izabel Cristina Custódio de Souza2, Flávia Bittencourt Brasil3
1Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Universidade Federal de Mato Grosso (UFMT), Cuiaba, Brazil
2Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBIO), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Instituto de Biologia, Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
3Departamento de Ciências da Natureza, Campus Universitário de Rio das Ostras, Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Allaman I, Bélanger M, Magistretti PJ (2015) Methylglyoxal, the dark side of glycolysis. Front Neurosci 9:23. https://doi.org/10.3389/fnins.2015.00023

Angeloni C, Malaguti M, Rizzo B, Barbalace MC, Fabbri D, Hrelia S (2015) Neuroprotective effect of sulforaphane against methylglyoxal cytotoxicity. Chem Res Toxicol 28(6):1234–1245. https://doi.org/10.1021/acs.chemrestox.5b00067

Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Phys 271(5 Pt 1):C1424–C1437. https://doi.org/10.1152/ajpcell.1996.271.5.C1424

Bhatti JS, Bhatti GK, Reddy PH (2017) Mitochondrial dysfunction and oxidative stress in metabolic disorders - a step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol basis Dis 1863(5):1066–1077. https://doi.org/10.1016/j.bbadis.2016.11.010

Borutaite V, Morkuniene R, Brown GC (1999) Release of cytochrome c from heart mitochondria is induced by high Ca2+ and peroxynitrite and is responsible for Ca(2+)-induced inhibition of substrate oxidation. Biochim Biophys Acta 1453(1):41–48. https://doi.org/10.1016/s0925-4439(98)00082-9

Cardoso S, Carvalho C, Marinho R, Simões A, Sena CM, Matafome P, Santos MS, Seiça RM, Moreira PI (2014) Effects of methylglyoxal and pyridoxamine in rat brain mitochondria bioenergetics and oxidative status. J Bioenerg Biomembr 46(5):347–355. https://doi.org/10.1007/s10863-014-9551-2

de Arriba SG, Krügel U, Regenthal R, Vissiennon Z, Verdaguer E et al (2006) Carbonyl stress and NMDA receptor activation contribute to methylglyoxal neurotoxicity. Free Radic Biol Med 40(5):779–790. https://doi.org/10.1016/j.freeradbiomed.2005.09.038

de Arriba SG, Stuchbury G, Yarin J, Burnell J, Loske C, Münch G (2007) Methylglyoxal impairs glucose metabolism and leads to energy depletion in neuronal cells--protection by carbonyl scavengers. Neurobiol Aging 28(7):1044–1050. https://doi.org/10.1016/j.neurobiolaging.2006.05.007

de Oliveira MR, Nabavi SM, Braidy N, Setzer WN, Ahmed T, Nabavi SF (2016) Quercetin and the mitochondria: a mechanistic view. Biotechnol Adv 34(5):532–549. https://doi.org/10.1016/j.biotechadv.2015.12.014

de Oliveira MR, Peres A, Ferreira GC, Schuck PF, Gama CS, Bosco SMD (2017) Carnosic acid protects mitochondria of human neuroblastoma SH-SY5Y cells exposed to paraquat through activation of the Nrf2/HO-1Axis. Mol Neurobiol 54(8):5961–5972. https://doi.org/10.1007/s12035-016-0100-3

de Oliveira MR, da Costa FG, Peres A, Bosco SMD (2018) Carnosic acid suppresses the H2O2-induced mitochondria-related bioenergetics disturbances and redox impairment in SH-SY5Y cells: role for Nrf2. Mol Neurobiol 55(2):968–979. https://doi.org/10.1007/s12035-016-0372-7

de Oliveira MR, de Souza ICC, Fürstenau CR (2020) Mitochondrial protection promoted by the coffee diterpene kahweol in methylglyoxal-treated human neuroblastoma SH-SY5Y cells. Neurotox Res 37(1):100–110. https://doi.org/10.1007/s12640-019-00107-w

Drummond GS, Baum J, Greenberg M, Lewis D, Abraham NG (2019) HO-1 overexpression and underexpression: clinical implications. Arch Biochem Biophys 673:108073. https://doi.org/10.1016/j.abb.2019.108073

Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, Harper JA, Roebuck SJ, Morrison A, Pickering S, Clapham JC, Brand MD (2002) Superoxide activates mitochondrial uncoupling proteins. Nature 415:96–99. https://doi.org/10.1038/415096a

Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77. https://doi.org/10.1016/0003-9861(59)90090-6

Fürstenau CR, de Souza ICC, de Oliveira MR (2019) The effects of kahweol, a diterpene present in coffee, on the mitochondria of the human neuroblastoma SH-SY5Y cells exposed to hydrogen peroxide. Toxicol in Vitro 61:104601. https://doi.org/10.1016/j.tiv.2019.104601

