Progress towards highly stable and lead-free perovskite solar cells

Mashetoh Abd Mutalib1, Norasikin Ahmad Ludin2, Nik Ahmad Aizudden Nik Ruzalman3, Vincent Barrioz4, Suhaila Sepeai2, Mohd Asri Mat Teridi2, Mohd Sukor Su’ait2, Kamaruzzaman Sopian2
1Universiti Kebangsaan,#R##N#Malaysia
2Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
3Northumbria University
4Department of Physics and Electrical Engineering, Northumbria University, Newcastle Upon Tyne, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

El Chaar, L., Lamont, L.A., El Zein, N.: Review of photovoltaic technologies. Renew. Sustain. Energy Rev. 15, 2165–2175 (2011). https://doi.org/10.1016/j.rser.2011.01.004

Smith, D.D., Reich, G., Baldrias, M., Reich, M., Boitnott, N., Bunea, G.: Silicon solar cells with total area efficiency above 25%. Conf. Rec. IEEE Photovolt. Spec. Conf. 2016, 3351–3355 (2016). https://doi.org/10.1109/pvsc.2016.7750287

Best Research-Cell Efficiencies. https://www.nrel.gov/pv/assets/images/efficiency-chart.png . Accessed 2 March 2017

Sepeai S., Zaidi S.H., Cheow S.L., Sulaiman M.Y., Sopian K., Azhari A.W., Ludin N.A., Khairunaz M.: Evaluation of surface photovoltage (SPV) in Al-back surface fields bifacial solar cell. In: Latest Trends Renew. Energy Environ. Informatics, pp. 81–83 (2013)

Barrioz, V., Monir, S., Kartopu, G., Lamb, D.A., Brooks, W., Siderfin, P., Jones, S., Clayton, A.J., Irvine, S.J.C.: MOCVD for solar cells, a transition towards a chamberless inline process. J. Cryst. Growth 414, 223–231 (2015). https://doi.org/10.1016/j.jcrysgro.2014.11.014

Zhou, Y., Wang, L., Chen, S., Qin, S., Liu, X., Chen, J., Xue, D.-J., Luo, M., Cao, Y., Cheng, Y., Sargent, E.H., Tang, J.: Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat. Photonics 9, 409–415 (2015). https://doi.org/10.1038/nphoton.2015.78

Clayton, A.J., Irvine, S.J., Jones, E.W., Kartopu, G., Barrioz, V., Brooks, W.S.: MOCVD of Cd1-xZnxS/CdTe PV cells using an ultra-thin absorber layer. Sol. Energy Mater. Sol. Cells 101, 68–72 (2012). https://doi.org/10.1016/j.solmat.2012.02.018

Harikisun, R., Desilvestro, H.: Long-term stability of dye solar cells. Sol. Energy 85, 1179–1188 (2011). https://doi.org/10.1016/j.solener.2010.10.016

Widodo, S., Wiranto, G., Hidayat, M.N.: Fabrication of dye sensitized solar cells with spray coated carbon nano tube (CNT) based counter electrodes. Energy Procedia. 68, 37–44 (2015). https://doi.org/10.1016/j.egypro.2015.03.230

Li, X., Bi, D., Yi, C., Decoppet, J.-D., Luo, J., Zakeeruddin, S.M., Hagfeldt, A., Gratzel, M.: A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353, 58–62 (2016). https://doi.org/10.1126/science.aaf8060

Kouhnavard, M., Ludin, N.A., Ghaffari, B.V., Ikeda, S., Sopian, K., Miyake, M.: Hydrophilic carbon/TiO2 colloid composite: a potential counter electrode for dye-sensitized solar cells. J. Appl. Electrochem. 46, 259–266 (2016). https://doi.org/10.1007/s10800-015-0910-4

Kouhnavard, M., Ahmad Ludin, N., Vazifehkhah Ghaffari, B., Sopian, K., Abdul Karim, N., Miyake, M.: An efficient metal-free hydrophilic carbon as a counter electrode for dye-sensitized solar cells. Int. J. Photoenergy 2016, 1–7 (2016). https://doi.org/10.1155/2016/5186762

Kouhnavard, M., Ikeda, S., Ludin, N.A.A., Ahmad Khairudin, N.B.B., Ghaffari, B.V.V., Mat-Teridi, M.A., Ibrahim, M.A.A., Sepeai, S., Sopian, K.: A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells. Renew. Sustain. Energy Rev. 37, 397–407 (2014). https://doi.org/10.1016/j.rser.2014.05.023

