Projected Changes in Temperature and Precipitation Over the United States, Central America, and the Caribbean in CMIP6 GCMs

Springer Science and Business Media LLC - Tập 5 Số 1 - Trang 1-24 - 2021
Mansour Almazroui1, M. Nazrul Islam1, Fahad Saeed1, Sajjad Saeed1, Muhammad Ismail1, Muhammad Azhar Ehsan1, Ismaïla Diallo2, Enda O’Brien1, Moetasim Ashfaq3, Daniel Martínez-Castro4, Tereza Cavazos5, Ruth Cerezo‐Mota6, Michael K. Tippett7, William J. Gutowski8, Eric J. Alfaro9, Hugo G. Hidalgo10, Alejandro Vichot‐Llano4, Jayaka Campbell11, Shahzad Kamil12, Irfan Ur Rashid12, Mouhamadou Bamba Sylla13, Tannecia S. Stephenson11, Michael A. Taylor11, Mathew Barlow14
1Center of Excellence for Climate Change Research/Department of Meteorology, King Abdulaziz University, PO Box 80208, Jeddah, 21589, Saudi Arabia
2Department of Geography, University of California, Los Angeles, Los Angeles, CA, 90034, USA
3Oak Ridge National Laboratory, Oak Ridge, TN, USA
4Center for Atmospheric Physics, Institute of Meteorology, Havana, Cuba
5Departamento de Oceanografia Fisica, CICESE, Ensenada, Baja California, México
6Laboratorio de Ingeniería y Procesos Costeros, Instituto de Ingeniería, Nacional Autónoma de México, Sisal, Yucatán, 97356, México
7Department of Applied Physics and Applied Mathematics Columbia University New York USA
8Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa 50011, USA
9Center for Geophysical Research, School of Physics and Center for Research in Marine Sciences and Limnology, University of Costa Rica, San Jose, 11501, Costa Rica
10Center for Geophysical Research and School of Physics, University of Costa Rica, San Jose, 11501, Costa Rica
11Department of Physics, University of the West Indies, Mona Campus, Jamaica
12Climate Change Impact and Integration Cell (CIIC), Pakistan Meteorological Department, Islamabad, Pakistan
13African Institute for Mathematical Sciences, Kigali, Rwanda
14Department of Environmental, Earth, and Atmospheric Sciences, University of Massachusetts Lowell, Lowell, USA

Tóm tắt

AbstractThe Coupled Model Intercomparison Project Phase 6 (CMIP6) dataset is used to examine projected changes in temperature and precipitation over the United States (U.S.), Central America and the Caribbean. The changes are computed using an ensemble of 31 models for three future time slices (2021–2040, 2041–2060, and 2080–2099) relative to the reference period (1995–2014) under three Shared Socioeconomic Pathways (SSPs; SSP1-2.6, SSP2-4.5, and SSP5-8.5). The CMIP6 ensemble reproduces the observed annual cycle and distribution of mean annual temperature and precipitation with biases between − 0.93 and 1.27 °C and − 37.90 to 58.45%, respectively, for most of the region. However, modeled precipitation is too large over the western and Midwestern U.S. during winter and spring and over the North American monsoon region in summer, while too small over southern Central America. Temperature is projected to increase over the entire domain under all three SSPs, by as much as 6 °C under SSP5-8.5, and with more pronounced increases in the northern latitudes over the regions that receive snow in the present climate. Annual precipitation projections for the end of the twenty-first century have more uncertainty, as expected, and exhibit a meridional dipole-like pattern, with precipitation increasing by 10–30% over much of the U.S. and decreasing by 10–40% over Central America and the Caribbean, especially over the monsoon region. Seasonally, precipitation over the eastern and central subregions is projected to increase during winter and spring and decrease during summer and autumn. Over the monsoon region and Central America, precipitation is projected to decrease in all seasons except autumn. The analysis was repeated on a subset of 9 models with the best performance in the reference period; however, no significant difference was found, suggesting that model bias is not strongly influencing the projections.

