Promotion of Mitochondrial Protection by Emodin in Methylglyoxal-Treated Human Neuroblastoma SH-SY5Y Cells: Involvement of the AMPK/Nrf2/HO-1 Axis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Allaman I, Bélanger M, Magistretti PJ (2015) Methylglyoxal, the dark side of glycolysis. Front Neurosci 9:23. https://doi.org/10.3389/fnins.2015.00023
Angeloni C, Malaguti M, Rizzo B, Barbalace MC, Fabbri D, Hrelia S (2015) Neuroprotective effect of sulforaphane against methylglyoxal cytotoxicity. Chem Res Toxicol 28(6):1234–1245. https://doi.org/10.1021/acs.chemrestox.5b00067
Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Phys 271(5 Pt 1):C1424–C1437. https://doi.org/10.1152/ajpcell.1996.271.5.C1424
Bhatti JS, Bhatti GK, Reddy PH (2017) Mitochondrial dysfunction and oxidative stress in metabolic disorders - a step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol basis Dis 1863(5):1066–1077. https://doi.org/10.1016/j.bbadis.2016.11.010
Borutaite V, Morkuniene R, Brown GC (1999) Release of cytochrome c from heart mitochondria is induced by high Ca2+ and peroxynitrite and is responsible for Ca(2+)-induced inhibition of substrate oxidation. Biochim Biophys Acta 1453(1):41–48. https://doi.org/10.1016/s0925-4439(98)00082-9
Cardoso S, Carvalho C, Marinho R, Simões A, Sena CM, Matafome P, Santos MS, Seiça RM, Moreira PI (2014) Effects of methylglyoxal and pyridoxamine in rat brain mitochondria bioenergetics and oxidative status. J Bioenerg Biomembr 46(5):347–355. https://doi.org/10.1007/s10863-014-9551-2
de Arriba SG, Krügel U, Regenthal R, Vissiennon Z, Verdaguer E et al (2006) Carbonyl stress and NMDA receptor activation contribute to methylglyoxal neurotoxicity. Free Radic Biol Med 40(5):779–790. https://doi.org/10.1016/j.freeradbiomed.2005.09.038
de Arriba SG, Stuchbury G, Yarin J, Burnell J, Loske C, Münch G (2007) Methylglyoxal impairs glucose metabolism and leads to energy depletion in neuronal cells--protection by carbonyl scavengers. Neurobiol Aging 28(7):1044–1050. https://doi.org/10.1016/j.neurobiolaging.2006.05.007
de Oliveira MR, Nabavi SM, Braidy N, Setzer WN, Ahmed T, Nabavi SF (2016) Quercetin and the mitochondria: a mechanistic view. Biotechnol Adv 34(5):532–549. https://doi.org/10.1016/j.biotechadv.2015.12.014
de Oliveira MR, Peres A, Ferreira GC, Schuck PF, Gama CS, Bosco SMD (2017) Carnosic acid protects mitochondria of human neuroblastoma SH-SY5Y cells exposed to paraquat through activation of the Nrf2/HO-1Axis. Mol Neurobiol 54(8):5961–5972. https://doi.org/10.1007/s12035-016-0100-3
de Oliveira MR, da Costa FG, Peres A, Bosco SMD (2018) Carnosic acid suppresses the H2O2-induced mitochondria-related bioenergetics disturbances and redox impairment in SH-SY5Y cells: role for Nrf2. Mol Neurobiol 55(2):968–979. https://doi.org/10.1007/s12035-016-0372-7
de Oliveira MR, de Souza ICC, Fürstenau CR (2020) Mitochondrial protection promoted by the coffee diterpene kahweol in methylglyoxal-treated human neuroblastoma SH-SY5Y cells. Neurotox Res 37(1):100–110. https://doi.org/10.1007/s12640-019-00107-w
Drummond GS, Baum J, Greenberg M, Lewis D, Abraham NG (2019) HO-1 overexpression and underexpression: clinical implications. Arch Biochem Biophys 673:108073. https://doi.org/10.1016/j.abb.2019.108073
Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, Harper JA, Roebuck SJ, Morrison A, Pickering S, Clapham JC, Brand MD (2002) Superoxide activates mitochondrial uncoupling proteins. Nature 415:96–99. https://doi.org/10.1038/415096a
Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77. https://doi.org/10.1016/0003-9861(59)90090-6
Fürstenau CR, de Souza ICC, de Oliveira MR (2019) The effects of kahweol, a diterpene present in coffee, on the mitochondria of the human neuroblastoma SH-SY5Y cells exposed to hydrogen peroxide. Toxicol in Vitro 61:104601. https://doi.org/10.1016/j.tiv.2019.104601
