Promoting performance of lithium–sulfur battery via in situ sulfur reduced graphite oxide coating

Rare Metals - Tập 40 Số 2 - Trang 417-424 - 2021
Yuan Li1, Xiaotian Guo2, Songtao Zhang2, Huan Pang2
1Department of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huai’an, 223003, China
2School of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, 225000, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Manthiram A, Fu Y, Chung SH, Zu C, Su YS. Rechargeable lithium–sulfur batteries. Chem Rev. 2014;114(23):11751.

Li M, Zhang Y, Bai Z, Liu WW, Liu T, Gim J, Jiang G, Yuan Y, Luo D, Feng K, Yassar RS, Wang X, Chen Z, Lu J. A lithium–sulfur battery using a 2D current collector architecture with a large-sized sulfur host operated under high areal loading and low E/S ratio. Adv Mater. 2018;30(46):1804271.

Zheng S, Li X, Yan B, Hu Q, Xu Y, Xiao X, Xue H, Pang H. Transition-metal (Fe Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv Energy Mater. 2017;7(18):1602733.

Zheng M, Tang H, Li L, Hu Q, Zhang L, Xue H, Pang H. Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv Sci. 2018;5(3):1700592.

Ye Y, Wu F, Xu S, Qu W, Li L, Chen R. Designing realizable and scalable techniques for practical lithium sulfur batteries: a perspective. J Phys Chem Lett. 2018;9(6):1398.

Zhu R, Ding J, Xu Y, Yang J, Xu Q, Pang H. $$\uppi$$-Conjugated molecule boosts metal–organic frameworks as efficient oxygen evolution reaction catalysts. Small. 2018;14(50):1803576.

Du G, Xu Y, Zheng S, Xue H, Pang H. The state of research regarding ordered mesoporous materials in batteries. Small. 2019;15(11):1804600.

Li T, Liu H, Shi P, Zhang Q. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Met. 2018;36(6):449.

Li Q, Song Y, Xu R, Zhang L, Gao J, Xia Z, Tian Z, Wei N, Rümmeli MH, Zou X, Sun J, Liu Z. Biotemplating growth of nepenthes-like N-doped graphene as a bifunctional polysulfide scavenger for Li–S batteries. ACS Nano. 2018;12(10):10240.

Hu Y, Chen W, Lei T, Zhou B, Jiao Y, Yan Y, Du X, Huang J, Wu C, Wang X, Wang Y, Chen B, Xu J, Wang C, Xiong J. Carbon quantum dots–modified interfacial interactions and ion conductivity for enhanced high current density performance in lithium–sulfur batteries. Adv Energy Mater. 2019;9(7):1802955.

Wang C, Wang X, Wang Y, Chen J, Zhou H, Huang Y. Macroporous free-standing nano-sulfur/reduced graphene oxide paper as stable cathode for lithium–sulfur battery. Nano Energy. 2015;11:678.

Yang CS, Gao KN, Zhang XP, Sun Z, Zhang T. Rechargeable solid-state Li-air batteries: a status report. Rare Met. 2018;36(6):459.

Shi JL, Tang C, Huang JQ, Zhu W, Zhang Q. Effective exposure of nitrogen heteroatoms in 3D porous graphene framework for oxygen reduction reaction and lithium–sulfur batteries. J Energy Chem. 2018;27(1):167.

Zhang S, Li N, Lu H, Zheng J, Zang R, Cao J. Improving lithium–sulfur battery performance via a carbon-coating layer derived from the hydrothermal carbonization of glucose. RSC Adv. 2015;5(63):50983.

Li B, Kong L, Zhao C, Jin Q, Chen X, Peng H, Qin J, Chen J, Yuan H, Zhang Q, Huang J. Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium–sulfur batteries. InfoMat. 2019;1(4):533.

Li G, Sun J, Hou W, Jiang S, Huang Y, Geng J. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium–sulfur batteries. Nat Commun. 2016;7:10601.

Ma W, Xu Q. Lithium cobaltate: a novel host material enables high-rate and stable lithium–sulfur batteries. Rare Met. 2018;36(11):929.

Zhang LH, He B, Li WC, Lu AH. Surface free energy-induced assembly to the synthesis of grid-like multicavity carbon spheres with high level in-cavity encapsulation for lithium–sulfur cathode. Adv Energy Mater. 2017;7(22):1701518.