Park, N.: Perovskite solar cells: an emerging photovoltaic technology. Mater. Today 18, 65–72 (2014). https://doi.org/10.1016/j.mattod.2014.07.007

Boix, P.P., Nonomura, K., Mathews, N., Mhaisalkar, S.G.: Current progress and future perspectives for organic/inorganic perovskite solar cells. Mater. Today 17, 16–23 (2014). https://doi.org/10.1016/j.mattod.2013.12.002

Yang, Z., Zhang, W.-H.: Organolead halide perovskite: a rising player in high-efficiency solar cells. Chin. J. Catal. 35, 983–988 (2014). https://doi.org/10.1016/S1872-2067(14)60162-5

Mesquita, I., Andrade, L., Mendes, A.: Perovskite solar cells: materials, configurations and stability. Renew. Sustain. Energy Rev. 82, 2471–2489 (2018). https://doi.org/10.1016/j.rser.2017.09.011

Liu, T., Chen, K., Hu, Q., Zhu, R., Gong, Q.: Inverted perovskite solar cells: progresses and perspectives. Adv. Energy Mater. (2016). https://doi.org/10.1002/aenm.201600457

Correa Baena, J.P., Steier, L., Tress, W., Saliba, M., Neutzner, S., Matsui, T., Giordano, F., Jacobsson, T.J., Srimath Kandada, A.R., Zakeeruddin, S.M., Petrozza, A., Abate, A., Nazeeruddin, M.K., Grätzel, M., Hagfeldt, A.: Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8, 2928–2934 (2015). https://doi.org/10.1039/C5EE02608C

Anaraki, E.H., Kermanpur, A., Steier, L., Domanski, K., Matsui, T., Tress, W., Saliba, M., Abate, A., Grätzel, M., Hagfeldt, A., Correa-Baena, J.-P.: Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ. Sci. 9, 3128–3134 (2016). https://doi.org/10.1039/C6EE02390H

Di Giacomo, F., Zardetto, V., D’Epifanio, A., Pescetelli, S., Matteocci, F., Razza, S., Di Carlo, A., Licoccia, S., Kessels, W.M.M., Creatore, M., Brown, T.M.: Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 Scaffolds on plastic substrates. Adv. Energy Mater. 5 (2015). https://doi.org/10.1002/aenm.201401808

Parisi, M.L., Maranghi, S., Basosi, R.: The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: a life cycle assessment approach. Renew. Sustain. Energy Rev. 39, 124–138 (2014). https://doi.org/10.1016/j.rser.2014.07.079

Grätzel, M.: The light and shade of perovskite solar cells. Nat. Mater. 13, 838–842 (2014). https://doi.org/10.1038/nmat4065

Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r

Saliba, M., Matsui, T., Domanski, K., Seo, J.-Y., Ummadisingu, A., Zakeeruddin, S.M., Correa-Baena, J.-P., Tress, W.R., Abate, A., Hagfeldt, A., Gratzel, M.: Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016). https://doi.org/10.1126/science.aah5557

Liu, J., Lin, J., Xue, Q., Ye, Q., He, X., Ouyang, L., Zhuang, D., Liao, C., Yip, H.-L., Mei, J., Lau, W.-M.: Growth and evolution of solution-processed CH3NH3PbI3-xClx layer for highly efficient planar-heterojunction perovskite solar cells. J. Power Sources 301, 242–250 (2016). https://doi.org/10.1016/j.jpowsour.2015.10.023

Ripolles, T.S., Nishinaka, K., Ogomi, Y., Miyata, Y., Hayase, S.: Efficiency enhancement by changing perovskite crystal phase and adding a charge extraction interlayer in organic amine free-perovskite solar cells based on cesium. Sol. Energy Mater. Sol. Cells 144, 532–536 (2016). https://doi.org/10.1016/j.solmat.2015.09.041

Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J., Il Seok, S.: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science (80-.). 348 (2015) science.aaa9272-. https://doi.org/10.1126/science.aaa9272

Chen, L.-C., Chen, C.-C., Chen, J.-C., Wu, C.-G.: Annealing effects on high-performance CH3NH3PbI3 perovskite solar cells prepared by solution-process. Sol. Energy 122, 1047–1051 (2015). https://doi.org/10.1016/j.solener.2015.10.019

