Progress on Olga Taussky-Todd’s circulant problem
Tóm tắt
Determining the possible values of integer circulant determinants is an open problem proposed by Taussky-Todd. Recent interest in this question comes from studying the Lehmer constant of finite cyclic groups. By refining the approach by Laquer and Newman we contribute to the circulant determinant problem in the case that the order is a power of two.
Tài liệu tham khảo
Cremona, J.E.: Unimodular integer circulants. Math. Comput. 77, 1639–1652 (2008)
Davis, P.J.: Circulant Matrices. Wiley, New York (1979)
Dilcher, K., Stolarsky, K.B.: Resultants and discriminants of Chebyshev and related polynomials. Trans. Am. Math. Soc. 357, 965–981 (2005)
Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Birkhäuser, Boston (1994)
Guerrier, W.J.: The factorization of the cyclotomic polynomials mod p. Am. Math. Mon. 75, 46 (1968)
Hillar, C.J., Levine, L.: Polynomial recurrences and cyclic resultants. Proc. Am. Math. Soc. 135, 1607–1618 (2007)
Kaiblinger, N.: On the Lehmer constant of finite cyclic groups. Acta Arith. 142, 79–84 (2010)
Krattenthaler, C.: Advanced determinant calculus. Sém. Lothar. Combin. 42, Art. B 42 q (1999), 67 pp.
Krattenthaler, C.: Advanced determinant calculus: a complement. Linear Algebra Appl. 411, 68–166 (2005)
Laquer, H.T.: Values of circulants with integer entries. In: A Collection of Manuscripts Related to the Fibonacci Sequence, pp. 212–217. Fibonacci Assoc., Santa Clara (1980)
Lehmer, D.H.: Some properties of circulants. J. Number Theory 5, 43–54 (1973)
Lind, D.: Lehmer’s problem for compact abelian groups. Proc. Am. Math. Soc. 133, 1411–1416 (2005)
Mahoney, M.K., Newman, M.: Determinants of abelian group matrices. Linear Multilinear Algebra 9, 121–132 (1980)
McKay, J.H., Wang, S.S.S.: A chain rule for the resultant of two polynomials. Arch. Math. 53, 347–351 (1989)
Newman, M.: On a problem suggested by Olga Taussky-Todd. Ill. J. Math. 24, 156–158 (1980)
Newman, M.: Determinants of circulants of prime power order. Linear Multilinear Algebra 9, 187–191 (1980)
Ore, O.: Some studies on cyclic determinants. Duke Math. J. 18, 343–354 (1951)
Pascal, E.: Die Determinanten. Teubner, Leipzig (1900) (German edition by H. Leitzmann)
Pierce, T.A.: The numerical factors of the arithmetic forms \(\prod_{i=1}^{n}(1\pm\alpha_{i}^{m})\). Ann. Math. 18, 53–64 (1916)
Sburlati, G.: On prime factors of determinants of circulant matrices. Linear Algebra Appl. 432, 100–106 (2010)