Garrido-Maraver J, Paz MV, Cordero MD, Bautista-Lorite J, Oropesa-Ávila M, de la Mata M, Pavón AD, de Lavera I, Alcocer-Gómez E, Galán F, Ybot González P, Cotán D, Jackson S, Sánchez-Alcázar JA (2015) Critical role of AMP-activated protein kinase in the balance between mitophagy and mitochondrial biogenesis in MELAS disease. Biochim Biophys Acta 1852(11):2535–2553. https://doi.org/10.1016/j.bbadis.2015.08.027
Gozzelino R, Jeney V, Soares MP (2010) Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 50:323–354. https://doi.org/10.1146/annurev.pharmtox.010909.105600
Green DR, Galluzzi L, Kroemer G (2014) Cell biology. Metabolic control of cell death. Science 345(6203):1250256. https://doi.org/10.1126/science.1250256
Gruber J, Fong S, Chen CB, Yoong S, Pastorin G, Schaffer S, Cheah I, Halliwell B (2013) Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing. Biotechnol Adv 31(5):563–592. https://doi.org/10.1016/j.biotechadv.2012.09.005
Herzig S, Shaw RJ (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19(2):121–135. https://doi.org/10.1038/nrm.2017.95
Holmström KM, Kostov RV, Dinkova-Kostova AT (2016) The multifaceted role of Nrf2 in mitochondrial function. Curr Opin Toxicol 1:80–91. https://doi.org/10.1016/j.cotox.2016.10.002
Huang SS, Yeh SF, Hong CY (1995) Effect of anthraquinone derivatives on lipid peroxidation in rat heart mitochondria: structure-activity relationship. J Nat Prod 58(9):1365–1371. https://doi.org/10.1021/np50123a005
Hwang YP, Kim HG, Han EH, Jeong HG (2008) Metallothionein-III protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a PI3K and ERK/Nrf2-dependent manner. Toxicol Appl Pharmacol 231(3):318–327. https://doi.org/10.1016/j.taap.2008.04.019
Kalapos MP (2013) Where does plasma methylglyoxal originate from? Diabetes Res Clin Pract 99(3):260–271. https://doi.org/10.1016/j.diabres.2012.11.003
Ke R, Xu Q, Li C, Luo L, Huang D (2018) Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol Int 42(4):384–392. https://doi.org/10.1002/cbin.10915
Li L, Dong H, Song E, Xu X, Liu L, Song Y (2014) Nrf2/ARE pathway activation, HO-1 and NQO1 induction by polychlorinated biphenyl quinone is associated with reactive oxygen species and PI3K/AKT signaling. Chem Biol Interact 209:56–67. https://doi.org/10.1016/j.cbi.2013.12.005
Li X, Chu S, Liu Y, Chen N (2019) Neuroprotective effects of anthraquinones from rhubarb in central nervous system diseases. Evid Based Complement Alternat Med 2019:3790728–3790712. https://doi.org/10.1155/2019/3790728
Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J (2016) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 73(17):3221–3247. https://doi.org/10.1007/s00018-016-2223-0
Ma ZA (2012) The role of peroxidation of mitochondrial membrane phospholipids in pancreatic β-cell failure. Curr Diabetes Rev 8(1):69–75. https://doi.org/10.2174/157339912798829232
Maines MD (1990) Multiple forms of biliverdin reductase: age-related change in pattern of expression in rat liver and brain. Mol Pharmacol 38(4):481–485
Mo C, Wang L, Zhang J, Numazawa S, Tang H, Tang X, Han XJ, Li J, Yang M, Wang Z, Wei D, Xiao H (2014) The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice. Antioxid Redox Signal 20(4):574–588. https://doi.org/10.1089/ars.2012.5116
Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284(20):13291–13295. https://doi.org/10.1074/jbc.R900010200
Ochoa JJ, Pamplona R, Ramirez-Tortosa MC, Granados-Principal S, Perez-Lopez P, Naudí A, Portero-Otin M, López-Frías M, Battino M, Quiles JL (2011) Age-related changes in brain mitochondrial DNA deletion and oxidative stress are differentially modulated by dietary fat type and coenzyme Q10. Free Radic Biol Med 50(9):1053–1064. https://doi.org/10.1016/j.freeradbiomed.2011.02.004
Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, Davis RJ, Flavell RA, Choi AMK (2000) Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6(4):422–428. https://doi.org/10.1038/74680
