Progress in thermal energy storage technologies for achieving carbon neutrality

C.Y. Zhao1, Jun Yan1, X.K. Tian1, Xinjie Xue1, Yao Zhao1
1Institute of Engineering Thermophysics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China

Tóm tắt

AbstractChina is committed to the targets of achieving peak CO2 emissions around 2030 and realizing carbon neutrality around 2060. To realize carbon neutrality, people are seeking to replace fossil fuel with renewable energy. Thermal energy storage is the key to overcoming the intermittence and fluctuation of renewable energy utilization. In this paper, the relation between renewable energy and thermal energy storage is first addressed. Then, the classifications of thermal energy storage and Carnot batteries are given. The aim of this review is to provide an insight into the promising thermal energy storage technologies for the application of renewable energy in order to realize carbon neutrality. Three types of heat storage methods, especially latent heat storage and thermochemical heat storage, are analyzed in detail. The application of thermal energy storage is influenced by many heat storage properties, such as temperature range, heat storage capacity, cost, stability, and technical readiness. Therefore, the heat storage properties for different heat storage technologies are reviewed and compared. The advantage and challenge of different heat storage technologies and Carnot batteries for carbon neutrality processes are analyzed. Finally, the prospects of different heat storage technologies are summarized.

Từ khóa


Tài liệu tham khảo

I. WGIII. Climate change 2022: mitigation of climate change. https://www.ipcc.ch/report/ar6/wg3/. Accessed 1 Dec 2021

Zhou S et al (2021) Research on low-carbon energy transformation of China necessary to achieve the Paris agreement goals: a global perspective. Energy Econ 95:105137. https://doi.org/10.1016/j.eneco.2021.105137

Xu G, Schwarz P, Yang H (2020) Adjusting energy consumption structure to achieve China’s CO2 emissions peak. Renew Sustain Energy Rev 122:109737. https://doi.org/10.1016/j.rser.2020.109737

Wang J, Zhang S, Zhang Q (2021) The relationship of renewable energy consumption to financial development and economic growth in China. Renew Energy 170:897–904. https://doi.org/10.1016/j.renene.2021.02.038

Ritchie H. Our world in data. https://ourworldindata.org/global-energy-200-years. Accessed 1 Dec 2021

M. R. a. P. R. Hannah Ritchie. Annual CO2 emissions from fossil fuels, by world region. https://ourworldindata.org/grapher/annual-co-emissions-by-region. Accessed 1 Dec 2021

IAE. Heating. https://www.iea.org/fuels-and-technologies/heating. Accessed 1 Dec 2021

Levenda AM, Behrsin I, Disano F (2021) Renewable energy for whom? A global systematic review of the environmental justice implications of renewable energy technologies. Energy Res Soc Sci 71:101837. https://doi.org/10.1016/j.erss.2020.101837

Du Y, Song B, Duan H, Tsvetanov TG, Wu Y (2019) Multi-renewable management: interactions between wind and solar within uncertain technology ecological system. Energy Convers Manag 187:232–247. https://doi.org/10.1016/j.enconman.2019.01.032

Ma T, Javed MS (2019) Integrated sizing of hybrid PV-wind-battery system for remote island considering the saturation of each renewable energy resource. Energy Convers Manag 182:178–190. https://doi.org/10.1016/j.enconman.2018.12.059

Cárdenas B, Swinfen-Styles L, Rouse J, Hoskin A, Xu W, Garvey SD (2021) Energy storage capacity vs. renewable penetration: a study for the UK. Renew Energy 171:849–867. https://doi.org/10.1016/j.renene.2021.02.149

Yan J, Lu L, Ma T, Zhou Y, Zhao CY (2020) Thermal management of the waste energy of a stand-alone hybrid PV-wind-battery power system in Hong Kong. Energy Convers Manag 203:112261. https://doi.org/10.1016/j.enconman.2019.112261

Abdalla AN et al (2021) Integration of energy storage system and renewable energy sources based on artificial intelligence: an overview. J Energy Storage 40:102811. https://doi.org/10.1016/j.est.2021.102811

Yan Z, Hitt JL, Turner JA, Mallouk TE (2019) Renewable electricity storage using electrolysis. Proc Natl Acad Sci U S A 117(23):12558–12563. https://doi.org/10.1073/pnas.1821686116

Zhang X, Qin C, Loth E, Xu Y, Zhou X, Chen H (2021) Arbitrage analysis for different energy storage technologies and strategies. Energy Rep. https://doi.org/10.1016/j.egyr.2021.09.009

Aneke M, Wang M (2016) Energy storage technologies and real life applications – a state of the art review. Appl Energy 179:350–377. https://doi.org/10.1016/j.apenergy.2016.06.097

Zhang H, Baeyens J, Cáceres G, Degrève J, Lv Y (2016) Thermal energy storage: recent developments and practical aspects. Prog Energy Combust Sci 53:1–40. https://doi.org/10.1016/j.pecs.2015.10.003

Yan T, Wang RZ, Li TX, Wang LW, Fred IT (2015) A review of promising candidate reactions for chemical heat storage. Renew Sustain Energy Rev 43:13–31. https://doi.org/10.1016/j.rser.2014.11.015

Gil A et al (2010) State of the art on high temperature thermal energy storage for power generation. Part 1—concepts, materials and modellization. Renew Sustain Energy Rev 14(1):31–55. https://doi.org/10.1016/j.rser.2009.07.035

Zhao Y, Zhao CY, Markides CN, Wang H, Li W (2020) Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: a technical review. Appl Energy 280:115950. https://doi.org/10.1016/j.apenergy.2020.115950

Obermeier J, Müller K, Arlt W (2015) Thermodynamic analysis of chemical heat pumps. Energy (Oxford) 88:489–496. https://doi.org/10.1016/j.energy.2015.05.076

Pan ZH, Zhao CY (2017) Gas–solid thermochemical heat storage reactors for high-temperature applications. Energy (Oxford) 130:155–173. https://doi.org/10.1016/j.energy.2017.04.102

