Promoting effect of Fe/La loading on γ-Al2O3 catalyst for hydrolysis of carbonyl sulfur

Panting Gao1, Yuran Li2, Yu‐Ting Lin2, Liping Chang1, Tingyu Zhu2
1State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China
2CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Castrillon MC, Moura KO, Alves CA et al (2016) CO2 and H2S removal from CH4-rich streams by adsorption on activated carbons modified with K2CO3, NaOH, or Fe2O3. Energy Fuel 30(11):9596–9604. https://doi.org/10.1039/d1ra01819a

Coenen K, Gallucci F, Hensen E et al (2018) Adsorption behavior and kinetics of H2S on a potassium-promoted hydrotalcite. Int J Hydrog Energy 43(45):20758–20771. https://doi.org/10.1039/d1ra01819a

Fang P, He M, Xie YL et al (2006) XRD and Raman spectroscopic comparative study on phase transformation of gamma-Al2O3 at high temperature. Spectrosc Spectr Anal 26(11):2039–2042. https://doi.org/10.1039/d1ra01819a

George ZM (1974) Effect of catalyst basicity for COS-SO2 and COS hydrolysis reactions. J Catal 35(2):218–224. https://doi.org/10.1039/d1ra01819a

Hattori S, Schmidt JA, Mahler DW et al (2012) Isotope effect in the carbonyl sulfide reaction with O(3P). J Phys Chem A 116(14):3521–3526. https://doi.org/10.1039/d1ra01819a

He E, Huang G, Fan H et al (2019) Macroporous alumina- and titania-based catalyst for carbonyl sulfide hydrolysis at ambient temperature. Fuel 246:277–284. https://doi.org/10.1016/j.fuel.2019.02.097

Huang H, Young N, Williams BP et al (2008) Purification of chemical feedstocks by the removal of aerial carbonyl sulfide by hydrolysis using rare earth promoted alumina catalysts. Green Chem 10(5):571–577. https://doi.org/10.1039/d1ra01819a

Jiao GP, Ding YJ, Zhu HJ et al (2009) Effect of La2O3 doping on syntheses of C-1-C-18 mixed linear alpha-alcohols from syngas over the Co/AC catalysts. Appl Catal a-Gen 364(1-2):137–142. https://doi.org/10.1039/d1ra01819a

Jin H, An Z, Li Q et al (2021) Catalysts of ordered mesoporous alumina with a large pore size for low-temperature hydrolysis of carbonyl sulfide. Energy Fuel 35(10):8895–8908. https://doi.org/10.1039/d1ra01819a

Li K, Ruan HT, Ning P et al (2018) Preparation of walnut shell-based activated carbon and its properties for simultaneous removal of H2S, COS and CS2 from yellow phosphorus tail gas at low temperature. Res Chem Intermed 44(2):1209–1233. https://doi.org/10.1007/s11164-017-3162-6

Li H, Su S, Peng Y et al (2019) Effect of La-modified supporter on H2S removal performance of Mn/La/Al2O3 sorbent in a reducing atmosphere. Ind Eng Chem Res 58(19):8260–8270. https://doi.org/10.1039/d1ra01819a

Lo JMH, Ziegler T, Clark PD (2011) H2S adsorption on γ-Al2O3 surfaces: a density functional theory study. J Phys Chem C 115(5):1899–1910. https://doi.org/10.1039/d1ra01819a

Lu J, Hao H, Zhang L et al (2018) The investigation of the role of basic lanthanum (La) species on the improvement of catalytic activity and stability of HZSM-5 material for eliminating methanethiol-(CH3SH). Appl Catal B Environ 237:185–197. https://doi.org/10.1039/d1ra01819a

Ning P, Yu L, Yi H et al (2010) Effect of Fe/Cu/Ce loading on the coal-based activated carbons for hydrolysis of carbonyl sulfide. J Rare Earths 28(2):205–210. https://doi.org/10.1016/S1002-0721(09)60081-8

Ning P, Li K, Yi H et al (2012) Simultaneous catalytic hydrolysis of carbonyl Sulfide and carbon disulfide over modified microwave coal-based active carbon catalysts at low temperature. J Phys Chem C 116(32):17055–17062. https://doi.org/10.1021/jp304540y