Casaluci, S., Cinà, L., Pockett, A., Kubiak, P.S., Niemann, R.G., Reale, A., Di Carlo, A., Cameron, P.J.: A simple approach for the fabrication of perovskite solar cells in air. J. Power Sources 297, 504–510 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.010

Sheikh, A.D., Bera, A., Haque, A., Rakhi, R.B., Del, S., Alshareef, H.N., Wu, T.: Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells. Sol. Energy Mater. Sol. Cells 137, 6–14 (2015). https://doi.org/10.1016/j.solmat.2015.01.023

Hossain, M.I., Alharbi, F.H., Tabet, N.: Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells. Sol. Energy 120, 370–380 (2015). https://doi.org/10.1016/j.solener.2015.07.040

Tavakoli, M.M., Gu, L., Gao, Y., Reckmeier, C., He, J., Rogach, A.L., Yao, Y., Fan, Z.: Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method. Sci. Rep. 5, 14083 (2015). https://doi.org/10.1038/srep14083

Zhang, Z., Wei, D., Xie, B., Yue, X., Li, M., Song, D., Li, Y.: High reproducibility of perovskite solar cells via a complete spin-coating sequential solution deposition process. Sol. Energy 122, 97–103 (2015). https://doi.org/10.1016/j.solener.2015.08.028

Huang, C., Fu, N., Liu, F., Jiang, L., Hao, X., Huang, H.: Highly efficient perovskite solar cells with precursor composition-dependent morphology. Sol. Energy Mater. Sol. Cells 145, 231–237 (2016). https://doi.org/10.1016/j.solmat.2015.10.032

Xiao, Y., Han, G., Chang, Y., Zhang, Y., Li, Y., Li, M.: Investigation of perovskite-sensitized nanoporous titanium dioxide photoanodes with different thicknesses in perovskite solar cells. J. Power Sources 286, 118–123 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.152

Bhatt, P., Pandey, K., Yadav, P., Tripathi, B., Chandra Kanth, P., Pandey, M.K., Kumar, M.: Investigating the charge carrier transport within the hole-transport material free perovskite solar cell processed in ambient air. Sol. Energy Mater. Sol. Cells 140, 320–327 (2015). https://doi.org/10.1016/j.solmat.2015.04.028

Sfyri, G., Kumar, C.V., Raptis, D., Dracopoulos, V., Lianos, P.: Study of perovskite solar cells synthesized under ambient conditions and of the performance of small cell modules. Sol. Energy Mater. Sol. Cells 134, 60–63 (2015). https://doi.org/10.1016/j.solmat.2014.11.034

Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Il Seok, S.: Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 1–7 (2014). https://doi.org/10.1038/nmat4014

Im, J.-H., Kim, H.-S., Park, N.-G.: Morphology-photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH3NH3PbI3. APL Mater. 2, 81510 (2014). https://doi.org/10.1063/1.4891275

Ding, Y., Yao, X., Zhang, X., Wei, C., Zhao, Y.: Surfactant enhanced surface coverage of CH3NH3PbI3-xClx perovskite for highly efficient mesoscopic solar cells. J. Power Sources. (2014). https://doi.org/10.1016/j.jpowsour.2014.08.095 . (Ahead of Print)

Di Giacomo, F., Razza, S., Matteocci, F., D’Epifanio, A., Licoccia, S., Brown, T.M., Di Carlo, A.: High efficiency CH3NH3PbI(3 − x)Clx perovskite solar cells with poly(3-hexylthiophene) hole transport layer. J. Power Sources 251, 152–156 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.053

Minemoto, T., Murata, M.: Theoretical analysis on effect of band offsets in perovskite solar cells. Sol. Energy Mater. Sol. Cells 133, 8–14 (2014). https://doi.org/10.1016/j.solmat.2014.10.036

Jung, H.S., Park, N.-G.G.: Perovskite solar cells: from materials to devices. Small 11, 10–25 (2015). https://doi.org/10.1002/smll.201402767

Chen, Q., De Marco, N., Yang, Y., Bin Song, T., Chen, C.C., Zhao, H., Hong, Z., Zhou, H., Yang, Y.: Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications. Nano Today. 10, 355–396 (2015). https://doi.org/10.1016/j.nantod.2015.04.009