Yu N, Wang RZ, Wang LW (2013) Sorption thermal storage for solar energy. Prog Energ Combust 39(5):489–514. https://doi.org/10.1016/j.pecs.2013.05.004

Scapino L, Zondag HA, Van Bael J, Diriken J, Rindt CCM (2017) Sorption heat storage for long-term low-temperature applications: a review on the advancements at material and prototype scale. Appl Energy 190:920–948. https://doi.org/10.1016/j.apenergy.2016.12.148

Hadorn JC. Advanced storage concepts for active solar energy-IEA SHC Task32 2003–2007. https://www.solarthermalworld.org/sites/default/files/Hadorn_storage.pdf. Accessed 1 Dec 2021

Forman C, Muritala IK, Pardemann R, Meyer B (2016) Estimating the global waste heat potential. Renew Sustain Energy Rev 57:1568–1579. https://doi.org/10.1016/j.rser.2015.12.192

Anderson R, Shiri S, Bindra H, Morris JF (2014) Experimental results and modeling of energy storage and recovery in a packed bed of alumina particles. Appl Energy 119:521–529. https://doi.org/10.1016/j.apenergy.2014.01.030

Bataineh K, Gharaibeh A (2018) Optimal design for sensible thermal energy storage tank using natural solid materials for a parabolic trough power plant. Sol Energy 171:519–525. https://doi.org/10.1016/j.solener.2018.06.108

Alva G, Liu L, Huang X, Fang G (2017) Thermal energy storage materials and systems for solar energy applications. Renew Sustain Energy Rev 68:693–706. https://doi.org/10.1016/j.rser.2016.10.021

Zhao J, Lyu L, Han X (2019) Operation regulation analysis of solar heating system with seasonal water pool heat storage. Sustain Cities Soc 47:101455. https://doi.org/10.1016/j.scs.2019.101455

Ushak S, Fernández AG, Grageda M (2015) 3 - using molten salts and other liquid sensible storage media in thermal energy storage (TES) systems. Elsevier Ltd, pp 49–63. https://doi.org/10.1533/9781782420965.1.49 (In book: Advances in Thermal Energy Storage Systems Chapter: 3. Using molten salts and other liquid sensible storage media in thermal energy storage (TES) systemsPublisher: Woodhead PublishingEditors: Luisa F. Cabeza)

Sarı A, Alkan C, Bilgin C (2014) Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: preparation, characterization and latent heat thermal energy storage properties. Appl Energy 136:217–227. https://doi.org/10.1016/j.apenergy.2014.09.047

Desideri U, Zepparelli F, Morettini V, Garroni E (2013) Comparative analysis of concentrating solar power and photovoltaic technologies: technical and environmental evaluations. Appl Energ 102:765–784. https://doi.org/10.1016/j.apenergy.2012.08.033

Herrmann U, Kearney DW (2002) Survey of thermal energy storage for parabolic trough power plants. J Sol Energy Eng 124(2):145–152. https://doi.org/10.1115/1.1467601

Forster M (2004) Theoretical investigation of the system SnOx/Sn for the thermochemical storage of solar energy. Energy (Oxford) 29(5–6):789–799. https://doi.org/10.1016/S0360-5442(03)00185-3

Kearney D et al (2004) Engineering aspects of a molten salt heat transfer fluid in a trough solar field. Energy 29(5):861–870. https://doi.org/10.1016/S0360-5442(03)00191-9

Ji W, Cheng X, Chen H, Li L, Li Y, Liu Z (2021) Efficient synthesis of regular spherical GO/SiO2@Solar Salt microcapsules to enhance heat-storage capacity and cycle stability. Energy Convers Manag 245:114637. https://doi.org/10.1016/j.enconman.2021.114637

Chen H, Chen X, Wu Y-T, Lu Y-W, Wang X, Ma C-F (2020) Experimental study on forced convection heat transfer of KNO3–Ca(NO3)2 + SiO2 molten salt nanofluid in circular tube. Sol Energy 206:900–906. https://doi.org/10.1016/j.solener.2020.06.061

Chen X, Wu Y-T, Wang C, Wang X, Ma C-F (2021) Flow and mixed convection heat transfer of Hitec salt in multi-sided heating pipes. Sustain Energy Technol Assess 47:101375. https://doi.org/10.1016/j.seta.2021.101375

Zanganeh G, Pedretti A, Zavattoni S, Barbato M, Steinfeld A (2012) Packed-bed thermal storage for concentrated solar power – pilot-scale demonstration and industrial-scale design. Sol Energy 86(10):3084–3098. https://doi.org/10.1016/j.solener.2012.07.019

Cascetta M, Cau G, Puddu P, Serra F (2015) A study of a packed-bed thermal energy storage device: test rig, experimental and numerical results. Energy Procedia 81:987–994. https://doi.org/10.1016/j.egypro.2015.12.157

Santos A, Almeida F, Neto F (2021) Development of rock sensible heat storage system: modeling of a hematite reservoir. J Energy Storage 40:102818. https://doi.org/10.1016/j.est.2021.102818

Schlipf D, Schicktanz P, Maier H, Schneider G (2015) Using sand and other small grained materials as heat storage medium in a packed bed HTTESS. Energy Procedia 69:1029–1038. https://doi.org/10.1016/j.egypro.2015.03.202

Lucio-Martin T, Roig-Flores M, Izquierdo M, Alonso MC (2021) Corrigendum to “Thermal conductivity of concrete at high temperatures for thermal energy storage applications: experimental analysis” [Sol. Energy 214 (2021) 430–442]. Sol Energy 220:1137–1138. https://doi.org/10.1016/j.solener.2021.02.044

Becattini V, Motmans T, Zappone A, Madonna C, Haselbacher A, Steinfeld A (2017) Experimental investigation of the thermal and mechanical stability of rocks for high-temperature thermal-energy storage. Appl Energy 203:373–389. https://doi.org/10.1016/j.apenergy.2017.06.025