Từ khóa


Tài liệu tham khảo

Abatzoglou JT, Williams AP (2016) Impact of anthropogenic climate change on wildfire across western US forests. Proc Natl Acad Sci USA 113:11770–11775. https://doi.org/10.1073/pnas.1607171113

Akinsanola AA, Kooperman GJ, Pendergrass AG et al (2020) Seasonal representation of extreme precipitation indices over the United States in CMIP6 present–day simulations. Environ Res Lett 15:094003. https://doi.org/10.1088/17489326/ab92c1

Alfaro-Córdoba M, Hidalgo HG, Alfaro EJ (2020) Aridity trends in Central America: a spatial correlation analysis. Atmosphere 11(4):427. https://doi.org/10.3390/atmos11040427

Almazroui M, Islam MNM, Saeed S et al (2017b) Assessment of Uncertainties in Projected Temperature and Precipitation over the Arabian Peninsula Using Three Categories of Cmip5 Multimodel Ensembles. Earth Syst Environ 1:23. https://doi.org/10.1007/s41748-017-0027-5

Almazroui M, Islam MN, Saeed S et al (2020c) Future changes in climate over the Arabian Peninsula based on CMIP6 multimodel simulations. Earth Syst Environ. https://doi.org/10.1007/s41748-020-00183-5

Almazroui M, Saeed S, Islam MN et al (2017a) Assessment of uncertainties in projected temperature and precipitation over the Arabian Peninsula: a comparison between different categories of CMIP3 models. Earth Syst Environ 1:12. https://doi.org/10.1007/s41748-017-0012-z

Almazroui M, Saeed S, Islam MN, Ismail M (2020a) Projections of precipitation and temperature over the South Asian Countries in CMIP6. Earth Syst Environ. https://doi.org/10.1007/s41748-020-00157-7

Almazroui M, Saeed F, Saeed S et al (2020b) Projected change in temperature and precipitation over Africa from CMIP6. Earth Syst Environ 4:455–475. https://doi.org/10.1007/s41748-020-00161-x

Amador, J. A. (2008) The Intra–Americas Seas Low–Level Jet (IALLJ): overview and future research. Ann NY Acad Sci 1146(1): 153–188(36). https://doi.org/10.1196/annals.1446.012

Ashfaq M, Bowling LC, Cherkauer K, Pal JS, Diffenbaugh NS (2010) Influence of climate model biases and daily-scale temperature and precipitation events on hydrological impacts assessment: a case study of the United States. J Geophys Res-Atmos. https://doi.org/10.1029/2009JD012965

Ashfaq M, Cavazos T, Reboita MS et al (2020) Robust late twenty–first century shift in the regional monsoons in RegCM–CORDEX simulations. Clim Dyn. https://doi.org/10.1007/s00382-020-05306-2

Ashfaq, M., Ghosh, S., Kao, S-C. et al. (2013) Near-term acceleration of hydro climatic change in the western U.S. J Geophys Res-Atmos. https://doi.org/10.1002/jgrd.50816

Ashfaq M, Rastogi D, Mei R, et al (2016) High-resolution ensemble projections of near-term regional climate over the continental U.S. J Geophys Res-Atmo. https://doi.org/10.1002/2016JD025285

Batibeniz F, Ashfaq M, Diffenbaugh NS et al. 2020) Doubling of U.S. population exposure to climate extremes by 2050. Earth's Future. https://doi.org/10.1029/2019EF001421

Becker A, Finger P, Meyer-Christoffer A et al (2013) A description of the global land–surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst Sci Data 5:71–22. https://doi.org/10.5194/essd-5-71-2013

Bi D, Dix M, Marsland S et al (2012) The ACCESS coupled model: description, control climate and evaluation. Aust Meteorol Oceanogr J 63:41–64. https://doi.org/10.22499/2.6301.004

Bukovsky MS, Carrillo CM, Gochis DJ et al (2015) Toward assessing NARCCAP regional climate model credibility for the North American monsoon: future climate simulations. J Clim 28:6707–6728. https://doi.org/10.1175/JCLI-D-14-00695.1