Hu C, Kirk C, Cai Q, Cuadrado-Collados C, Silvestre-Albero J, Rodríguez-Reinoso F, Biggs MJ. A high-volumetric-capacity cathode based on interconnected close-packed N-doped porous carbon nanospheres for long-life lithium–sulfur batteries. Adv Energy Mater. 2017;7(22):1701082.

Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS. Carbon-based supercapacitors produced by activation of graphene. Science. 2011;332(6037):1537.

You Y, Zeng W, Yin YX, Zhang J, Yang CP, Zhu Y, Guo YG. Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li–S batteries. J Mater Chem A. 2015;3(9):4799.

Zheng M, Zhang S, Chen S, Lin Z, Pang H, Yu Y. Activated graphene with tailored pore structure parameters for long cycle-life lithium–sulfur batteries. Nano Res. 2017;10(12):4305.

Yan M, Wang WP, Yin YX, Wan LJ, Guo YG. Interfacial design for lithium–sulfur batteries: from liquid to solid. EnergyChem. 2019;1:100002.

Yu M, Li R, Tong Y, Li Y, Li C, Hong JD, Shi G. A graphene wrapped hair-derived carbon/sulfur composite for lithium-sulfur batteries. J Mater Chem A. 2015;3(18):9609.

Huang Q, Gao ZF, Yang R, Fang YY, Shi JM. Survey and research process on electrode materials of lithium-sulfur batteries. Chin J Rare Met. 2018;42(7):772.

Zhou HM, Zhu YH, Li J, Sun WJ, Liu ZZ. Electrochemical Performance of Al2O3 precoated spinel LiMn2O4. Rare Met. 2019;36(2):128.

Chen D, Tan H, Rui X, Zhang Q, Feng Y, Geng H, Li C, Huang S, Yu Y. Oxyvanite V3O5: a new intercalation-type anode for lithium-ion battery. InfoMat. 2019;1(2):251.

Yang Y, Yu G, Cha JJ, Wu H, Vosgueritchian M, Yao Y, Bao Z, Cui Y. Improving the performance of lithium–sulfur batteries by conductive polymer coating. ACS Nano. 2011;5(11):9187.

Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM. Improved synthesis of graphene oxide. ACS Nano. 2010;4(8):4806.

Li N, Zheng M, Lu H, Hu Z, Shen C, Chang X, Ji G, Cao J, Shi Y. High-rate lithium–sulfur batteries promoted by reduced graphene oxide coating. Chem Commun. 2012;48(34):4106.

Rong J, Ge M, Fang X, Zhou C. Solution ionic strength engineering as a generic strategy to coat graphene oxide (GO) on various functional particles and its application in high-performance lithium-sulfur (Li–S) batteries. Nano Lett. 2014;14(2):473.

Yang X, Zhang L, Zhang F, Huang Y, Chen Y. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium–sulfur batteries. ACS Nano. 2014;8(5):5208.

Zhang S, Zheng M, Lin Z, Li N, Liu Y, Zhao B, Pang H, Cao J, He P, Shi Y. Activated carbon with ultrahigh specific surface area synthesized from natural plant material for lithium–sulfur batteries. J Mater Chem A. 2014;2(38):15889.

Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater. 2009;8(6):500.

Zheng S, Wen Y, Zhu Y, Han Z, Wang J, Yang J, Wang C. In situ sulfur reduction and intercalation of graphite oxides for Li–S battery cathodes. Adv Energy Mater. 2014;4(16):1400482.

Yang W, Li X, Li Y, Zhu R, Pang H. Applications of metal–organic-framework-derived carbon materials. Adv Mater. 2019;31(6):1804740.

Zheng M, Xiao X, Li L, Gu P, Dai X, Tang H, Hu Q, Xue H, Pang H. Hierarchically nanostructured transition metal oxides for supercapacitors. Sci Chin Mater. 2018;61(2):185.

Zhao Z, Wang S, Liang R, Li Z, Shi Z, Chen G. Graphene-wrapped chromium-MOF(MIL-101)/sulfur composite for performance improvement of high-rate rechargeable Li–S batteries. J Mater Chem A. 2014;2(33):13509.

Chen X, Xiao Z, Ning X, Liu Z, Yang Z, Zou C, Wang S, Chen X, Chen Y, Huang S. Sulfur-impregnated, sandwich-type, hybrid carbon nanosheets with hierarchical porous structure for high-performance lithium-sulfur batteries. Adv Energy Mater. 2014;4(13):1301988.