Tiskatine R et al (2016) Experimental evaluation of thermo-mechanical performances of candidate rocks for use in high temperature thermal storage. Appl Energy 171:243–255. https://doi.org/10.1016/j.apenergy.2016.03.061

Allen KG, Von Backstrom TW, Kroger DG, Kisters AFM (2014) Rock bed storage for solar thermal power plants: rock characteristics, suitability, and availability. Sol Energy Mater Sol Cells 126:170–183. https://doi.org/10.1016/j.solmat.2014.03.030

Bauer T, Steinmann W-D, Laing D, Tamme R (2012) Thermal energy storage materials and systems. Annu Rev Heat Transf 15(15):131–177. https://doi.org/10.1615/AnnualRevHeatTransfer.2012004651

Wu Y-T, Li Y, Lu Y-W, Wang H-F, Ma C-F (2017) Novel low melting point binary nitrates for thermal energy storage applications. Sol Energy Mater Sol Cells 164:114–121. https://doi.org/10.1016/j.solmat.2017.02.021

Regin AF, Solanki SC, Saini JS (2008) Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renew Sustain Energy Rev 12(9):2438–2458. https://doi.org/10.1016/j.rser.2007.06.009

Oró E, de Gracia A, Castell A, Farid MM, Cabeza LF (2012) Review on phase change materials (PCMs) for cold thermal energy storage applications. Appl Energy 99:513–533. https://doi.org/10.1016/j.apenergy.2012.03.058

Kearney D et al (2003) Assessment of a molten salt heat transfer fluid in a parabolic trough solar field. J Sol Energy Eng 125(2):170–176. https://doi.org/10.1115/1.1565087

Kousksou T, Bruel P, Jamil A, El Rhafiki T, Zeraouli Y (2014) Energy storage: applications and challenges. Sol Energy Mater Sol Cells 120(PART A):59–80. https://doi.org/10.1016/j.solmat.2013.08.015

Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(2):318–345. https://doi.org/10.1016/j.rser.2007.10.005

Sarier N, Onder E (2007) The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics. Thermochim Acta 452(2):149–160. https://doi.org/10.1016/j.tca.2006.08.002

Hasnain SM (1998) Review on sustainable thermal energy storage technologies, part I: heat storage materials and techniques. Energy Convers Manag 39(11):1127–1138. https://doi.org/10.1016/S0196-8904(98)00025-9

Xu J, Wang RZ, Li Y (2014) A review of available technologies for seasonal thermal energy storage. Sol Energy 103:610–638. https://doi.org/10.1016/j.solener.2013.06.006

Zhang Y, Zhou G, Lin K, Zhang Q, Di H (2007) Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook. Build Environ 42(6):2197–2209. https://doi.org/10.1016/j.buildenv.2006.07.023

Hassan A et al (2020) Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system. Renew Energy 145:282–293. https://doi.org/10.1016/j.renene.2019.05.130

Öztürk HH (2005) Experimental evaluation of energy and exergy efficiency of a seasonal latent heat storage system for greenhouse heating. Energy Convers Manag 46(9–10):1523–1542. https://doi.org/10.1016/j.enconman.2004.07.001

Qi Q, Deng S, Jiang Y (2008) A simulation study on a solar heat pump heating system with seasonal latent heat storage. Sol Energy 82(8):669–675. https://doi.org/10.1016/j.solener.2008.02.017

Abhat A (1983) Low temperature latent heat thermal energy storage: heat storage materials. Sol Energy 30(4):313–332. https://doi.org/10.1016/0038-092X(83)90186-X

Zalba B, Marín JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23(3):251–283. https://doi.org/10.1016/S1359-4311(02)00192-8

Johnson RW, Evans JL, Jacobsen P, Thompson JR, Christopher M (2004) The changing automotive environment: high-temperature electronics. TEPM 27(3):164–176. https://doi.org/10.1109/TEPM.2004.843109

Hale DV, Hoover MJ, O’Neill MJ (1971) Phase change materials handbook. NASA-CR-61363. Available: http://dx.doi.org/2060/19720012306, https://ntrs.nasa.gov/citations/19720012306

Jankowski NR, McCluskey FP (2014) A review of phase change materials for vehicle component thermal buffering. Appl Energy 113:1525–1561. https://doi.org/10.1016/j.apenergy.2013.08.026

R. Energy, W. D. C. D. o. S. E. Development Administration, B. R. Louisiana State Univ (1976) Proceedings of the second Southeastern conference on application of solar energy, Baton Rouge, Louisiana, April 19--22, 1976. United States, United States

Alexiades V (1993) Mathematical modeling of melting and freezing processes. Hemisphere Pub 1993. https://web.math.utk.edu/~vasili/475/Handouts/3.PhChgbk.1+title.pdf or https://web.math.utk.edu/~vasili/va/bk/cover-cont-idx.html

Kazemi Z, Mortazavi SM (2014) A new method of application of hydrated salts on textiles to achieve thermoregulating properties. Thermochim Acta 589:56–62. https://doi.org/10.1016/j.tca.2014.05.015

Hu P, Lu D-J, Fan X-Y, Zhou X, Chen Z-S (2011) Phase change performance of sodium acetate trihydrate with AlN nanoparticles and CMC. Sol Energy Mater Sol Cells 95(9):2645–2649. https://doi.org/10.1016/j.solmat.2011.05.025

Garay Ramirez BML, Glorieux C, Martin Martinez ES, Flores Cuautle JJA (2014) Tuning of thermal properties of sodium acetate trihydrate by blending with polymer and silver nanoparticles. Appl Therm Eng 62(2):838–844. https://doi.org/10.1016/j.applthermaleng.2013.09.049

Fernández AI, Barreneche C, Belusko M, Segarra M, Bruno F, Cabeza LF (2017) Considerations for the use of metal alloys as phase change materials for high temperature applications. Sol Energy Mater Sol Cells 171:275–281. https://doi.org/10.1016/j.solmat.2017.06.054