Campbell JD, Taylor MA, Stephenson TS, Watson R, Whyte FS (2010) Future climate of the caribbean from a regional climate model. Int J Climatol 31:1866–1878. https://doi.org/10.1002/joc.2200

Cao J, Wang B, Yang Y-M et al (2018) The NUIST Earth System Model (NESM) version 3: description and preliminary evaluation. Geosci Model Dev 11:2975–2993. https://doi.org/10.5194/gmd-11-2975-2018

Cavazos T, Luna-Niño R, Cerezo-Mota R et al (2020) Climatic trends and regional climate models intercomparison over the CORDEX–CAM (Central America, Caribbean, and Mexico) domain. Int J Climatol 40(3):1396–1420. https://doi.org/10.1002/joc.6276

Centella-Artola A, Taylor MA, Bezanilla-Morlot A et al (2015) Assessing the effect of domain size over the Caribbean region using the PRECIS regional climate model. Clim Dyn 44:1901–1918. https://doi.org/10.1007/s00382-014-2272-8

Cerezo-Mota R, Cavazos T, Arritt R et al (2016) CORDEX-NA: factors inducing dry/wet years on the North American Monsoon region. Int J Climatol 36(2):824–836. https://doi.org/10.1002/joc.4385

Christensen JH, Kanikicharla KK, Aldrian E et al (2013) Climate phenomena and their relevance for future regional climate change. Climate change 2013: The physical science basis (pp. 1217–1308). Cambridge University Press

Colorado-Ruiz G, Cavazos T, Salinas JA et al (2018) Climate change projections from Coupled Model Intercomparison Project phase 5 multi-model weighted ensembles for Mexico, the North American monsoon, and the mid-summer drought region. Int J Climatol 38(15):5699–5716. https://doi.org/10.1002/joc.5773

Cook BI, Mankin JS, Marvel K et al (2020) Twenty–first Century Drought Projections in the CMIP6 Forcing Scenarios. Ear Fut 8, e2019EF001461. https://doi.org/10.1029/2019EF001461

Curtis S, Gamble D (2008) Regional variations of the Caribbean mid-summer drought. Theor Appl Climatol 94:25–34. https://doi.org/10.1007/s00704-007-0342-0

Diaconescu EP, Mailhot A, Brown R, Chaumont D (2018) Evaluation of CORDEX– Arctic daily precipitation and temperature-based climate indices over Canadian Arctic land areas. Clim Dyn 50:2061–2085. https://doi.org/10.1007/s00382-017-3736-4

Diallo I, Xue Y, Li Q et al (2019) Dynamical downscaling the impact of spring Western US land surface temperature on the 2015 flood extremes at the Southern Great Plains: effect of domain choice, dynamic cores and land surface parameterization. Clim Dyn 53:1039–1061. https://doi.org/10.1007/s00382-019-04630-6

Diffenbaugh NS, Swain DL, Touma D (2015) Anthropogenic warming has increased drought risk in California. Proc Nat Acad Sci 112:3931–3936. https://doi.org/10.1073/pnas.1422385112

Duran–Quesada AM, Sorí R, Ordoñez P, Gimeno L (2020) Climate Perspectives in the Intra–Americas Seas. Atmos 11(9), 959; https://doi.org/10.3390/atmos11090959

Easterling DR, Kunkel KE, Wehner MF, Sun L (2016) Detection and attribution of climate extremes in the observed record. Weather Clim Extr 11:17–27. https://doi.org/10.1016/j.wace.2016.01.001

Eyring V, Bony S, Meehl GA et al (2016) Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9:1937–1958. https://doi.org/10.5194/gmd-9-1937-2016

Fischer EM, Knutti R (2016) Observed heavy precipitation increase confirms theory and early models. Nat Clim Change 6:986. https://doi.org/10.1038/nclimate3110

Flato G, Marotzke J, Abiodun B et al. (eds) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge, pp 741–866