Park SY, Choi YW, Park G (2018) Nrf2-mediated neuroprotection against oxygen-glucose deprivation/reperfusion injury by emodin via AMPK-dependent inhibition of GSK-3β. J Pharm Pharmacol 70(4):525–535. https://doi.org/10.1111/jphp.12885
Picca A, Calvani R, Coelho-Junior HJ, Landi F, Bernabei R, Marzetti E (2020) Mitochondrial dysfunction, oxidative stress, and neuroinflammation: intertwined roads to Neurodegeneration. Antioxidants (Basel) 9(8):E647. https://doi.org/10.3390/antiox9080647
Poderoso JJ, Carreras MC, Lisdero C, Riobó N, Schöpfer F, Boveris A (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328(1):85–92. https://doi.org/10.1006/abbi.1996.0146
Pun PB, Murphy MP (2012) Pathological significance of mitochondrial glycation. Int J Cell Biol 2012:843505–843513. https://doi.org/10.1155/2012/843505
Qiu YL, Cheng XN, Bai F, Fang LY, Hu HZ, Sun DQ (2018) Aucubin protects against lipopolysaccharide-induced acute pulmonary injury through regulating Nrf2 and AMPK pathways. Biomed Pharmacother 106:192–199. https://doi.org/10.1016/j.biopha.2018.05.070
Rabbani N, Thornalley PJ (2014) The critical role of methylglyoxal and glyoxalase 1 in diabetic nephropathy. Diabetes 63(1):50–52. https://doi.org/10.2337/db13-1606
Ramachandra CJA, Hernandez-Resendiz S, Crespo-Avilan GE, Lin YH, Hausenloy DJ (2020) Mitochondria in acute myocardial infarction and cardioprotection. EBioMedicine 57:102884. https://doi.org/10.1016/j.ebiom.2020.102884
Rieske JS (1967) The quantitative determination of mitochondrial hemoproteins. Methods Enzymol 10:488–493
Rochette L, Zeller M, Cottin Y, Vergely C (2018) Redox functions of heme oxygenase-1 and biliverdin reductase in diabetes. Trends Endocrinol Metab 29(2):74–85. https://doi.org/10.1016/j.tem.2017.11.005
Roy SS, Biswas S, Ray M, Ray S (2003) Protective effect of creatine against inhibition by methylglyoxal of mitochondrial respiration of cardiac cells. Biochem J 372(Pt 2):661–669. https://doi.org/10.1042/BJ20021576
Shah SA, Amin FU, Khan M, Abid MN, Rehman SU, Kim TH, Kim MW, Kim MO (2016) Anthocyanins abrogate glutamate-induced AMPK activation, oxidative stress, neuroinflammation, and neurodegeneration in postnatal rat brain. J Neuroinflammation 13(1):286. https://doi.org/10.1186/s12974-016-0752-y
Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748. https://doi.org/10.1146/annurev-biochem-061516-045037
Tate M, Higgins GC, De Blasio MJ, Lindblom R, Prakoso D et al (2019) The mitochondria-targeted methylglyoxal sequestering compound, MitoGamide, is cardioprotective in the diabetic heart. Cardiovasc Drugs Ther 33(6):669–674. https://doi.org/10.1007/s10557-019-06914-9
Thornalley PJ, Langborg A, Minhas HS (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 344 Pt 1(Pt 1):109–116
Wang H, Liu J, Wu L (2009) Methylglyoxal-induced mitochondrial dysfunction in vascular smooth muscle cells. Biochem Pharmacol 77(11):1709–1716. https://doi.org/10.1016/j.bcp.2009.02.024
Wang K, Zhu L, Zhu X, Zhang K, Huang B, Zhang J, Zhang Y, Zhu L, Zhou B, Zhou F (2014) Protective effect of paeoniflorin on Aβ25-35-induced SH-SY5Y cell injury by preventing mitochondrial dysfunction. Cell Mol Neurobiol 34(2):227–234. https://doi.org/10.1007/s10571-013-0006-9
Woś M, Szczepanowska J, Pikuła S, Tylki-Szymańska A, Zabłocki K, Bandorowicz-Pikuła J (2016) Mitochondrial dysfunction in fibroblasts derived from patients with Niemann-Pick type C disease. Arch Biochem Biophys 593:50–59. https://doi.org/10.1016/j.abb.2016.02.012
Yamaguchi T, Nakagawa K (1983) Mutagenicity of and formation of oxygen radicals by trioses and glyoxal derivatives. Agric Biol Chem 47:2461–2465
Zanieri F, Levi A, Montefusco D, Longato L, De Chiara F et al (2020) Exogenous liposomal ceramide-C6 ameliorates lipidomic profile, energy homeostasis, and anti-oxidant systems in NASH. Cells 9(5):1237. https://doi.org/10.3390/cells9051237