Kenisarin MM (2010) High-temperature phase change materials for thermal energy storage. Renew Sustain Energy Rev 14(3):955–970. https://doi.org/10.1016/j.rser.2009.11.011

Birchenall CE, Riechman AF (1980) Heat storage in eutectic alloys. Metall Trans A 11(8):1415–1420. https://doi.org/10.1007/BF02653497

Fang D, Sun Z, Li Y, Cheng X (2016) Preparation, microstructure and thermal properties of MgBi alloys as phase change materials for thermal energy storage. Appl Therm Eng 92:187–193. https://doi.org/10.1016/j.applthermaleng.2015.09.090

Agyenim F, Hewitt N, Eames P, Smyth M (2010) A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev 14(2):615–628. https://doi.org/10.1016/j.rser.2009.10.015

Nomura T, Okinaka N, Akiyama T (2010) Technology of latent heat storage for high temperature application: a review. ISIJ Int 50(9):1229–1239. https://doi.org/10.2355/isijinternational.50.1229

Ren N, Wu Y-T, Wang T, Ma C-F (2011) Experimental study on optimized composition of mixed carbonate for phase change thermal storage in solar thermal power plant. J Therm Anal Calorim 104(3):1201–1208. https://doi.org/10.1007/s10973-011-1364-5

Bauer T, Laing D, Tamme R (2014) Recent progress in alkali nitrate/nitrite developments for solar thermal power applications. Wiley, Chichester, pp 543–553

Zhao CY, Ji Y, Xu Z (2015) Investigation of the Ca(NO3)2–NaNO3 mixture for latent heat storage. Sol Energy Mater Sol Cells 140:281–288. https://doi.org/10.1016/j.solmat.2015.04.005

Iverson BD, Broome ST, Kruizenga AM, Cordaro JG (2012) Thermal and mechanical properties of nitrate thermal storage salts in the solid-phase. Sol Energy 86(10):2897–2911. https://doi.org/10.1016/j.solener.2012.03.011

Roget F, Favotto C, Rogez J (2013) Study of the KNO3–LiNO3 and KNO3–NaNO3–LiNO3 eutectics as phase change materials for thermal storage in a low-temperature solar power plant. Sol Energy 95:155–169. https://doi.org/10.1016/j.solener.2013.06.008

Myers PD, Goswami DY (2016) Thermal energy storage using chloride salts and their eutectics. Appl Therm Eng 109(PB):889–900. https://doi.org/10.1016/j.applthermaleng.2016.07.046

Du L, Ding J, Tian H, Wang W, Wei X, Song M (2017) Thermal properties and thermal stability of the ternary eutectic salt NaCl-CaCl2-MgCl2 used in high-temperature thermal energy storage process. Appl Energy 204:1225–1230. https://doi.org/10.1016/j.apenergy.2017.03.096

Li F, Hu YJ, Zhang RY (2011) The influence of heating-cooling cycles on the thermal storage performances of Al-17 Wt.% Si alloy. Adv Mater Res 239–242:2248–2251. https://doi.org/10.4028/www.scientific.net/AMR.239-242.2248

Zhao Y, Liu HB, Zhao CY (2019) Experimental study on the cycling stability and corrosive property of Al-Si alloys as phase change materials in high-temperature heat storage. Sol Energy Mater Sol Cells 203:110165. https://doi.org/10.1016/j.solmat.2019.110165

Sun JQ, Zhang RY, Liu ZP, Lu GH (2007) Thermal reliability test of Al–34%Mg–6%Zn alloy as latent heat storage material and corrosion of metal with respect to thermal cycling. Energy Convers Manag 48(2):619–624. https://doi.org/10.1016/j.enconman.2006.05.017

Petri RJ, Claar TD, Marianowski LG (1979) Evaluation of molten carbonates as latent heat thermal energy storage materials. United States: United States: Institute of Gas Technology, Chicago

Jiang Y, Sun Y, Bruno F, Li S (2017) Thermal stability of Na2CO3-Li2CO3 as a high temperature phase change material for thermal energy storage. Thermochim Acta 650:88–94. https://doi.org/10.1016/j.tca.2017.01.002

Olivares RI, Chen C, Wright S (2012) The thermal stability of molten lithium–sodium–potassium carbonate and the influence of additives on the melting point. J Sol Energy Eng 134(4). https://doi.org/10.1115/1.4006895

Liu M, Gomez JC, Turchi CS, Tay NHS, Saman W, Bruno F (2015) Determination of thermo-physical properties and stability testing of high-temperature phase-change materials for CSP applications. Sol Energy Mater Sol Cells 139:81–87. https://doi.org/10.1016/j.solmat.2015.03.014

Bauer T, Laing D, Tamme R (2011) Characterization of sodium nitrate as phase change material. Int J Thermophys 33(1):91–104. https://doi.org/10.1007/s10765-011-1113-9

Maldonado JM et al (2018) Phase change material selection for thermal energy storage at high temperature range between 210°C and 270°C. Energies (Basel) 11(4):861. https://doi.org/10.3390/en11040861

Olivares RI, Edwards W (2013) LiNO3–NaNO3–KNO3 salt for thermal energy storage: thermal stability evaluation in different atmospheres. Thermochim Acta 560:34–42. https://doi.org/10.1016/j.tca.2013.02.029

Li Z, Wu ZG (2016) Development of medium-temperature composite phase change material with high thermal stability and conductivity. Sol Energy Mater Sol Cells 155:341–347. https://doi.org/10.1016/j.solmat.2016.06.027

Liu M et al (2017) A eutectic salt high temperature phase change material: thermal stability and corrosion of SS316 with respect to thermal cycling. Sol Energy Mater Sol Cells 170:1–7. https://doi.org/10.1016/j.solmat.2017.05.047

