Promotion of 5-aminolevulinic acid treatment on leaf photosynthesis is related with increase of antioxidant enzyme activity in watermelon seedlings grown under shade condition
Tóm tắt
Watermelon [Citrullus lanatus (Thunb.) Mansfeld] is a photophilic plant, whose net photosynthetic rate was significantly decreased when seedlings were grown under low light condition. However, treatment with 100 mg kg−1 5-aminolevulinic acid (ALA) could significantly restore the photosynthetic ability under the environmental stress. The parameters of leaf gas exchange, chlorophyll modulated fluorescence and fast induction fluorescence of the ALA-treated plants were higher than that of the control. Additionally, ALA treatment increased the activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX). Nevertheless, the treatment of diethyldithiocarbamate (DDC), an inhibitor of SOD activity, dramatically depressed photosynthesis of watermelon leaves, while ALA could reverse the inhibition of DDC. Therefore, it can be deduced that ALA promotion on photosynthesis of watermelon leaves under low light stress is attributed to its promotion on antioxidant enzyme activities, and the increased activities of the enzymes, which are mainly located near the reaction centers of PSI, can scavenge superoxide anions, leading to an increase of apparent electron transport rate and an alleviation of photosynthetic photoinhibition under the stressed environment.
Tài liệu tham khảo
Appenroth, K.J., Stöckel, J., Srivastava, A., Strasser, R.J.: Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. — Environ. Pollut. 115:49–64, 2001.
Beauchamp, C.O., Fridovich, I.: Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. — Anal. Biochem. 44: 276–287, 1971.
Bindu, R.C., Vivekanandan, M.: Hormonal activities of 5-aminolevulinic acid in callus induction and micropropagation. — Plant Growth Regul. 26: 15–18, 1998.
Demmig-Adams, B., Adams, W.W., III., Baker, D.H., Logan, B.A., Bowling, D.R., Verhoeven, A.S.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. — Physiol. Plant. 98: 253–264, 1996.
Demmig-Adams, B., Adams, W.W., III., Logan, B.A., Verhoeven, A.S.: Xanthophyll cycle-dependent energy dissipation and flexible Photosystem-II efficiency in plants acclimated to light stress.— Aust. J. Plant Physiol. 22: 249–260, 1995.
Demmig-Adams, B., Adams, W.W., III.: Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species.— Planta 198: 460–470, 1996.
He, H.J., Dai, Z.S., Xiao, A.J., Zhen, S.J.: [Research on photosynthesis of watermelon. — Chinese watermelon and muskmelon.] 1: 18–20, 1994.[In Chin.]
Hotta, Y., Tanaka, H., Takaoka, H., Takeuchi, Y., Konnai, M.: Promotive effects of 5-aminolevulinic acid on the yield of several crops. — Plant Growth Regul. 22: 109–114, 1997a.
Hotta, Y., Tanaka, T., Luo, B.S., Takeuchi, Y., Konnai, M.: Improvement of cold resistance in rice seedlings by 5-aminolevulinic acid. — J. Pest. Sci. 23: 29–33, 1998.
Hotta, Y., Tanaka, T., Takaoka, H., Takeuchi, Y., Konnai, M.: New physiological effects of 5-aminolevulinic acid in plants: the increase of photosynthesis, chlorophyll content, and plant growth. — Biosci. Biotech. Biochem. 61: 2025–2028, 1997b.
Jones, D.K., Dalton, D.A., Rosell, F.I., Raven, E.L.: Class I heme peroxidases: Characterization of soybean ascorbate peroxidase. — Arch. Biochem. Biophys. 360: 73–178, 1998.
Kang, L., Cheng, Y., Wang, L.J.: [Effects of 5-aminolevulinic acid (ALA) on the photosynthesis and anti-oxidative enzymes activities of the leaves of greenhouse watermelon in summer and winter.] — Acta Bot. Boreal. Occident. Sin. 26:2297–2301, 2006. [In Chin.]
Krüger, G.H.J., Tsimilli-Michael, M., Strasser, R.J.: Light stress provokes plastic and elastic modifications in structure and function of photosystem II in camellia leaves. — Physiol. Plant. 101: 265–277, 1997.
Kumar, M.A., Chaturvedi, S., Söll, D.: Selective inhibition of HEMA gene expression by photooxidation in Arabidopsis thaliana. — Phytochem. 51: 847–851, 1999.
Liu, H., Kang, L., Wang, L.J. [Promotion of 5-aminolevunlinic acid on seed germination of watermelon (Citrullus lanatus) under salt stress.] — J. Fruit Sci. 23: 854–859, 2006a. [In Chin.]
Liu, W.Q., Kang, L., Wang, L.J.: [Effect of 5-aminolevulinic acid (ALA) on photosynthesis and its relationship with antioxidant enzymes of strawberry leaves.] — Acta. Bot. Boreal. Occident. Sin. 26: 57–62, 2006b. [In Chin.]
Lukšienė, Ž., Danilčenko, H., Tarasevičienė, Ž., Anusevičius, Ž., Marozienė, A., Nivinskas, H.: New approach to the fungal decontamination of wheat used for wheat sprouts: Effects of aminolevulinic acid. — Int. J. Food Microbiol. 116: 153–158, 2007.
Mehler, A.H.: Studies on reactions of illuminated chloroplasts. 1. Mechanism of the reduction of oxygen and other Hill reagents. — Arch. Biochem. Biophys. 33: 65–77, 1951.
Memon, S. A., Hou, X.L, Wang, L.J., Li, Y.: Promotive effect of 5-aminolevulinic acid on chlorophyll, antioxidative enzymes and photosynthesis of Pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee). — Acta Physiol. Plant. 31: 51–57, 2009.