Garrido-Maraver J, Paz MV, Cordero MD, Bautista-Lorite J, Oropesa-Ávila M, de la Mata M, Pavón AD, de Lavera I, Alcocer-Gómez E, Galán F, Ybot González P, Cotán D, Jackson S, Sánchez-Alcázar JA (2015) Critical role of AMP-activated protein kinase in the balance between mitophagy and mitochondrial biogenesis in MELAS disease. Biochim Biophys Acta 1852(11):2535–2553. https://doi.org/10.1016/j.bbadis.2015.08.027

Gozzelino R, Jeney V, Soares MP (2010) Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 50:323–354. https://doi.org/10.1146/annurev.pharmtox.010909.105600

Green DR, Galluzzi L, Kroemer G (2014) Cell biology. Metabolic control of cell death. Science 345(6203):1250256. https://doi.org/10.1126/science.1250256

Gruber J, Fong S, Chen CB, Yoong S, Pastorin G, Schaffer S, Cheah I, Halliwell B (2013) Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing. Biotechnol Adv 31(5):563–592. https://doi.org/10.1016/j.biotechadv.2012.09.005

Herzig S, Shaw RJ (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19(2):121–135. https://doi.org/10.1038/nrm.2017.95

Holmström KM, Kostov RV, Dinkova-Kostova AT (2016) The multifaceted role of Nrf2 in mitochondrial function. Curr Opin Toxicol 1:80–91. https://doi.org/10.1016/j.cotox.2016.10.002

Huang SS, Yeh SF, Hong CY (1995) Effect of anthraquinone derivatives on lipid peroxidation in rat heart mitochondria: structure-activity relationship. J Nat Prod 58(9):1365–1371. https://doi.org/10.1021/np50123a005

Hwang YP, Kim HG, Han EH, Jeong HG (2008) Metallothionein-III protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a PI3K and ERK/Nrf2-dependent manner. Toxicol Appl Pharmacol 231(3):318–327. https://doi.org/10.1016/j.taap.2008.04.019

Kalapos MP (2013) Where does plasma methylglyoxal originate from? Diabetes Res Clin Pract 99(3):260–271. https://doi.org/10.1016/j.diabres.2012.11.003

Ke R, Xu Q, Li C, Luo L, Huang D (2018) Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol Int 42(4):384–392. https://doi.org/10.1002/cbin.10915

Li L, Dong H, Song E, Xu X, Liu L, Song Y (2014) Nrf2/ARE pathway activation, HO-1 and NQO1 induction by polychlorinated biphenyl quinone is associated with reactive oxygen species and PI3K/AKT signaling. Chem Biol Interact 209:56–67. https://doi.org/10.1016/j.cbi.2013.12.005

Li X, Chu S, Liu Y, Chen N (2019) Neuroprotective effects of anthraquinones from rhubarb in central nervous system diseases. Evid Based Complement Alternat Med 2019:3790728–3790712. https://doi.org/10.1155/2019/3790728

Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J (2016) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 73(17):3221–3247. https://doi.org/10.1007/s00018-016-2223-0

Ma ZA (2012) The role of peroxidation of mitochondrial membrane phospholipids in pancreatic β-cell failure. Curr Diabetes Rev 8(1):69–75. https://doi.org/10.2174/157339912798829232

Maines MD (1990) Multiple forms of biliverdin reductase: age-related change in pattern of expression in rat liver and brain. Mol Pharmacol 38(4):481–485

Mo C, Wang L, Zhang J, Numazawa S, Tang H, Tang X, Han XJ, Li J, Yang M, Wang Z, Wei D, Xiao H (2014) The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice. Antioxid Redox Signal 20(4):574–588. https://doi.org/10.1089/ars.2012.5116

Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284(20):13291–13295. https://doi.org/10.1074/jbc.R900010200

Ochoa JJ, Pamplona R, Ramirez-Tortosa MC, Granados-Principal S, Perez-Lopez P, Naudí A, Portero-Otin M, López-Frías M, Battino M, Quiles JL (2011) Age-related changes in brain mitochondrial DNA deletion and oxidative stress are differentially modulated by dietary fat type and coenzyme Q10. Free Radic Biol Med 50(9):1053–1064. https://doi.org/10.1016/j.freeradbiomed.2011.02.004

Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, Davis RJ, Flavell RA, Choi AMK (2000) Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6(4):422–428. https://doi.org/10.1038/74680

Park SY, Choi YW, Park G (2018) Nrf2-mediated neuroprotection against oxygen-glucose deprivation/reperfusion injury by emodin via AMPK-dependent inhibition of GSK-3β. J Pharm Pharmacol 70(4):525–535. https://doi.org/10.1111/jphp.12885