Jiang Y, Sun Y, Jacob RD, Bruno F, Li S (2018) Novel Na2SO4-NaCl-ceramic composites as high temperature phase change materials for solar thermal power plants (part I). Sol Energy Mater Sol Cells 178:74–83. https://doi.org/10.1016/j.solmat.2017.12.034

Jacob R, Bruno F (2015) Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage. Renew Sustain Energy Rev 48:79–87. https://doi.org/10.1016/j.rser.2015.03.038

Cabeza LF et al (2001) Immersion corrosion tests on metal-salt hydrate pairs used for latent heat storage in the 32 to 36°C temperature range. Mater Corros 52(2):140–146. https://doi.org/10.1002/1521-4176(200102)52:2%3c140::AID-MACO140%3e3.0.CO2-R

Cabeza LF, Roca J, Nogués M, Mehling H, Hiebler S (2002) Immersion corrosion tests on metal-salt hydrate pairs used for latent heat storage in the 48 to 58°C temperature range. Mater Corros 53(12):902–907. https://doi.org/10.1002/maco.200290004

Fukahori R, Nomura T, Zhu C, Sheng N, Okinaka N, Akiyama T (2016) Thermal analysis of Al–Si alloys as high-temperature phase-change material and their corrosion properties with ceramic materials. Appl Energy 163:1–8. https://doi.org/10.1016/j.apenergy.2015.10.164

Goods SH, Bradshaw RW (2004) Corrosion of stainless steels and carbon steel by molten mixtures of commercial nitrate salts. J Mater Eng Perform 13(1):78–87. https://doi.org/10.1361/10599490417542

Zhu M, Zeng S, Zhang H, Li J, Cao B (2018) Electrochemical study on the corrosion behaviors of 316 SS in HITEC molten salt at different temperatures. Sol Energy Mater Sol Cells 186:200–207. https://doi.org/10.1016/j.solmat.2018.06.044

Shankar AR, Kanagasundar A, Mudali UK (2013) Corrosion of nickel-containing alloys in molten LiCl-KCl medium. Corrosion-US 69(1):48–57. https://doi.org/10.5006/0627

Vignarooban K, Pugazhendhi P, Tucker C, Gervasio D, Kannan AM (2014) Corrosion resistance of Hastelloys in molten metal-chloride heat-transfer fluids for concentrating solar power applications. Sol Energy 103:62–69. https://doi.org/10.1016/j.solener.2014.02.002

Weinlaeder H, Koerner W, Heidenfelder M (2011) Monitoring results of an interior sun protection system with integrated latent heat storage. Energy Build 43(9):2468–2475. https://doi.org/10.1016/j.enbuild.2011.06.007

de Gracia A, Navarro L, Castell A, Cabeza LF (2013) Numerical study on the thermal performance of a ventilated facade with PCM. Appl Therm Eng 61(2):372–380. https://doi.org/10.1016/j.applthermaleng.2013.07.035

Blanco-Rodríguez P et al (2015) Experiments on a lab scale TES unit using eutectic metal alloy as PCM. Energy Procedia 69(C):769–778. https://doi.org/10.1016/j.egypro.2015.03.087

Miliozzi A, Liberatore R, Crescenzi T, Veca E (2015) Experimental analysis of heat transfer in passive latent heat thermal energy storage systems for CSP plants. Energy Procedia 82(C):730–736. https://doi.org/10.1016/j.egypro.2015.11.799

Garcia P, Olcese M, Rougé S (2015) Experimental and numerical investigation of a pilot scale latent heat thermal energy storage for CSP power plant. Energy Procedia 69(C):842–849. https://doi.org/10.1016/j.egypro.2015.03.102

Tian H, Du L, Wei X, Deng S, Wang W, Ding J (2017) Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage. Appl Energy 204:525–530. https://doi.org/10.1016/j.apenergy.2017.07.027

Myers PD, Alam TE, Kamal R, Goswami DY, Stefanakos E (2016) Nitrate salts doped with CuO nanoparticles for thermal energy storage with improved heat transfer. Appl Energy 165:225–233. https://doi.org/10.1016/j.apenergy.2015.11.045

Pincemin S, Olives R, Py X, Christ M (2008) Highly conductive composites made of phase change materials and graphite for thermal storage. Sol Energy Mater Sol Cells 92(6):603–613. https://doi.org/10.1016/j.solmat.2007.11.010

Tao YB, Lin CH, He YL (2015) Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material. Energy Convers Manag 97:103–110. https://doi.org/10.1016/j.enconman.2015.03.051

Saranprabhu MK, Rajan KS (2019) Magnesium oxide nanoparticles dispersed solar salt with improved solid phase thermal conductivity and specific heat for latent heat thermal energy storage. Renew Energy 141:451–459. https://doi.org/10.1016/j.renene.2019.04.027

Zhang G, Sun DH, Liu WN (2016) Erratum to: Analysis of a new two-lane lattice hydrodynamic model with consideration of the global average flux [Nonlinear Dyn, (2015), 81, 1623-1633 DOI 10.1007/s11071-015-2095-0]. Nonlinear Dyn 83(3):1783–1783. https://doi.org/10.1007/s11071-015-2575-2

Zhang Z et al (2017) Thermal properties of ternary carbonate/T-ZnOw for thermal energy storage in high-temperature concentrating solar power. Compos Part A Appl Sci Manuf 93:177–184. https://doi.org/10.1016/j.compositesa.2016.11.026

Lachheb M, Adili A, Albouchi F, Mzali F, Ben Nasrallah S (2016) Thermal properties improvement of Lithium nitrate/Graphite composite phase change materials. Appl Therm Eng 102:922–931. https://doi.org/10.1016/j.applthermaleng.2016.03.167

Ye F, Ge Z, Ding Y, Yang J (2014) Multi-walled carbon nanotubes added to Na2CO3/MgO composites for thermal energy storage. China Particuol 15(4):56–60. https://doi.org/10.1016/j.partic.2013.05.001

