Projection-Splitting Algorithms for General Monotone Variational Inequalities

Muhammad Aslam Noor1
1Mathematics, Etisalat College of Engineering, Sharjah, United Arab Emirates

Tóm tắt

We suggest and analyze some new splitting type projection methods for solving general variational inequalities by using the updating technique of the solution. The convergence analysis of these new methods is considered and the proof of convergence is very simple. These new methods are versatile.

Tài liệu tham khảo

W. F. Ames, Numerical Methods for Partial Differential Equations, Third Edition, Academic Press, New York, 1992. C. Baiocchi and A. Capelo, Variational and Quasi-Variational Inequalities, J. Wiley and Sons, New York, London, 1984. D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods, Prentice-Hall, Englewood Cliffs, New Jersey, 1989. H. Brezis, Operateurs Maximaux Monotone et Semigroups de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam, 1973. R. W. Cottle, F. Giannessi, and J. L. Lions, Variational Inequalities and Complementarity Problems: Theory and Applications, J. Wiley and Sons, New York, 1980. J. Douglas and H. H. Rachford, On the numerical solution of the heat conduction problem in 2 and 3 space variables, Trans. Amer. Math. Soc. 82, 421-435 (1956). F. Giannessi and A. Maugeri, Variational Inequalities and Network Equilibrium Problems, Plenum Press, New York, 1995. R. Glowinski, J. L. Lions and R. Trémolìeres, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, 1981. R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia, Pennsylvania, 1989. S. Haubruge, V. H. Nguyen, and J. J. Strodiot, Convergence analysis and applications of the Glowinski-Le Tallec splitting method for finding a zero of the sum of two maximal monotone operators, J. Optim. Theory Appl. 97, 645-673 (1998). B. He, A class of projection and contraction methods for monotone variational inequalities, Appl. Math. Optim. 35, 69-76 (1997). B. He, A Class of New Methods for Monotone Variational Inequalities, Preprint, Institute of Mathematics, Nanjing University, Nanjing, China, 1995. J. J. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20, 493-519 (1967). M. Aslam Noor, General variational inequalities, Appl. Math. Lett. 1, 119-121 (1988). M. Aslam Noor, Wiener-Hopf equations and variational inequalities, J. Optim. Theory Appl. 79, 197-206 (1993). M. Aslam Noor, A modified extragradient method for general monotone variational inequalities, Comput. Math. Appl. 38, 19-24 (1999). M. Aslam Noor, Some iterative techniques for general monotone variational inequalities, Optimization 46, 391-401 (1999). M. Aslam Noor, Projection-splitting algorithms for monotone variational inequalities, Comput. Math. Appl. 39, 73-79 (2000). M. Aslam Noor, Some algorithms for general monotone mixed variational inequalities, Mathl. Computer Modelling 29(7), 1-9 (1999). M. Aslam Noor, Some recent advances in variational inequalities, Part I, basic concepts, New Zealand J. Math. 26, 53–80 (1997). M. Aslam Noor, Some recent advances in variational inequalities, Part II, other concepts, New Zealand J. Math. 26, 229-255 (1997). D. H. Peaceman and H. H. Rachford, The numerical solution of parabolic elliptic differential equations, SIAM J. Appl. Math. 3, 28-41 (1955). M. S. Robinson, Normal maps induced by linear transformations, Math. Opers. Research 17, 691-714 (1992). P. Shi, Equivalence of variational inequalities with Wiener-Hopf equations, Proc. Amer. Math. Soc. 111, 339-346 (1991). M. V. Solodov and P. Tseng, Modified projection-type methods for monotone variational inequalities, SIAM J. Control. Optim. 34(5), 1814-1836 1996). G. Stampacchia, Formes bilineaires coercivities sur les ensembles convexes, C.R. Acad. Sci. Paris 258, 4413-4416 (1964). P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., to appear. Y. B. Zhao, Extended projection methods for monotone variational inequalities, J. Optim. Theory Appl. 100, 219-231 (1991).