Promoted catalytic transformation of polycyclic aromatic hydrocarbons by MnO2 polymorphs: Synergistic effects of Mn3+ and oxygen vacancies
Tài liệu tham khảo
Richter, 2000, Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways, Prog. Energy Combust. Sci., 26, 565, 10.1016/S0360-1285(00)00009-5
Sathish, 2019, Host-guest interaction studies of polycyclic aromatic hydrocarbons (PAHs) in alkoxy bridged binuclear rhenium (I) complexes, Spectrochim. Acta A, 222, 10.1016/j.saa.2019.117160
Jia, 2015, Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light, J. Hazard. Mater., 287, 16, 10.1016/j.jhazmat.2015.01.040
Jia, 2015, Effect of low-molecular-weight organic acids on photo-degradation of phenanthrene catalyzed by Fe(III)-smectite under visible light, Chemosphere, 138, 266, 10.1016/j.chemosphere.2015.05.076
Zhao, 2017, Photolysis of polycyclic aromatic hydrocarbons (PAHs) on Fe3+-montmorillonite surface under visible light: degradation kinetics, mechanism, and toxicity assessments, Chemosphere, 184, 1346, 10.1016/j.chemosphere.2017.06.106
Jia, 2018, Transformation of polycyclic aromatic hydrocarbons and formation of environmentally persistent free radicals on modified montmorillonite: the role of surface metal ions and polycyclic aromatic hydrocarbon molecular properties, Environ. Sci. Technol., 52, 5725, 10.1021/acs.est.8b00425
Jia, 2017, Environmentally persistent free radicals in soils of past coking sites: distribution and stabilization, Environ. Sci. Technol., 51, 6000, 10.1021/acs.est.7b00599
Zhao, 2019, Interaction of benzo[α]pyrene with Cu(II)-montmorillonite: generation and toxicity of environmentally persistent free radicals and reactive oxygen species, Environ. Int., 129, 154, 10.1016/j.envint.2019.05.037
Jia, 2014, Transformation of polycyclic aromatic hydrocarbons (PAHs) on Fe(III)-modified clay minerals: role of molecular chemistry and clay surface properties, Appl. Catal. B: Environ., 154-155, 238, 10.1016/j.apcatb.2014.02.022
Ma, 2014, Catalytic oxidation of 1,2-dichlorobenzene over Ca-doped FeOx hollow microspheres, Appl. Catal. B: Environ., 147, 666, 10.1016/j.apcatb.2013.10.003
Jia, 2013, Comparative studies on montmorillonite-supported zero-valent iron nanoparticles produced by different method: reactivity and stability, Environ. Technol., 34, 25, 10.1080/09593330.2012.679698
Jia, 2012, Photodegradation of phenanthrene on cation-modified calys under visible light, Appl. Catal. B: Environ., 123-124, 43, 10.1016/j.apcatb.2012.04.017
Rani, 2019, Mineralization of carcinogenic anthracene and phenanthrene bu sunlight active bimetallic oxides nanocomposites, J. Colloid Interface Sci., 555, 676, 10.1016/j.jcis.2019.08.016
Wang, 2009, Photodegradation of polycyclic aromatic hydrocarbon pyrene by iron oxide in solid phase, J. Hazard. Mater., 162, 716, 10.1016/j.jhazmat.2008.05.086
Maitra, 2013, Improtance of trivalency and the eg1 configuration in the photocatalytic oxidation of water by Mn and Co oxides, Proc. Natl. Acad. Sci. U. S. A., 29, 11704, 10.1073/pnas.1310703110
Xu, 2017, Gaseous heterogeneous catalytic reactions over Mn-based oxides for environmental applications: a critical review, Environ. Sci. Technol., 51, 8879, 10.1021/acs.est.6b06079
Saputra, 2013, Different crystallographic one-dimensional MnO2 nanomaterials and their superior performance in catalytic phenol degradation, Environ. Sci. Technol., 47, 5882, 10.1021/es400878c
Li, 2018, The regular/persistent free radicals and associated reaction mechanism for the degradation of 1,2,4-trichlorobenzene over different MnO2 polymorphs, Environ. Sci. Technol., 52, 13351, 10.1021/acs.est.8b03789
Meng, 2014, Structure-property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and reduction reaction catalysts identified in alkaline media, J. Am. Chem. Soc., 136, 11452, 10.1021/ja505186m
Robinson, 2013, Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis, J. Am. Chem. Soc., 135, 3494, 10.1021/ja310286h
Dong, 2019, Oxidation of bisphenol A by persulfate via Fe3O4-α-MnO2 nanoflower-like catalyst: mechanism and efficiency, Chem. Eng. J., 357, 337, 10.1016/j.cej.2018.09.179
Saputra, 2012, α-MnO2 activation of peroxymonosulfate for catalytic phenol degradation in aqueous solutions, Catal. Commun., 26, 144, 10.1016/j.catcom.2012.05.014
Taujale, 2016, Interactions in ternary mixtures of MnO2, Al2O3, and natural organic matter (NOM) and the impact on MnO2 oxidative reactivity, Environ. Sci. Technol., 50, 2345, 10.1021/acs.est.5b05314
Huang, 2018, Effect of MnO2 phase structure on the oxidative reactivity toward bisphenol A degradation, Environ. Sci. Technol., 52, 11309, 10.1021/acs.est.8b03383
Lu, 2012, WO3-x@Au@MnO2 core-shell nanowires on carbon fabric for high-performance flexible supercapacitors, Adv. Mater., 24, 938, 10.1002/adma.201104113
Zhang, 2015, Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures, Catal. Sci. Technol., 5, 2305, 10.1039/C4CY01461H