Dayou S, Vigolo B, Ghanbaja J, Kairi MI, Mohd Zuhan MKN, Mohamed AR (2017) Direct growth of graphene on MgO by chemical vapor deposition for thermal conductivity enhancement of phase change material. Mater Chem Phys 202:352–357. https://doi.org/10.1016/j.matchemphys.2017.09.052

Wu Y et al (2018) Solar salt doped by MWCNTs as a promising high thermal conductivity material for CSP. RSC Adv 8(34):19251–19260. https://doi.org/10.1039/C8RA03019G

Jiang Z et al (2015) Form-stable LiNO3–NaNO3–KNO3–Ca(NO3)2/calcium silicate composite phase change material (PCM) for mid-low temperature thermal energy storage. Energy Convers Manag 106:165–172. https://doi.org/10.1016/j.enconman.2015.09.035

Huang Z, Gao X, Xu T, Fang Y, Zhang Z (2014) Thermal property measurement and heat storage analysis of LiNO3/KCl – expanded graphite composite phase change material. Appl Energy 115:265–271. https://doi.org/10.1016/j.apenergy.2013.11.019

Li R, Zhu J, Zhou W, Cheng X, Li Y (2016) Thermal compatibility of sodium nitrate/expanded perlite composite phase change materials. Appl Therm Eng 103:452–458. https://doi.org/10.1016/j.applthermaleng.2016.03.108

Zhong L, Zhang X, Luan Y, Wang G, Feng Y, Feng D (2014) Preparation and thermal properties of porous heterogeneous composite phase change materials based on molten salts/expanded graphite. Sol Energy 107:63–73. https://doi.org/10.1016/j.solener.2014.05.019

Xiao J, Huang J, Zhu P, Wang C, Li X (2014) Preparation, characterization and thermal properties of binary nitrate salts/expanded graphite as composite phase change material. Thermochim Acta 587:52–58. https://doi.org/10.1016/j.tca.2014.04.021

Li Y, Gao S, Wu H, Cao L, Shen W (2016) PWR few-group constants parameterization analysis. Prog Nucl Energy New Ser 88:104–117. https://doi.org/10.1016/j.pnucene.2015.12.011

Tian H, Wang W, Ding J, Wei X, Song M, Yang J (2015) Thermal conductivities and characteristics of ternary eutectic chloride/expanded graphite thermal energy storage composites. Appl Energy 148:87–92. https://doi.org/10.1016/j.apenergy.2015.03.020

Liu J, Wang Q, Ling Z, Fang X, Zhang Z (2017) A novel process for preparing molten salt/expanded graphite composite phase change blocks with good uniformity and small volume expansion. Sol Energy Mater Sol Cells 169:280–286. https://doi.org/10.1016/j.solmat.2017.05.046

Zhao Y, Zhao CY, Xu ZG, Xu HJ (2016) Modeling metal foam enhanced phase change heat transfer in thermal energy storage by using phase field method. Int J Heat Mass Transf 99:170–181. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.076

Zhao CY, Wu ZG (2011) Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite. Sol Energy Mater Sol Cells 95(2):636–643. https://doi.org/10.1016/j.solmat.2010.09.032

Gupta A, Mathie R, Markides CN (2014) An experimental and computational investigation of a thermal storage system based on a phase change material: heat transfer and performance characterization. Comput Therm Sci 6(4):341–359. https://doi.org/10.1615/.2014011117

Steinmann W-D, Tamme R (2008) Latent heat storage for solar steam systems. J Sol Energy Eng 130(1). https://doi.org/10.1115/1.2804624

Tao YB, He YL (2015) Effects of natural convection on latent heat storage performance of salt in a horizontal concentric tube. Appl Energy 143:38–46. https://doi.org/10.1016/j.apenergy.2015.01.008

Sciacovelli A, Gagliardi F, Verda V (2015) Maximization of performance of a PCM latent heat storage system with innovative fins. Appl Energy 137:707–715. https://doi.org/10.1016/j.apenergy.2014.07.015

Zhao Y, Liu H, You Y, Zhao C (2019) Numerical and experimental study on topology optimization of fin configuration in latent heat storage. In: ISES solar world conference

Pizzolato A, Sharma A, Maute K, Sciacovelli A, Verda V (2017) Design of effective fins for fast PCM melting and solidification in shell-and-tube latent heat thermal energy storage through topology optimization. Appl Energy 208:210–227. https://doi.org/10.1016/j.apenergy.2017.10.050

Shabgard H, Bergman TL, Sharifi N, Faghri A (2010) High temperature latent heat thermal energy storage using heat pipes. Int J Heat Mass Transf 53(15):2979–2988. https://doi.org/10.1016/j.ijheatmasstransfer.2010.03.035

Farid MM, Kanzawa A (1989) Thermal performance of a heat storage module using PCM’s with different melting temperatures: mathematical modeling. J Sol Energy Eng 111(2):152–157. https://doi.org/10.1115/1.3268301

Farid MM, Kim Y, Kansawa A (1990) Thermal performance of a heat storage module using PCM’s with different melting temperature: experimental. J Sol Energy Eng 112(2):125–131. https://doi.org/10.1115/1.2929644

Xu HJ, Zhao CY (2015) Thermodynamic analysis and optimization of cascaded latent heat storage system for energy efficient utilization. Energy (Oxford) 90:1662–1673. https://doi.org/10.1016/j.energy.2015.06.131

Mawire A, Ekwomadu CS, Shobo AB (2021) Experimental charging characteristics of medium-temperature cascaded packed bed latent heat storage systems. J Energy Storage 42:103067. https://doi.org/10.1016/j.est.2021.103067

Zhao Y, You Y, Liu HB, Zhao CY, Xu ZG (2018) Experimental study on the thermodynamic performance of cascaded latent heat storage in the heat charging process. Energy (Oxford) 157:690–706. https://doi.org/10.1016/j.energy.2018.05.193

Yuan F, Li M-J, Ma Z, Jin B, Liu Z (2018) Experimental study on thermal performance of high-temperature molten salt cascaded latent heat thermal energy storage system. Int J Heat Mass Transf 118:997–1011. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.024