Fuentes-Franco R, Coppola E, Giorgi F et al (2015) Inter–annual variability of precipitation over southern Mexico and Central America and its relationship to sea surface temperature from a set of future projections from CMIP5 GCMs and RegCM4 CORDEX simulations. Clim Dyn 45:425–440. https://doi.org/10.1007/s00382-014-2258-6

Gidden MJ, Riahi K, Smith SJ et al (2019) Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci Mod Dev 12:1443–1475. https://doi.org/10.5194/gmd-12-1443-2019

Giorgi F, Coppola E, Raffaele F (2018) Threatening levels of cumulative stress due to hydroclimatic extremes in the 21st century. npj Clim Atmos Sci 1, 18. https://doi.org/10.1038/s41612-018-0028-6

Gutjahr O, Putrasahan D, Lohmann K et al (2019) Max Planck Institute Earth System Model (MPI–ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP). Geosci Model Dev 12:3241–3281. https://doi.org/10.5194/gmd-12-3241-2019

Haensler A, Saeed F, Jacob D (2013) Assessing the robustness of projected precipitation changes over central Africa on the basis of a multitude of global and regional climate projections. Clim Chang 121:349–363. https://doi.org/10.1007/s10584-013-0863-8

Hajima T, Watanabe M, Yamamoto A et al (2020) Description of the MIROC–ES2L Earth system model and evaluation of its climate–biogeochemical processes and feedbacks. Geosci Model Dev 13:2197–2244. https://doi.org/10.5194/gmd-13-2197-2020

Hannah L, Donatti C, Harvey C et al (2017) Regional modeling of climate change impacts on smallholder agriculture and ecosystems in Central America. Clim Change 141:29–45. https://doi.org/10.1007/s10584-016-1867-y

Hare B, Roming N, Schaeffer M, Schleussner CF (2016) Implications of the 1.5°C limit in the Paris Agreement for climate policy and decarbonisation. Berlin: Climate Analytics, 25 pp

Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high–resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int J Clim 34:623–642. https://doi.org/10.1002/joc.3711

He B et al (2019) CAS FGOALS–f3–L model datasets for CMIP6 historical Atmospheric Model Inter–comparison Project simulation. Adv Atmos Sci 36(8):771–778. https://doi.org/10.1007/s00376-019-9027-8

He C, Li T, Zhou W (2020) Drier North American Monsoon in Contrast to Asian-African Monsoon under Global Warming. J Clim 33(22):9801–9816. https://doi.org/10.1175/JCLI-D-20-0189.1

Held IM, Guo H, Adcroft A, Dunne JP, Horowitz LW, Krasting J et al. (2019) Structure and performance of GFDL's CM4.0 climate model. J Adv Model Earth Syst 11. https://doi.org/10.1029/2019MS001829

Hidalgo H, Alfaro E (2015) Skill of CMIP5 climate models in reproducing 20th century basic climate features in Central America. Int J Climatol 35:3397–3421. https://doi.org/10.1002/joc.4216

Hidalgo H, Alfaro E, Quesada-Montano B (2017) Observed (1970–1999) climate variability in Central America using a high–resolution meteorological dataset with implication to climate change studies. Clim Chang 141:13–28. https://doi.org/10.1007/s10584-016-1786-y

Hidalgo HG, Amador JA, Alfaro EJ, Quesada B (2013) Hydrological climate change projections for Central America. J Hydrol 495:94–112. https://doi.org/10.1016/j.jhydrol.2013.05.004

IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G–K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (Eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the 5th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York, NY: Cambridge University Press

IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

Imbach P, Chou SC, Lyra A et al (2018) Future climate change scenarios in Central America at high spatial resolution. PLoS ONE 13:e0193570. https://doi.org/10.1371/journal.pone.0193570

Iturbide M, Gutiérrez JM, Alves LM et al (2020) An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets. Earth Syst Sci Data. https://doi.org/10.5194/essd-2019-258