Petrović, M., Chellappan, V., Ramakrishna, S.: Perovskites: solar cells and engineering applications—materials and device developments. Sol. Energy 122, 678–699 (2015). https://doi.org/10.1016/j.solener.2015.09.041

Shahbazi, M., Wang, H.: Progress in research on the stability of organometal perovskite solar cells. Sol. Energy 123, 74–87 (2016). https://doi.org/10.1016/j.solener.2015.11.008

Hao, F., Stoumpos, C.C., Cao, D.H., Chang, R.P.H., Kanatzidis, M.G.: Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489–494 (2014). https://doi.org/10.1038/nphoton.2014.82

Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.-A., Sadhanala, A., Eperon, G.E., Pathak, S.K., Johnston, M.B., Petrozza, A., Herz, L.M., Snaith, H.J.: Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061 (2014). https://doi.org/10.1039/C4EE01076K

Stranks, S.D., Snaith, H.J.: Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015). https://doi.org/10.1038/nnano.2015.90

Koh, T.M., Krishnamoorthy, T., Yantara, N., Shi, C., Leong, W.L., Boix, P.P., Grimsdale, A.C., Mhaisalkar, S.G., Mathews, N.: Formamidinium tin-based perovskite with low E g for photovoltaic applications. J. Mater. Chem. A. 3, 14996–15000 (2015). https://doi.org/10.1039/C5TA00190K

Goldschmidt, V.M.: Die Gesetze der Krystallochemie. Naturwissenschaften 14, 477–485 (1926). https://doi.org/10.1007/BF01507527

Green, M.A., Ho-Baillie, A., Snaith, H.J.: The emergence of perovskite solar cells. Nat Phot 8, 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134

Lee, S.-W., Kim, S., Bae, S., Cho, K., Chung, T., Mundt, L.E., Lee, S., Park, S., Park, H., Schubert, M.C., Glunz, S.W., Ko, Y., Jun, Y., Kang, Y., Lee, H.-S., Kim, D.: UV degradation and recovery of perovskite solar cells. Sci. Rep. 6, 38150 (2016). https://doi.org/10.1038/srep38150

Dao, Q.-D., Tsuji, R., Fujii, A., Ozaki, M.: Study on degradation mechanism of perovskite solar cell and their recovering effects by introducing CH3NH3I layers. Org. Electron. 43, 229–234 (2017). https://doi.org/10.1016/j.orgel.2017.01.038

Berhe, T.A., Su, W.-N., Chen, C.-H., Pan, C.-J., Cheng, J.-H., Chen, H.-M., Tsai, M.-C., Chen, L.-Y., Dubale, A.A., Hwang, B.-J.: Organometal halide perovskite solar cells: degradation and stability. Energy Environ. Sci. 9, 323–356 (2016). https://doi.org/10.1039/C5EE02733K

Niu, G., Guo, X., Wang, L.: Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A. 3, 8970–8980 (2015). https://doi.org/10.1039/C4TA04994B

Leijtens, T., Eperon, G.E., Pathak, S., Abate, A., Lee, M.M., Snaith, H.J.: Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat Commun (2013). https://doi.org/10.1038/ncomms3885

Sheikh, A.D., Bera, A., Haque, M.A., Rakhi, R.B., Del Gobbo, S., Alshareef, H.N., Wu, T.: Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells. Sol. Energy Mater. Sol. Cells 137, 6–14 (2015). https://doi.org/10.1016/j.solmat.2015.01.023

Fakharuddin, A., Di Giacomo, F., Ahmed, I., Wali, Q., Brown, T.M., Jose, R.: Role of morphology and crystallinity of nanorod and planar electron transport layers on the performance and long term durability of perovskite solar cells. J. Power Sources 283, 61–67 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.084

Han, G.S., Song, Y.H., Jin, Y.U., Lee, J.W., Park, N.G., Kang, B.K., Lee, J.K., Cho, I.S., Yoon, D.H., Jung, H.S.: Reduced graphene oxide/mesoporous TiO2 nanocomposite based perovskite solar cells. ACS Appl. Mater. Interfaces. 7, 23521–23526 (2015). https://doi.org/10.1021/acsami.5b06171

Li, X., Ibrahim Dar, M., Yi, C., Luo, J., Tschumi, M., Zakeeruddin, S.M., Nazeeruddin, M.K., Han, H., Grätzel, M.: Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat. Chem. 7, 703–711 (2015). https://doi.org/10.1038/nchem.2324