Frazzica A, Brancato V, Palomba V, Vasta S (2018) Sorption Thermal Energy Storage. In: Frazzica, A., Cabeza, L. (eds) Recent Advancements in Materials and Systems for Thermal Energy Storage. Green Energy and Technology. Springer International Publishing, pp 33–54. https://doi.org/10.1007/978-3-319-96640-3_4

Urbanczyk R, Peinecke K, Peil S, Felderhoff M (2017) Development of a heat storage demonstration unit on the basis of Mg2FeH6 as heat storage material and molten salt as heat transfer media. Int J Hydrogen Energy 42(19):13818–13826. https://doi.org/10.1016/j.ijhydene.2017.02.160

Bogdanovii B, Ritter A, Spliethoff B (1990) Active MgH2-Mg systems for reversible chemical energy storage. Angew Chem Int Ed Engl 29(3):223–234 (http://onlinelibrary.wiley.com/doi/10.1002/anie.198201553/abstract)

Kato Y, Yamashita N, Kobayashi K, Yoshizawa Y (1996) Kinetic study of the hydration of magnesium oxide for a chemical heat pump. Appl Therm Eng 16(11):853–862. https://doi.org/10.1016/1359-4311(96)00009-9

Schaube F, Koch L, Wörner A, Müller-Steinhagen H (2012) A thermodynamic and kinetic study of the de- and rehydration of Ca(OH) 2 at high H 2O partial pressures for thermo-chemical heat storage. Thermochim Acta 538:9–20. https://doi.org/10.1016/j.tca.2012.03.003

Qiao Y et al (2017) Alkali nitrates molten salt modified commercial MgO for intermediate-temperature CO2 capture: optimization of the Li/Na/K ratio. Ind Eng Chem Res 56(6):1509–1517. https://doi.org/10.1021/acs.iecr.6b04793

Sheppard DA et al (2014) Hydriding characteristics of NaMgH2F with preliminary technical and cost evaluation of magnesium-based metal hydride materials for concentrating solar power thermal storage. RSC Adv 4(51):26552–26562. https://doi.org/10.1039/C4RA01682C

Friedlmeier G, Wierse M, Groll M (1994) Titanium hydride for high-temperature thermal energy storage in solar-thermal power stations. Z Phys Chem (N F) 183(1):175–183. https://doi.org/10.1524/zpch.1994.183.Part_1_2.175

Ward PA, Teprovich JA, Liu Y, He J, Zidan R (2018) High temperature thermal energy storage in the CaAl2 system. J Alloy Compd 735:2611–2615. https://doi.org/10.1016/j.jallcom.2017.10.191

Manickam K et al (2019) Future perspectives of thermal energy storage with metal hydrides. Int J Hydrogen Energy 44(15):7738–7745. https://doi.org/10.1016/j.ijhydene.2018.12.011

Kyaw K, Shibata T, Watanabe F, Matsuda H, Hasatani M (1997) Applicability of zeolite for CO2 storage in a CaO-CO2 high temperature energy storage system. Energy Convers Manag 38(10):1025–1033. https://doi.org/10.1016/S0196-8904(96)00132-X

Bagherisereshki E, Tran J, Lei F, AuYeung N (2018) Investigation into SrO/SrCO3 for high temperature thermochemical energy storage. Sol Energy 160(November 2017):85–93. https://doi.org/10.1016/j.solener.2017.11.073

André L, Abanades S (2017) Evaluation and performances comparison of calcium, strontium and barium carbonates during calcination/carbonation reactions for solar thermochemical energy storage. J Energy Storage 13:193–205. https://doi.org/10.1016/j.est.2017.07.014

Kato Y, Saku D, Harada N, Yoshizawa Y (1998) Utilization of high temperature heat from nuclear reactor using inorganic chemical heat pump. Prog Nucl Energy 32(3):563–570. https://doi.org/10.1016/S0149-1970(97)00044-9

Neises M, Tescari S, de Oliveira L, Roeb M, Sattler C, Wong B (2012) Solar-heated rotary kiln for thermochemical energy storage. Sol Energy 86(10):3040–3048. https://doi.org/10.1016/j.solener.2012.07.012

Fahim MA, Ford JD (1983) Energy storage using the BaO2/BaO reaction cycle. Chem Eng J 27(1):21–28. https://doi.org/10.1016/0300-9467(83)80042-2

de Miguel SÁ, Gonzalez-Aguilar J, Romero M (2014) 100-Wh multi-purpose particle reactor for thermochemical heat storage in concentrating solar power plants. Energy Procedia 49:676–683. https://doi.org/10.1016/j.egypro.2014.03.073

Jafarian M, Arjomandi M, Nathan GJ (2017) Thermodynamic potential of molten copper oxide for high temperature solar energy storage and oxygen production. Appl Energy 201:69–83. https://doi.org/10.1016/j.apenergy.2017.05.049

Harries DN, Paskevicius M, Sheppard DA, Price TEC, Buckley CE (2012) Concentrating solar thermal heat storage using metal hydrides. Proc IEEE 100(2):539–549. https://doi.org/10.1109/JPROC.2011.2158509

Fellet M, Buckley CE, Paskevicius M, Sheppard DA (2013) Research on metal hydrides revived for next-generation solutions to renewable energy storage. MRS Bull 38(12):1012–1013. https://doi.org/10.1557/mrs.2013.288

Paskevicius M, Sheppard DA, Williamson K, Buckley CE (2015) Metal hydride thermal heat storage prototype for concentrating solar thermal power. Energy 88:469–477. https://doi.org/10.1016/j.energy.2015.05.068

Shen D, Zhao CY (2013) Thermal analysis of exothermic process in a magnesium hydride reactor with porous metals. Chem Eng Sci 98:273–281. https://doi.org/10.1016/j.ces.2013.05.041

Chaise A et al (2009) Enhancement of hydrogen sorption in magnesium hydride using expanded natural graphite. Int J Hydrogen Energy 34(20):8589–8596. https://doi.org/10.1016/j.ijhydene.2009.07.112