Ning RL, Chen L, Li EW et al (2019) Applicability of V2O5-WO3/TiO2 Catalysts for the SCR denitrification of alumina calcining flue gas. Catalysts 9(3):11. https://doi.org/10.1039/d1ra01819a

Qiu J, Ning P, Wang XQ et al (2016) Removing carbonyl sulfide with metal-modified activated carbon. Front Environ Sci Eng 10(1):11–18. https://doi.org/10.1007/s11783-014-0714-5

Raabe T, Rasser H, Nottelmann S et al (2021) Mechanistic study on H2S and subsequent O2 adsorption on iron oxides and hydroxides. Appl Surf Sci 565:150504. https://doi.org/10.1039/d1ra01819a

Rupp EC, Granite EJ, Stanko DC (2012) Catalytic formation of carbonyl sulfide during warm gas clean-up of simulated coal-derived fuel gas with Pd/γ-Al2O3 sorbents. Fuel 92(1):211–215. https://doi.org/10.1016/j.fuel.2011.06.055

Song X, Ning P, Wang C et al (2017) Research on the low temperature catalytic hydrolysis of COS and CS2 over walnut shell biochar modified by Fe-Cu mixed metal oxides and basic functional groups. Chem Eng J 314:418–433. https://doi.org/10.1039/d1ra01819a

Song X, Sun L, Guo H et al (2019) Experimental and theoretical studies on the influence of carrier gas for COS catalytic hydrolysis over MgAlCe composite oxides. Acs Omega 4(4):7122–7127. https://doi.org/10.1039/d1ra01819a

Song X, Chen X, Sun L et al (2020) Synergistic effect of Fe2O3 and CuO on simultaneous catalytic hydrolysis of COS and CS2: experimental and theoretical studies. Chem Eng J 399:125764. https://doi.org/10.1039/d1ra01819a

Wang X, Qiu J, Ning P et al (2012) Adsorption/desorption of low concentration of carbonyl sulfide by impregnated activated carbon under micro-oxygen conditions. J Hazard Mater 229-230:128–136. https://doi.org/10.1039/d1ra01819a

Yang Y, Shi Y, Cai N (2016) Simultaneous removal of COS and H2S from hot syngas by rare earth metal-doped SnO2 sorbents. Fuel 181:1020–1026. https://doi.org/10.1039/d1ra01819a

Yi HH, Yu LL, Tang XL et al (2010) Catalytic hydrolysis of carbonyl sulfide over modified coal-based activated carbons by loading metal. J Cent S Univ Technol 17(5):985–990. https://doi.org/10.1007/s11771-010-0588-z

Yi H, Li K, Tang X et al (2013) Simultaneous catalytic hydrolysis of low concentration of carbonyl sulfide and carbon disulfide by impregnated microwave activated carbon at low temperatures. Chem Eng J 230:220–226. https://doi.org/10.1016/j.cej.2013.06.082

Yin M, Yun Z, Fan F et al (2021) Insights into the mechanism of low-temperature H2S oxidation over Zn–Cu/Al2O3 catalyst. Chemosphere 2021:133105. https://doi.org/10.1039/d1ra01819a

Zhang J, Xiao J, Liu Y et al (2010) Solubility of carbonyl sulfide in aqueous solutions of ethylene glycol at temperatures from (308.15 K to 323.15) K. J Chem Eng Data 55(11):5350–5353. https://doi.org/10.1021/je100624p

Zhang XC, Zhou GL, Wang MY et al (2021) Performance of gamma-Al2O3 decorated with potassium salts in the removal of CS2 from C-5 cracked distillate. RSC Adv 11(25):15351–15359. https://doi.org/10.1039/d1ra01819a

Zhao S, Yi H, Tang X et al (2013) Low temperature hydrolysis of carbonyl sulfide using Zn–Al hydrotalcite-derived catalysts. Chem Eng J 226:161–165. https://doi.org/10.1039/d1ra01819a

Zhao S, Yi H, Tang X et al (2018) Removal of volatile odorous organic compounds over NiAl mixed oxides at low temperature. J Hazard Mater 344:797–810. https://doi.org/10.1039/d1ra01819a