Han, Y., Meyer, S., Dkhissi, Y., Weber, K., Pringle, J.M., Bach, U., Spiccia, L., Cheng, Y.-B.: Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A. 3, 8139–8147 (2015). https://doi.org/10.1039/C5TA00358J

Wang, D., Wright, M., Elumalai, N.K., Uddin, A.: Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 147, 255–275 (2016). https://doi.org/10.1016/j.solmat.2015.12.025

Espinosa, N., Serrano-Luján, L., Urbina, A., Krebs, F.C.: Solution and vapour deposited lead perovskite solar cells: ecotoxicity from a life cycle assessment perspective. Sol. Energy Mater. Sol. Cells 137, 303–310 (2015). https://doi.org/10.1016/j.solmat.2015.02.013

Hauck, M., Ligthart, T., Schaap, M., Boukris, E., Brouwer, D.: Environmental benefits of reduced electricity use exceed impacts from lead use for perovskite based tandem solar cell. Renew. Energy. 111, 906–913 (2017). https://doi.org/10.1016/j.renene.2017.04.044

Gong, J., Darling, S.B., You, F.: Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts. Energy Environ. Sci. 8, 1953–1968 (2015). https://doi.org/10.1039/C5EE00615E

Chen, W., Wu, Y., Yue, Y., Liu, J., Zhang, W., Yang, X., Chen, H., Bi, E., Ashraful, I., Grätzel, M., Han, L.: Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944–948 (2015). https://doi.org/10.1126/science.aad1015

Babayigit, A., Ethirajan, A., Muller, M., Conings, B.: Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15, 247–251 (2016). https://doi.org/10.1038/nmat4572

Lyu, M., Yun, J.H., Chen, P., Hao, M., Wang, L.: Addressing toxicity of lead: progress and applications of low-toxic metal halide perovskites and their derivatives. Adv Energy Mater (2017). https://doi.org/10.1002/aenm.201602512

Jacobsson, T.J., Pazoki, M., Hagfeldt, A., Edvinsson, T.: Goldschmidt’s rules and strontium replacement in lead halogen perovskite solar cells: theory and preliminary experiments on CH 3 NH 3 SrI 3. J. Phys. Chem. C 119, 25673–25683 (2015). https://doi.org/10.1021/acs.jpcc.5b06436

Park, B.W., Philippe, B., Zhang, X., Rensmo, H., Boschloo, G., Johansson, E.M.J.: Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application. Adv. Mater. 27, 6806–6813 (2015). https://doi.org/10.1002/adma.201501978

Sun, Y.-Y., Shi, J., Lian, J., Gao, W., Agiorgousis, M.L., Zhang, P., Zhang, S.: Discovering lead-free perovskite solar materials with a split-anion approach. Nanoscale 8, 6284–6289 (2016). https://doi.org/10.1039/C5NR04310G

Boix, P.P., Agarwala, S., Koh, T.M., Mathews, N., Mhaisalkar, S.G.: Perovskite solar cells: beyond methylammonium lead iodide. J. Phys. Chem. Lett. 6, 898–907 (2015). https://doi.org/10.1021/jz502547f

Giustino, F., Snaith, H.J.: Toward lead-free perovskite solar cells. ACS Energy Lett. 1, 1233–1240 (2016). https://doi.org/10.1021/acsenergylett.6b00499

Zhang, M., Lyu, M., Chen, P., Hao, M., Yun, J.-H., Wang, L.: Recent advances in low-toxic lead-free metal halide perovskite materials for solar cell application. Asia-Pacific J. Chem. Eng. 11, 392–398 (2016). https://doi.org/10.1002/apj.1998

Liao, W., Zhao, D., Yu, Y., Shrestha, N., Ghimire, K., Grice, C.R., Wang, C., Xiao, Y., Cimaroli, A.J., Ellingson, R.J., Podraza, N.J., Zhu, K., Xiong, R.-G., Yan, Y.: Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. J. Am. Chem. Soc. 138, 12360–12363 (2016). https://doi.org/10.1021/jacs.6b08337

Ogomi, Y., Morita, A., Tsukamoto, S., Saitho, T., Fujikawa, N., Shen, Q., Toyoda, T., Yoshino, K., Pandey, S.S., Ma, T., Hayase, S.: CH3NH3SnxPb1– xI3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 5, 1004–1011 (2014). https://doi.org/10.1021/jz5002117

