Progressive abnormalities in skeletal muscle and neuromuscular junctions of transgenic mice expressing the Huntington's disease mutation

European Journal of Neuroscience - Tập 20 Số 11 - Trang 3092-3114 - 2004
Richard R. Ribchester1, Derek Thomson1, Nigel I. Wood2, Timothy S. C. Hinks2, Thomas H. Gillingwater1, Thomas M. Wishart1, Felipe A. Court1, A. Jennifer Morton2
1Division of Neuroscience, University of Edinburgh, George Square, Edinburgh EH8 9JZ, UK
2Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK

Tóm tắt

AbstractHuntington's disease (HD) is a neurodegenerative disorder with complex symptoms dominated by progressive motor dysfunction. Skeletal muscle atrophy is common in HD patients. Because the HD mutation is expressed in skeletal muscle as well as brain, we wondered whether the muscle changes arise from primary pathology. We used R6/2 transgenic mice for our studies. Unlike denervation atrophy, skeletal muscle atrophy in R6/2 mice occurs uniformly. Paradoxically however, skeletal muscles show age‐dependent denervation‐like abnormalities, including supersensitivity to acetylcholine, decreased sensitivity to µ‐conotoxin, and anode‐break action potentials. Morphological abnormalities of neuromuscular junctions are also present, particularly in older R6/2 mice. Severely affected R6/2 mice show a progressive increase in the number of motor endplates that fail to respond to nerve stimulation. Surprisingly, there was no constitutive sprouting of motor neurons in R6/2 muscles, even in severely atrophic muscles that showed other denervation‐like characteristics. In fact, there was an age‐dependent loss of regenerative capacity of motor neurons in R6/2 mice. Because muscle fibers appear to be released from the activity‐dependent cues that regulate membrane properties and muscle size, and motor axons and nerve terminals become impaired in their capacity to release neurotransmitter and to respond to stimuli that normally evoke sprouting and adaptive reinnervation, we speculate that in these mice there is a progressive dissociation of trophic signalling between motor neurons and skeletal muscle. However, irrespective of the cause, the abnormalities at neuromuscular junctions we report here are likely to contribute to the pathological phenotype in R6/2 mice, particularly in late stages of the disease.

Từ khóa


Tài liệu tham khảo

10.1002/mds.10327

10.1007/978-94-009-4866-2

10.1523/JNEUROSCI.15-10-06327.1995

Bates G., 2002, Huntington's Disease

10.1113/jphysiol.1977.sp011988

10.1002/1531-8257(199905)14:3<398::AID-MDS1003>3.0.CO;2-F

10.1113/jphysiol.1979.sp013051

10.1113/jphysiol.1980.sp013285

10.1523/JNEUROSCI.12-02-00363.1992

10.1093/hmg/10.1.9

10.1111/j.1476-5381.1992.tb14298.x

10.1146/annurev.ne.04.030181.000313

10.1002/1531-8257(200009)15:5<925::AID-MDS1025>3.0.CO;2-Z

10.1523/JNEUROSCI.19-08-03248.1999

10.1016/0014-5793(92)80783-D

10.1093/hmg/11.12.1439

Constantini S., 1987, Pathophysiology of the neuromuscular junction in diabetic rats, Isr. J. Med. Sci., 23, 101

10.1111/j.1469-7793.1999.00365.x

10.1038/76649

Culling C.F.A., 1985, Cellular Pathology Technique

10.1124/mol.61.5.1192

10.1016/S0092-8674(00)80513-9

10.1212/01.WNL.0000031791.10922.CF

10.1523/JNEUROSCI.11-12-03877.1991

10.1016/S0960-9822(03)00206-9

Filipe M.I., 1983, Histochemistry in Pathology

10.1016/j.expneurol.2003.10.004

10.1523/JNEUROSCI.20-07-02534.2000

10.1113/jphysiol.2002.022343

10.1046/j.1469-7580.2003.00214.x

10.1126/science.3155875

10.1006/exnr.2000.7626

Harper P.S., 1991, Huntington's disease.

10.1113/jphysiol.1979.sp013003

10.1016/0014-4886(74)90015-6

10.1159/000072863

10.2337/diabetes.48.3.649

Jack J.J.B. Noble D.&Tsien R.W.(1974)Electric current flow in excitable cells.Oxford University Press Oxford.

10.1113/jphysiol.1957.sp005811

10.1152/jn.2001.86.6.2667

10.1007/BF02191153

10.1074/jbc.M210882200

10.1038/35074025

10.1523/JNEUROSCI.19-23-10428.1999

10.1093/hmg/11.17.1911

10.1038/nn770

10.1016/S0092-8674(00)81369-0

10.1113/jphysiol.1974.sp010443

10.1113/jphysiol.1981.sp013586

10.1002/cne.10295

10.1111/j.1365-2990.1993.tb00403.x

10.1046/j.1471-4159.2001.00059.x

10.1023/A:1010887421592

10.1523/JNEUROSCI.20-13-05115.2000

10.1016/0014-4886(70)90138-X

10.1093/brain/108.1.65

10.1016/0014-4886(92)90004-A

10.1001/archneur.1969.00480100089013

10.1016/S0896-6273(02)00670-0

10.1007/BF01206897

10.1098/rspb.1994.0009

10.1111/j.1460-9568.1995.tb01159.x

10.5694/j.1326-5377.1981.tb135681.x

10.1093/hmg/8.5.813

Schiller Y., 1989, Neuromuscular transmission in diabetes: response to high‐frequency activation, J. Neurosci., 9, 3709, 10.1523/JNEUROSCI.09-11-03709.1989

10.1002/(SICI)1097-4598(199911)22:11<1557::AID-MUS11>3.0.CO;2-6

10.1016/S0166-2236(96)10032-1

10.1212/WNL.43.10.2088

10.1111/j.1748-1716.1983.tb00004.x

10.1016/0092-8674(93)90585-E

White M.M., 1991, SkM2, a Na+ channel cDNA clone from denervated skeleta1 muscle, encodes a tetrodotoxin‐insensitive Na+ channel, Mol. Pharmacol., 39, 604

10.1113/jphysiol.1997.sp022007