Jin C, Wang B, Liu J (2020) Future changes and controlling factors of the eight regional monsoons projected by CMIP6 Models. J Clim 33:9307–9326. https://doi.org/10.1175/JCLI-D-20-0236.1

Karmalkar AV, Bradley RS, Diaz HF (2011) Climate change in Central America and Mexico: regional climate model validation and climate change projections. Clim Dyn 37:605–629. https://doi.org/10.1007/s00382-011-1099-9

Kebe I, Diallo I, Sylla MB, De Sales F, Diedhiou A (2020) Late 21st Century Projected Changes in the Relationship between Precipitation, African Easterly Jet, and African Easterly Waves. Atmosphere 11:353. https://doi.org/10.3390/atmos11040353

Kendall M (1975) Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK

Knutti R, Sedláček J, Sanderson BM, Lorenz R, Fischer EM, Eyring V (2017) A climate model projection weighting scheme accounting for performance and interdependence. Geophys Res Lett 24:4529–4538. https://doi.org/10.1002/2016GL072012

Koutroulis AG, Grillakis MG, Tsanis IK et al (2016) Evaluation of precipitation and temperature simulation performance of the CMIP3 and CMIP5 historical experiments. Clim Dyn 47:1881–1898. https://doi.org/10.1007/s00382-015-2938-x

Lauritzen PH, Nair RD, Herrington AR et al (2018) NCAR release of CAM–SE in CESM2.0: a reformulation of the spectral element dynamical core in dry–mass vertical coordinates with comprehensive treatment of condensates and energy. J Adv Model Earth Syst 10:1537–1570. https://doi.org/10.1029/2017MS001257

Law RM, Ziehn T, Matear RJ, Lenton A et al (2017) The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS–ESM1)—Part 1: Model description and pre–industrial simulation. Geosci Model Dev 10:2567–2590. https://doi.org/10.5194/gmd-10-2567-2017

Lin Y, Huang X, Liang Y et al (2020) Community Integrated Earth System Model (CIESM): Description and Evaluation. J Adv Model Earth Syst 12, e2019MS002036. https://doi.org/10.1029/2019MS002036

Liu SM, Chen YH, Rao J, Cao C, Li SY, Ma MH, Wang YB (2019) Parallel comparison of major sudden stratospheric warming events in CESM1–WACCM and CESM2–WACCM. Atmos 10:679. https://doi.org/10.3390/atmos10110679

Lurton T, Balkanski Y, Bastrikov V et al (2020) Implementation of the CMIP6 Forcing Data in the IPSL‐CM6A‐LR Model. J Adv Model Earth Syst 12, e2019MS001940. https://doi.org/10.1029/2019MS001940

Magaña V, Amador JA, Medina S (1999) The midsummer drought over Mexico and Central America. J Clim 12:1577–1588. https://doi.org/10.1175/1520-0442(1999)012%3c1577:TMDOMA%3e2.0.CO;2

Maldonado T, Alfaro EJ, Hidalgo HG (2018) Revision of the main drivers and variability of Central America Climate and seasonal forecast systems. Revista de Biología Tropical 66 (Suppl 1): S153–S175. https://revistas.ucr.ac.cr/index.php/rbt/article/view/33294

Maloney ED, Camargo SJ, Chang E et al (2014) North American climate in CMIP5 experiments: part III: assessment of twenty–first–century projections. J Clim 27:2230–2270. https://doi.org/10.1175/JCLI-D-13-00273.1

Mann H (1945) Non–parametric tests against trend. Econometrica 13:245–259

Martínez‑Castro D, Vichot‑Llano A, ·Bezanilla‑Morlot A et al (2018) The performance of RegCM4 over the Central America and Caribbean region using different cumulus parameterizations. Clim Dyn 50, 4103. https://doi.org/10.1007/s00382-017-3863-y

Massonnet F, Ménégoz M, Acosta M et al (2020) Replicability of the EC–Earth3 Earth system model under a change in computing environment. Geosci Model Dev 13:1165–1178. https://doi.org/10.5194/gmd-13-1165-2020