Wang, 2017, The effect of manganese vacancy in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air, Appl. Catal. B: Environ., 204, 147, 10.1016/j.apcatb.2016.11.036
Saputra, 2013, Manganese oxides at different oxidation states for heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions, Appl. Catal. B: Environ., 142-143, 729, 10.1016/j.apcatb.2013.06.004
Chen, 2011, Oxidative degradation kinetics and products of chlortetracycline by manganese dioxide, J. Hazard. Mater., 193, 128, 10.1016/j.jhazmat.2011.07.039
Liu, 2018, Tungsten doped manganese dioxide for efficient removal of gaseous formaldehyde at ambient temperatures, Mater. Des., 149, 165, 10.1016/j.matdes.2018.04.014
Cao, 1994, Highly efficient heterogeneous photooxidation of 2-propanol to acetone with amorphous manganese oxide catalysts, J. Am. Chem. Soc., 116, 5334, 10.1021/ja00091a044
Wan, 2015, Oxidative degradation of sulfamethoxazole by different MnO2 nanocrystals in aqueous solution, J. Mol. Catal. A Chem., 407, 67, 10.1016/j.molcata.2015.06.026
Xu, 2018, Design of 3D MnO2/carbon sphere composite for the catalytic oxidation and adsorption of elemental mercury, J. Hazard. Mater., 342, 69, 10.1016/j.jhazmat.2017.08.011
Kang, 2019, Advanced oxidation and adsorptive bubble separation of dyes using MnO2-coated Fe3O4 nanocomposite, Water Res., 151, 413, 10.1016/j.watres.2018.12.038
Dai, 2016, Nanocrystalline MnO2 on an activated carbon fiber for catalytic formaldehyde removal, RSC Adv., 6, 97022, 10.1039/C6RA15463H
Ji, 2016, Oxygen vacancy enhanced photostability and activity of plasmon-Ag composites in the visible to near-infrared region for water purification, Appl. Catal. B: Environ., 199, 230, 10.1016/j.apcatb.2016.06.037
Zhu, 2015, Plasma-induced oxygen vacancies in ultrathin hematite nanoflakes promoting photoelectrochemical water oxidation, ACS. Appl. Mater. Interface, 7, 22355, 10.1021/acsami.5b06131
Lei, 2014, Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting, J. Am. Chem. Soc., 136, 6826, 10.1021/ja501866r
Wang, 2015, Defect-mediated of Cu@TiO2 core-shell nanoparticles with oxygen vacancies for photocatalytic degradation 2,4-DCP under visible light irradiation, Appl. Surf. Sci., 358, 479, 10.1016/j.apsusc.2015.08.051
Majcherczyk, 1998, Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of trametes versicolor, Enzyme Microb. Tech., 22, 335, 10.1016/S0141-0229(97)00199-3
Nico, 2001, Mn(III) center availability as a rate controlling factor in the oxidation of phenol and sulfide on δ-MnO2, Environ. Sci. Technol., 35, 3338, 10.1021/es001848q
Klewicki, 1999, Dissolution of β-MnOOH particles by ligands: pyrophosphate, ethylenediaminetetreacetate, and citrate, Geochim. Cosmochim. Acta, 19-20, 3017, 10.1016/S0016-7037(99)00229-X
Chen, 2013, Reduction of carbadox mediated by reaction of Mn(III) with oxalic acid, Environ. Sci. Technol., 47, 1357, 10.1021/es303895w
Zhu, 2018, Structural directed growth of ultrathin parallel birnessite on β-MnO2 for high-performance asymmetric supercapacitors, ACS Nano, 12, 1033, 10.1021/acsnano.7b03431
Ukrainczyk, 1992, Oxidation of phenol in acidic aqueous suspensions of manganese oxides, Clay. Clay Miner., 2, 157, 10.1346/CCMN.1992.0400204
Huang, 2019, Effects of MnO2 of different structures on activation of peroxymonosulfate for bisphenol A degradation under acidic conditions, Chem. Eng. J., 370, 906, 10.1016/j.cej.2019.03.238
Hu, 2017, Role of dissolved Mn(III) in transformation of organic contaminants: non-oxidative versus oxidative mechanisms, Water Res., 111, 234, 10.1016/j.watres.2017.01.013
Liu, 2009, Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods, J. Am. Chem. Soc., 131, 3140, 10.1021/ja808433d
Liu, 2019, Promoted oxygen activation of layered micro-mesoporous structured titanium phosphate nanoplates by coupling nano-sized δ-MnO2 with surface pits for efficient photocatalytic oxidation of CO, Appl. Catal. B: Environ., 254, 260, 10.1016/j.apcatb.2019.05.004
Wang, 2018, Enhanced removal of chlorophene and 17β-estradiol by Mn(III) in a mixture solution with humic acid: investigation of reaction kinetics and formation of Co-oligomerization products, Environ. Sci. Technol., 52, 13222, 10.1021/acs.est.8b04116
Zhang, 2016, Enhanced catalytic degradation of ciprofloxacin over Ce-doped OMS-2 microspheres, Appl. Catal. B: Environ., 181, 561, 10.1016/j.apcatb.2015.08.029
Zhang, 2019, One-pot synthesis of atomically dispersed Pt on MnO2 for efficient catalytic decomposition of toluene at low temperatures, Appl. Catal. B: Environ., 257, 10.1016/j.apcatb.2019.117878
Rong, 2018, Engineering crystal fates of α-MnO2 nanowire for highly efficient catalytic oxidation of carcinogenic airborne formaldehyde, ACS Catal., 8, 3435, 10.1021/acscatal.8b00456
Xia, 2018, Enhanced performance and conversion pathway for catalytic ozonation of methyl mercaptan on single-atom Ag deposited three-dimensional ordered mesoporous MnO2, Environ. Sci. Technol., 52, 13399, 10.1021/acs.est.8b03696