Hao, F., Stoumpos, C.C., Chang, R.P.H., Kanatzidis, M.G.: Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014). https://doi.org/10.1021/ja5033259

Kumar, M.H., Dharani, S., Leong, W.L., Boix, P.P., Prabhakar, R.R., Baikie, T., Shi, C., Ding, H., Ramesh, R., Asta, M., Graetzel, M., Mhaisalkar, S.G., Mathews, N.: Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 26, 7122–7127 (2014). https://doi.org/10.1002/adma.201401991

Sabba, D., Mulmudi, H.K., Prabhakar, R.R., Krishnamoorthy, T., Baikie, T., Boix, P.P., Mhaisalkar, S., Mathews, N.: Impact of anionic Br- substitution on open circuit voltage in lead free perovskite (CsSnI3-xBrx) solar cells. J. Phys. Chem. C 119, 1763–1767 (2015). https://doi.org/10.1021/jp5126624

Marshall, K.P., Walton, R.I., Hatton, R.A.: Tin perovskite/fullerene planar layer photovoltaics: improving the efficiency and stability of lead-free devices. J. Mater. Chem. A 3, 11631–11640 (2015). https://doi.org/10.1039/C5TA02950C

Zhang, M., Lyu, M., Yun, J.H., Noori, M., Zhou, X., Cooling, N.A., Wang, Q., Yu, H., Dastoor, P.C., Wang, L.: Low-temperature processed solar cells with formamidinium tin halide perovskite/fullerene heterojunctions. Nano Res. 9, 1570–1577 (2016). https://doi.org/10.1007/s12274-016-1051-8

Krishnamoorthy, T., Ding, H., Yan, C., Leong, W.L., Baikie, T., Zhang, Z., Sherburne, M., Li, S., Asta, M., Mathews, N., Mhaisalkar, S.G.: Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A. 3, 23829–23832 (2015). https://doi.org/10.1039/C5TA05741H

Cheng, Z., Lin, J.: Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm 12, 2646 (2010). https://doi.org/10.1039/c001929a

Lyu, M., Yun, J.H., Cai, M., Jiao, Y., Bernhardt, P.V., Zhang, M., Wang, Q., Du, A., Wang, H., Liu, G., Wang, L.: Organic–inorganic bismuth (III)-based material: a lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites. Nano Res. 9, 692–702 (2016). https://doi.org/10.1007/s12274-015-0948-y

Öz, S., Hebig, J.C., Jung, E., Singh, T., Lepcha, A., Olthof, S., Jan, F., Gao, Y., German, R., van Loosdrecht, P.H.M., Meerholz, K., Kirchartz, T., Mathur, S.: Zero-dimensional (CH3NH3)3Bi2I9 perovskite for optoelectronic applications. Energy Mater. Sol. Cells, Sol (2015). https://doi.org/10.1016/j.solmat.2016.01.035

Kagan, C.R.: Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999). https://doi.org/10.1126/science.286.5441.945

Anaya, M., Correa-Baena, J.P., Lozano, G., Saliba, M., Anguita, P., Roose, B., Abate, A., Steiner, U., Grätzel, M., Calvo, M.E., Hagfeldt, A., Míguez, H.: Optical analysis of CH3NH3SnxPb1−xI3 absorbers: a roadmap for perovskite-on-perovskite tandem solar cells. J. Mater. Chem. A. 4, 11214–11221 (2016). https://doi.org/10.1039/C6TA04840D

Eperon, G.E., Leijtens, T., Bush, K.A., Prasanna, R., Green, T., Wang, J.T.-W., McMeekin, D.P., Volonakis, G., Milot, R.L., May, R., Palmstrom, A., Slotcavage, D.J., Belisle, R.A., Patel, J.B., Parrott, E.S., Sutton, R.J., Ma, W., Moghadam, F., Conings, B., Babayigit, A., Boyen, H.-G., Bent, S., Giustino, F., Herz, L.M., Johnston, M.B., McGehee, M.D., Snaith, H.J.: Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 354, 861–865 (2016). https://doi.org/10.1126/science.aaf9717