Mauritsen T, Bader J, Becker T et al (2019) Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J Adv Model Earth Syst 11:998–1038. https://doi.org/10.1029/2018MS001400

Moreno ML, Hidalgo HG, Alfaro EJ (2019) Cambio climático y su efecto sobre los servicios ecosistémicos en dos parques nacionales de Costa Rica, América Central (Climate change and its effect on ecosystem services in two national parks of Costa Rica, Central America). Revista Iberoamericana de Economía Ecológica, 30(1), 16–38. https://ddd.uab.cat/record/212532

Mote PW, Hamlet A, Clark MP, Lettenmaier DP (2015) Declining mountain snowpack in western North America. https://doi.org/https://doi.org/10.1175/BAMS-86-1-39

Nangombe S, Zhou T, Zhang W, Wu B, Hu S, Zou L, Li D (2018) Record‐breaking climate extremes in Africa under stabilized 1.5 °C and 2 °C global warming scenarios. Nat Clim Change 8 (5), 375– 380. https://doi.org/10.1038/s41558‐018‐0145‐6

Naz BS, Kao S-C, Ashfaq M, Gao H, Rastogi D, Gangrade S (2018) Effects of climate change on streamflow extremes and implications for reservoir inflow in the United States. J Hydrol. https://doi.org/10.1016/j.jhydrol.2017.11.027

Oglesby R, Rowe C, Grunwaldt A, Inês F, Ruiz F, Campbell J, Alvarado L, Argenal F, Olmedo B, Castillo A, López P, Matos E, Nava Y, Perez C, Perez J (2016) A high-resolution modeling strategy to assess impacts of climate change for mesoamerica and the Caribbean. Am J Clim Chang 05:202–228. https://doi.org/10.4236/ajcc.2016.52019

Oppenheimer M, Glavovic B et al (2019) Sea level rise and implications for low–lying islands, coasts and communities. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H.–O. Pörtner et al., Eds., Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/SROCC_Ch04-SM_FINAL.pdf

O’Neill BC, Tebaldi C, van Vuuren DP et al (2016) The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci Model Dev 9:3461–3482. https://doi.org/10.5194/gmd-9-3461-2016

Pagan BR, Ashfaq M, Rastogi D et al (2016) Extreme hydrological events drive reduction in water supply in the southwestern United Sates. Environ Res Lett. https://doi.org/10.1088/1748-9326/11/9/094026

Partridge TF, Winter JM, Osterberg EC, Hyndman DW, Kendall AD, Magilligan FJ (2018) Spatially distinct seasonal patterns and forcings of the U.S. warming hole. Geophys Res Lett 45:2055–2063. https://doi.org/10.1002/2017GL076463

Pincus R, Batstone CP, Hofmann RJP, Taylor KE, Glecker PJ (2008) Evaluating the present–day simulation of clouds, precipitation, and radiation in climate models. J Geophys Res 13:D14209. https://doi.org/10.1029/2007JD009334

Pu Y, Liu H, Yan R et al (2020) CAS FGOALS-g3 Model Datasets for the CMIP6 Scenario Model Intercomparison Project (ScenarioMIP). Adv Atmos Sci 37:1081–1092. https://doi.org/10.1007/s00376-020-2032-0

Radeloff VC, Helmers DP, Anu Kramer H et al (2018) Rapid growth of the US wildland-urban interface raises wildfire risk. Proc Nat Acad Sci USA 115:3314–3319

Rastogi D, Touma D, Evans K, Ashfaq M (2020) Shift towards intense and widespread precipitation events over the United States by mid 21st century. Geophys Res Lett. https://doi.org/10.1029/2020GL089899

Rogers JC (2013) The 20th century cooling trend over the southeastern United States. Clim Dyn 40:341–352. https://doi.org/10.1007/s00382-012-1437-6

