Prolégomènes à l'étude des polynômes orthogonaux semi-classiques

P. Maroni1
1Laboratoire d'Analyse Numérique L. A. 189, Université Pierre et Marie Curie, Paris, Cedex 05

Tóm tắt

Từ khóa


Tài liệu tham khảo

W. Hahn,Über die Jacobischen Polynome und zwei verwandte Polynomklassen, Math. Zeit.,39 (1935), pp. 634–638.

H. L. Krall,On derivatives of orthogonal polynomials, Bull. Amer. Math. Soc.,42 (1936), pp. 423–428.

J. L. Geronimus,On polynomials with respect to numerical sequences and on Hahn's theorems, Izv. Akad. Nauk,4 (1940), pp. 215–228 (en russe).

W. A. Al-Salam -T. S. Chihara,Another characterization of the classical orthogonal polynomials, SIAM J. Math. Anal.,3 (1) (1972), pp. 65–70.

A. Ronveaux,Polynômes orthogonaux dont les polynômes dérivés sont quasi-orthogonaux, C. R. Acad. Sc. Paris,289 A (1979), pp. 433–436.

E.Hendriksen - H.Van Rossum,Semi-classical orthogonal polynomials, Polynômes orthogonaux et applications, Symposium Laguerre, Bar-le-Duc (1984), Lectures Notes, p. 385, à paraître.

S. Bonan -P. Nevai,Orthogonal polynomials and their derivatives I, J. of Approx. Th.,40 (2) (1984), pp. 134–147.

T. S. Chihara,On quasi-orthogonal polynomials, Proc Amer. Math. Soc.,8 (1957), pp. 765–767.

D. Dickinson,On quasi-orthogonal polynomials, Proc. Amer. Math. Soc.,12 (1961), pp. 185–194.

J. A. Shohat,On mechanical quadratures, in particular, with positive coefficients, Trans. Amer. Math. Soc.,42 (1937), pp. 461–496.

P. Maroni,Une généralisation du théorème de Favard-Shohat sur les polynômes orthogonaux, C. R. Acad. Sc. Paris,293 (1981), pp. 19–22.

W. Hahn,Über höhere Ableitungen von orthogonal Polynomen, Math. Zeit.,43 (1937), p. 101.

H. L. Krall,On higher derivatives of orthogonal polynomials, Bull. Amer. Math. Soc.,42 (1936), pp. 867–870.

P. Maroni,Une caractérisation des polynômes orthogonaux semi-classiques, C. R. Acad. Sc. Paris,301, série I (1985), pp. 269–272.