Zhao, D., Yu, Y., Wang, C., Liao, W., Shrestha, N., Grice, C.R., Cimaroli, A.J., Guan, L., Ellingson, R.J., Zhu, K., Zhao, X., Xiong, R.-G., Yan, Y.: Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy. 2, 17018 (2017). https://doi.org/10.1038/nenergy.2017.18

Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013). https://doi.org/10.1021/ic401215x

Meillaud, F., Shah, A., Droz, C., Vallat-Sauvain, E., Miazza, C.: Efficiency limits for single-junction and tandem solar cells. Sol. Energy Mater. Sol. Cells 90, 2952–2959 (2006). https://doi.org/10.1016/j.solmat.2006.06.002

Malinkiewicz, O., Yella, A., Lee, Y.H., Espallargas, G.M.M., Graetzel, M., Nazeeruddin, M.K., Bolink, H.J.: Perovskite solar cells employing organic charge-transport layers. Nat. Photonics 8, 128–132 (2014). https://doi.org/10.1038/nphoton.2013.341

Shao, Y., Xiao, Z., Bi, C., Yuan, Y., Huang, J.: Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 1–7 (2014). https://doi.org/10.1111/j.1365-2230.2009.03702.x

Liang, P.W., Liao, C.Y., Chueh, C.C., Zuo, F., Williams, S.T., Xin, X.K., Lin, J., Jen, A.K.Y.: Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 26, 3748–3754 (2014). https://doi.org/10.1002/adma.201400231

Stoumpos, C.C., Frazer, L., Clark, D.J., Kim, Y.S., Rhim, S.H., Freeman, A.J., Ketterson, J.B., Jang, J.I., Kanatzidis, M.G.: Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J. Am. Chem. Soc. 137, 6804–6819 (2015). https://doi.org/10.1021/Jacs.5b01025

Cui, X.P., Jiang, K.J., Huang, J.H., Zhang, Q.Q., Su, M.J., Yang, L.M., Song, Y.L., Zhou, X.Q.: Cupric bromide hybrid perovskite heterojunction solar cells. Synth. Met. 209, 247–250 (2015). https://doi.org/10.1016/j.synthmet.2015.07.013

Cortecchia, D., Dewi, H.A., Yin, J., Bruno, A., Chen, S., Baikie, T., Boix, P.P., Grätzel, M., Mhaisalkar, S., Soci, C., Mathews, N.: Lead-free MA2CuClxBr 4-x hybrid perovskites. Inorg. Chem. 55, 1044–1052 (2016). https://doi.org/10.1021/acs.inorgchem.5b01896

Liang, K., Mitzi, D.B., Prikas, M.T.: Synthesis and characterization of organic − inorganic perovskite thin films prepared using a versatile two-step dipping technique. Chem. Mater. 10, 403–411 (1998). https://doi.org/10.1021/cm970568f

Slavney, A.H., Hu, T., Lindenberg, A.M., Karunadasa, H.I.: A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138, 2138–2141 (2016). https://doi.org/10.1021/jacs.5b13294

Eckhardt, K., Bon, V., Getzschmann, J., Grothe, J., Wisser, F.M., Kaskel, S.: Crystallographic insights into (CH3NH3)3(Bi2I9): a new lead-free hybrid organic–inorganic material as a potential absorber for photovoltaics. Chem. Commun. 52, 3058–3060 (2016). https://doi.org/10.1039/C5CC10455F

Brandt, R.E., Kurchin, R.C., Hoye, R.L.Z., Poindexter, J.R., Wilson, M.W.B., Sulekar, S., Lenahan, F., Yen, P.X.T., Stevanović, V., Nino, J.C., Bawendi, M.G., Buonassisi, T.: Investigation of bismuth triiodide (BiI3) for photovoltaic applications. J. Phys. Chem. Lett. 6, 4297–4302 (2015). https://doi.org/10.1021/acs.jpclett.5b02022

Hoye, R.L.Z., Brandt, R.E., Osherov, A., Stevanović, V., Stranks, S.D., Wilson, M.W.B., Kim, H., Akey, A.J., Perkins, J.D., Kurchin, R.C., Poindexter, J.R., Wang, E.N., Bawendi, M.G., Bulović, V., Buonassisi, T.: Methylammonium bismuth iodide as a lead-free, stable hybrid organic-inorganic solar absorber. Chem. A Eur. J. 22, 2605–2610 (2016). https://doi.org/10.1002/chem.201505055