Rong XY, Li J, Chen HM et al (2019) Introduction of CAMS–CSM model and its participation in CMIP6. Clim Chang Res 15(5):540–544. https://doi.org/10.12006/j.issn.1673-1719.2019.186

Ryu JH, Hayhoe K (2014) Understanding the sources of Caribbean precipitation biases in CMIP3 and CMIP5 simulations. Clim Dyn 42:3233–3252. https://doi.org/10.1007/s00382-013-1801-1

Seland Ø, Bentsen M, Seland Graff L et al (2020a) The Norwegian Earth System Model, NorESM2—Evaluation of theCMIP6 DECK and historical simulations. Geosci Model Dev. https://doi.org/10.5194/gmd-2019-378

Seland Ø. Bentsen M, Olivié D et al (2020b) NorESM2 source code as used for CMIP6 simulations (Version 2.0.1), Zenodo. https://doi.org/10.5281/zenodo.3760870

Sellar A, Jones C, Mulcahy J et al (2019) UKESM1: Description and evaluation of the UK Earth System Model. J Adv Model Earth Syst. https://doi.org/10.1029/2019MS001739

Semmler T, Danilov S, Gierz P et al (2020) Simulations for CMIP6 With the AWI Climate Model AWI-CM-1-1. J Adv Model Earth Syst. https://doi.org/10.1029/2019MS002009

Sen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc 63:1379–1389

Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J Geophys Res Atmos 118:1716–1733. https://doi.org/10.1002/jgrd.50203

Solomon S, Qin D, Manning M et al. (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.researchgate.net/publication/285085563_Contribution_of_Working_Group_I_to_the_Fourth_Assessment_Report_of_the_Intergovernmental_Panel_on_Climate_Change

Song Y, Li X, Bao Y et al (2020) FIO-ESM v2.0 Outputs for the CMIP6 Global Monsoons Model Intercomparison Project Experiments. Adv Atmos Sci 37:1045–1056. https://doi.org/10.1007/s00376-020-9288-2

Srivastava AK, Richard G, Paul AU (2020) Evaluation of historical CMIP6 model simulations of extreme precipitation over contiguous US regions. Wea Clim Extr. https://doi.org/10.1016/j.wace.2020.100268

Swart NC, Cole JNS, Kharin VV et al (2019) The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci Model Dev 12:4823–4873. https://doi.org/10.5194/gmd-12-4823-2019

Séférian R, Nabat P, Michou M et al (2019) Evaluation of CNRM Earth-System model, CNRM-ESM2-1: role of Earth system processes in present-day and future climate. J Adv Model Earth Syst 11:4182–4227. https://doi.org/10.1029/2019MS001791

Tatebe H, Ogura T, Nitta T et al (2019) Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci Model Dev 12:2727–2765. https://doi.org/10.5194/gmd-12-2727-2019

Taylor MA, Clarke L, Centella A et al (2018) Future Caribbean Climates in a World of Rising Temperatures: the 1.5 vs 2.0 Dilemma. J Clim 31:2907–2926. https://doi.org/10.1175/JCLI-D-17-0074.1

Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

Taylor M, Alfaro E (2005) Climate of Central America and the Caribbean. In: Encyclopedia of World Climatology: pp.183–189. Netherlands: Springer. https://doi.org/10.1007/1-4020-3266-8-37

Torres-Alavez A, Cavazos T, Turrent C (2014) Land–sea thermal contrast and intensity of the North American monsoon under climate change conditions. J Clim 27:4566–4580. https://doi.org/10.1175/JCLI-D-13-00557.1

UNFCCC (2015) Adoption of the Paris Agreement. New York, NY: UNFCCC. Report number: FCCC/CP/2015/L.9/Rev.1. http://unfccc.int/ resource/docs/2015/cop21/eng/l09r01.pdf

Veas–Ayala N, Quesada–Román A, Hidalgo HG, Alfaro EJ (2018). Humedales del Parque Nacional Chirripó, Costa Rica: características, relaciones geomorfológicas y escenarios de cambio climático (Chirripó National Park wetlands, Costa Rica: characteristics, geomorphological relationships, and climate change scenarios). Revista de Biología Tropical, 66(4), 1436–1448. https://revistas.ucr.ac.cr/index.php/rbt/article/view/31477