Picca A, Calvani R, Coelho-Junior HJ, Landi F, Bernabei R, Marzetti E (2020) Mitochondrial dysfunction, oxidative stress, and neuroinflammation: intertwined roads to Neurodegeneration. Antioxidants (Basel) 9(8):E647. https://doi.org/10.3390/antiox9080647

Poderoso JJ, Carreras MC, Lisdero C, Riobó N, Schöpfer F, Boveris A (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328(1):85–92. https://doi.org/10.1006/abbi.1996.0146

Pun PB, Murphy MP (2012) Pathological significance of mitochondrial glycation. Int J Cell Biol 2012:843505–843513. https://doi.org/10.1155/2012/843505

Qiu YL, Cheng XN, Bai F, Fang LY, Hu HZ, Sun DQ (2018) Aucubin protects against lipopolysaccharide-induced acute pulmonary injury through regulating Nrf2 and AMPK pathways. Biomed Pharmacother 106:192–199. https://doi.org/10.1016/j.biopha.2018.05.070

Rabbani N, Thornalley PJ (2014) The critical role of methylglyoxal and glyoxalase 1 in diabetic nephropathy. Diabetes 63(1):50–52. https://doi.org/10.2337/db13-1606

Ramachandra CJA, Hernandez-Resendiz S, Crespo-Avilan GE, Lin YH, Hausenloy DJ (2020) Mitochondria in acute myocardial infarction and cardioprotection. EBioMedicine 57:102884. https://doi.org/10.1016/j.ebiom.2020.102884

Rieske JS (1967) The quantitative determination of mitochondrial hemoproteins. Methods Enzymol 10:488–493

Rochette L, Zeller M, Cottin Y, Vergely C (2018) Redox functions of heme oxygenase-1 and biliverdin reductase in diabetes. Trends Endocrinol Metab 29(2):74–85. https://doi.org/10.1016/j.tem.2017.11.005

Roy SS, Biswas S, Ray M, Ray S (2003) Protective effect of creatine against inhibition by methylglyoxal of mitochondrial respiration of cardiac cells. Biochem J 372(Pt 2):661–669. https://doi.org/10.1042/BJ20021576

Shah SA, Amin FU, Khan M, Abid MN, Rehman SU, Kim TH, Kim MW, Kim MO (2016) Anthocyanins abrogate glutamate-induced AMPK activation, oxidative stress, neuroinflammation, and neurodegeneration in postnatal rat brain. J Neuroinflammation 13(1):286. https://doi.org/10.1186/s12974-016-0752-y

Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748. https://doi.org/10.1146/annurev-biochem-061516-045037

Tate M, Higgins GC, De Blasio MJ, Lindblom R, Prakoso D et al (2019) The mitochondria-targeted methylglyoxal sequestering compound, MitoGamide, is cardioprotective in the diabetic heart. Cardiovasc Drugs Ther 33(6):669–674. https://doi.org/10.1007/s10557-019-06914-9

Thornalley PJ, Langborg A, Minhas HS (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 344 Pt 1(Pt 1):109–116

Wang H, Liu J, Wu L (2009) Methylglyoxal-induced mitochondrial dysfunction in vascular smooth muscle cells. Biochem Pharmacol 77(11):1709–1716. https://doi.org/10.1016/j.bcp.2009.02.024

Wang K, Zhu L, Zhu X, Zhang K, Huang B, Zhang J, Zhang Y, Zhu L, Zhou B, Zhou F (2014) Protective effect of paeoniflorin on Aβ25-35-induced SH-SY5Y cell injury by preventing mitochondrial dysfunction. Cell Mol Neurobiol 34(2):227–234. https://doi.org/10.1007/s10571-013-0006-9

Woś M, Szczepanowska J, Pikuła S, Tylki-Szymańska A, Zabłocki K, Bandorowicz-Pikuła J (2016) Mitochondrial dysfunction in fibroblasts derived from patients with Niemann-Pick type C disease. Arch Biochem Biophys 593:50–59. https://doi.org/10.1016/j.abb.2016.02.012

Yamaguchi T, Nakagawa K (1983) Mutagenicity of and formation of oxygen radicals by trioses and glyoxal derivatives. Agric Biol Chem 47:2461–2465

Zanieri F, Levi A, Montefusco D, Longato L, De Chiara F et al (2020) Exogenous liposomal ceramide-C6 ameliorates lipidomic profile, energy homeostasis, and anti-oxidant systems in NASH. Cells 9(5):1237. https://doi.org/10.3390/cells9051237

Zhang X, Ding M, Zhu P, Huang H, Zhuang Q, Shen J, Cai Y, Zhao M, He Q (2019) New insights into the Nrf-2/HO-1 signaling axis and its application in pediatric respiratory diseases. Oxidative Med Cell Longev 2019:3214196–3214199. https://doi.org/10.1155/2019/3214196