Nishihara, E., Kondo, K., Parvez, M.M., Takahashi, K., Watanabe, K., Tanaka, K.: Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea). — J. Plant Physiol. 160: 1085–1091, 2003.
Rebeiz, C.A., Montazer-Zouhoor, A., Hopen, H., and Wu, S.M.: Photodynamic herbicides. I. Concept and phenomenology. — Enzyme Microb. Technol. 6: 390–396, 1984.
Srivastava, A., Govindjee, Strasser, R.J.: Greening of peas: parallel measurements on 77 K emission spectra, OJIP chlorophyll a fluorescence transient, period four oscillation of the initial fluorescence level, delayed light emission, and P700. — Photosynthetica 37: 365–392, 1999.
Srivastava, A., Guisse, B., Greppin, H., Strasser, R.J.: Regulation of antenna structure and electron transport in PSII of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. — Biochim. Biophys. Acta 1320: 95–106, 1997.
Srivastava, A., Juttner, F., Strasser, R.J.: Action of the allelochemical, fischerellin A, on photosystem II. — Biochim. Biophys. Acta 1364: 326–336, 1998.
Strasser, R.J., Srivastava, A., Govindjee: Polyphasic chlorophyll-alpha fluorescence transient in plants and cyanobacteria. — Photochem. Photobiol. 61: 32–42, 1995.
Strasser, R.J., Srivastava, A., Tsimilli-Michael, M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. — In: Yunus, M., Pathre, U., Mohanty, P. (ed.): Probing Photosynthesis: Mechanism, Regulation and Adaptation. Pp. 445–483. Taylor & Francis Press, London — New York 2000.
Sun, Y.P., Wang, L.J.: [Effects of 5-aminolevulinic acid (ALA) on chlorophyll fluorescence dynamics of watermelon seedlings under shade condition.] — Acta Hort. Sinica 34: 901–908, 2007. [In Chin.]
Sun, Y.P., Wei, Z.Y., Zhang Z.P., Wang, L.J.: [Promotion of 5-aminolevulinic acid (ALA) on high light photoinhibition of watermelon grown under shade condition.] — Acta. Bot. Boreal. Occident. Sin. 28: 1384–1390, 2008. [In Chin.]
Tan, W., Liu, J., Dai, T., Jing, Q., Cao, W., Jiang, D.: Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging. — Photosynthetica. 46: 21–27, 2008.
Terashima, I., Noguchi, K., Itoh-Nemoto, T., Park, Y.M., Kubo, A., Tanaka, K.: The cause of PSI photoinhibition at lowtemperatures in leaves of Cucumis sativus, a chilling-sensitive plant. — Physiol. Plant. 103: 295–303, 1998.
Tsiftsoglou, A.S., Tsamadou A.I., Papadopoulou, L.C.: Heme as key regulator of major mammalian cellular functions: Molecular, cellular, and pharmacological aspects. — Pharmacol. Therapeutics 111: 327–345, 2006.
von Wettstein, D., Gough, S., Kannangara, C.G.: Chlorophyll biosynthesis. — Plant Cell. 7:1039–1057, 1995.
Wang, L.J., Jiang, W.B., Huang, B.J.: Promotion of 5-aminolevulinic acid on photosynthesis of melon (Cucumis melo) seedlings under low light and chilling stress condition. — Physiol. Plant. 121: 258–264, 2004a.
Wang, L.J., Jiang, W.B., Liu, H., Liu, W.Q., Kang, L., Hou, X.L.: Promotion of 5-aminolevulinic acid of germination of pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee) seeds under salt stress. — J. Integrative Plant Biol. 47: 1084–1091, 2005a.
Wang, L.J., Jiang, W.B., Zhang, Z., Yao, Q.H., Matsui, H., Ohara, H.: [Biosynthesis and physiological activities of 5-aminolevulinic acid and its potential application in agriculture.] — Plant Physiol. Comm. 39:185–192, 2003. [In Chin.]
Wang, L.J., Liu, W.Q., Sun, G.R., Wang, J.B., Jiang, W.B., Liu, H., Li, Z.Q., Zhuang, M.: [Effect of 5-aminolevulinic acid on photosynthesis and chlorophyll fluorescence of radish seedlings.] — Acta. Bot. Boreal.-Occident. Sin. 25: 488–496, 2005b. [In Chin.]
Wang, L.J., Shi, W., Liu, H., Liu, W.Q., Jiang, W.B., Hou, X.L.: [Effects of exogenous 5-aminolevulinic acid treatment on leaf photosynthesis of pak-choi.] — J. Nanjing Agr. University. 27: 34–38, 2004b. [In Chin.]
Watanabe, K., Tanaka, T., Hotta, Y., Kuramochi, H., Takeuchi, Y.: Improving salt tolerance of cotton seedlings with 5-aminolevulinc acid. — Plant Growth Regul. 32: 99–103, 2000.
Weng, X.-Y., Xu, H.-X., Yang, Y., Peng, H.-H.: Water-water cycle involved in dissipation of excess photon energy in phosphorus deficient rice leaves. — Biol. Plant. 52: 307–313, 2008.
Zhang, W.F., Zhang, F., Raziuddin, R., Gong, H.J., Yang, Z.M., Lu, L., Ye, Q.F., Zhou, W.J.: Effects of 5-aminolevulinic acid on oilseed rape seedling growth under herbicide toxicity stress. — J. Plant Growth Regul. 27: 159–169, 2008a.
Zhang, Z.P., Wang, L.J., Yao, Q.H.: [Study on leaf photosynthesis and chlorophyll fluorescence of transgenic tobacco over-producing 5-aminolevulinic acid (ALA).] — Acta Bot. Boreal.-Occident. Sin. 28: 1196–1202, 2008b. [In Chin.]