Vichot-Llano A, Martinez-Castro D, Bezanilla-Morlot A, Centella-Artola A, Giorgi F (2020) Projected changes in precipitation and temperature regimes over the Caribbean and Central America using a multiparameter ensemble of RegCM4. Int J Clim. https://doi.org/10.1002/joc.6811

Vichot-Llano A, Martinez-Castro D, Giorgi F et al (2020) Comparison of GCM and RCM simulated precipitation and temperature over Central America and the Caribbean. Theor Appl Climatol. https://doi.org/10.1007/s00704-020-03400-3

Voldoire A, Saint‐Martin D, Sénési S et al (2019) Evaluation of CMIP6 DECK experiments with CNRM‐CM6‐1. J Adv Model Earth Syst 11, 2177–2213. https://doi.org/10.1029/2019MS001683

Volodin E, Gritsun A (2018) Simulation of observed climate changes in 1850–2014 with climate model INM-CM5. Earth Syst Dyn 9:1235–1242. https://doi.org/10.5194/esd-9-1235-2018

Volodin EM, Mortikov EV, Kostrykin SV et al (2018) Simulation of the modern climate using the INM–CM48 climate model. Russian J Num Analy Math Model 33(6), 367–374. https://doi.org/10.1515/rnam-2018-0032

Wang B, Biasutti M, Byrne M et al (2020) Monsoon climate change assessment. Bull Am Meteorol Soc. https://doi.org/10.1175/BAMS-D-19-0335.1

Wang B, Jin C, Liu J (2020) Understanding Future Change of Global Monsoons Projected by CMIP6 Models. J Clim 33(15):6471–6489. https://doi.org/10.1175/JCLI-D-19-0993.1

Wang C, Zhang L, Lee SK, Wu L, Mechoso CR (2014) A global perspective on CMIP5 climate model biases. Nat Clim Change 4:201–205. https://doi.org/10.1038/nclimate2118

Wehner M, Gleckler P, Lee J (2020) Characterization of long period return values of extreme daily temperature and precipitation in the CMIP6 models: Part 1, model evaluation. Weather Clim Extre 30:100283. https://doi.org/10.1016/j.wace.2020.100283

Wehner MF, Reed KA, Li F et al (2014) The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. J Adv Model Earth Syst 6, 980–997. https://doi.org/10.1002/2013MS000276

van der Wiel K, Kapnick SB, Vecchi GA et al (2016) The resolution dependence of contiguous U.S. Precipitation extremes in response to CO2 forcing. J Clim 29:7991–8012. https://doi.org/10.1175/JCLI-D-16-0307.1

Wilks, D. (2019) Statistical Methods in the Atmospheric Sciences. 4th. ed. Elsevier

Willmott CJ, Robeson SM, Matsuura K, Ficklin DL (2015) Assessment of three dimensionless measures of model performance. Environ Model Soft 73:167–174. https://doi.org/10.1016/j.envsoft.2015.08.012

Wu T, Lu Y, Fang Y et al (2019) The Beijing Climate Center Climate System Model (BCC–CSM): the main progress from CMIP5 to CMIP6. Geosci Model Dev 12:1573–1600. https://doi.org/10.5194/gmd-12-1573-2019

Wyser K, Kjellström E, Koenigk T et al (2020) Warmer climate projections in EC-Earth3-Veg: the role of changes in the greenhouse gas concentrations from CMIP5 to CMIP6. Environ Res Lett 15(5):054020. https://doi.org/10.1088/1748-9326/ab81c2

Yukimoto S, Kawai H, Koshiro T et al (2019) The Meteorological Research Institute Earth System Model version 2.0, MRI–ESM2.0: Description and basic evaluation of the physical component. J Meteor Soc Japan 97:000–000. https://doi.org/10.2151/jmsj.2019-051