Rönnebro ECE, Whyatt G, Powell M, Westman M, Zheng F, Fang ZZ (2015) Metal hydrides for high-temperature power generation. Energies 8(8):8406-8430. https://doi.org/10.3390/en8088406

Wentworth WE, Chen E (1976) Simple thermal decomposition reactions for storage of solar thermal energy. Solar Energy 18:205-214. https://doi.org/10.1016/0038-092X(76)90019-0

Yan J, Zhao CY (2015) Thermodynamic and kinetic study of the dehydration process of CaO/Ca(OH) 2 thermochemical heat storage system with Li doping. Chem Eng Sci 138:86–92. https://doi.org/10.1016/j.ces.2015.07.053

Yan J, Zhao CY, Pan ZH (2017) The effect of CO2 on Ca(OH)2 and Mg(OH)2 thermochemical heat storage systems. Energy 124:114–123. https://doi.org/10.1016/j.energy.2017.02.034

Wang K, Yan T, Li RK, Pan WG (2022) A review for Ca(OH)2/CaO thermochemical energy storage systems. J Energy Storage 50:104612. https://doi.org/10.1016/j.est.2022.104612

Ogura H, Miyazaki M, Matsuda H, Hasatani M, Yanadori M, Hiramatsu M (1991) Experimental study on heat transfer enhancement of the solid reactant particle bed in a chemical heat pump using Ca(OH)2/CaO reaction. Kagaku Kogaku Ronbunshu 17(5):916–923. https://doi.org/10.1252/kakoronbunshu.17.916

Kariya J, Kato Y (2017) Development of thermal energy storage material using porous silicon carbide and calcium hydroxide. Energy Procedia 131:395–406. https://doi.org/10.1016/j.egypro.2017.09.470

Guy E (1977) Solar heat storage using chemical reactions, Journal of Solid State Chemistry 22:51-61. https://doi.org/10.1016/0022-4596(77)90188-8

Rosemary JK, Bauerle GL, Springer TH (1979) Solar energy storage using reversible hydration-dehydration of CaO-Ca(OH)2. J Energy 3(6):321–322. https://doi.org/10.2514/3.62440

Schaube F, Kohzer A, Schütz J, Wörner A, Müller-Steinhagen H (2013) De- and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermo-chemical heat storage. Part A: experimental results. Chem Eng Res Des 91(5):856–864. https://doi.org/10.1016/j.cherd.2012.09.020

Roßkopf C, Haas M, Faik A, Linder M, Wörner A (2014) Improving powder bed properties for thermochemical storage by adding nanoparticles. Energy Convers Manag 86:93–8

Afflerbach S, Kappes M, Gipperich A, Trettin R, Krumm W (2017) Semipermeable encapsulation of calcium hydroxide for thermochemical heat storage solutions. Sol Energy 148:1–11. https://doi.org/10.1016/j.solener.2017.03.074

Xia BQ, Zhao CY, Yan J, Khosa AA (2020) Development of granular thermochemical heat storage composite based on calcium oxide. Renew Energy 147:969–978. https://doi.org/10.1016/j.renene.2019.09.065

Anthony EJ (2011) Ca looping technology: current status, developments and future directions. Greenh Gases Sci Technol 1(1):36–47. https://doi.org/10.1002/ghg3.2

Kato Y, Kobayashi K, Yoshizawa Y (1998) Durability to repetitive reaction of magnesium oxide/water reaction system for a heat pump. Appl Therm Eng 18(3):85-92. https://doi.org/10.1016/S1359-4311(97)00058-6

M. H. I. T. L. Sk (1985) Kinetic study of Ca(OH)2/CaO reversible thermochemical reaction for thermal energy storage by means of chemical reaction. Kogaku Ronbunsyu 11:542–548

Risthaus K, Bürger I, Linder M, Schmidt M (2020) Numerical analysis of the hydration of calcium oxide in a fixed bed reactor based on lab-scale experiments. Appl Energy 261:114351. https://doi.org/10.1016/j.apenergy.2019.114351

Li M-T, et al (2021) Tremendous enhancement of heat storage efficiency for Mg(OH)2-MgO-H2O thermochemical system with addition of Ce(NO3)3 and LiOH. Nano Energy 81. https://doi.org/10.1016/j.nanoen.2020.105603

Yan J, Yang BW, Zhao CY (2022) Investigation of hydration/dehydration processes in a fluidized bed reactor using MgO/Mg(OH)2 thermochemical energy storage system. Sol Energy 231:630–645. https://doi.org/10.1016/j.solener.2021.12.013

Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520(1):1–19. https://doi.org/10.1016/j.tca.2011.03.034

Criado YA, Alonso M, Abanades JC (2014) Kinetics of the CaO/Ca(OH)2 hydration/dehydration reaction for thermochemical energy storage applications. Ind Eng Chem Res 53(32):12594–12601. https://doi.org/10.1021/ie404246p

Angerer M et al (2018) Design of a MW-scale thermo-chemical energy storage reactor. Energy Rep 4:507–519. https://doi.org/10.1016/j.egyr.2018.07.005

Zhang L, Lu Y, Rostam-Abadi M (2012) Sintering of calcium oxide (CaO) during CO2 chemisorption: a reactive molecular dynamics study. Phys Chem Chem Phys 14(48):16633–16643. https://doi.org/10.1039/c2cp42209c

Murthy MS, Raghavendrachar P, Sriram SV (1986) Thermal decomposition of doped calcium hydroxide for chemical energy storage. Solar Energy 36:53-62. https://doi.org/10.1016/0038-092X(86)90060-5

Li Y-T, Li M-T, Xu Z-B, Meng Z-H, Wu Q-P (2020) Dehydration kinetics and thermodynamics of ZrO(NO3)2-doped Ca(OH)2 for chemical heat storage. Chem Eng J 399:125841. https://doi.org/10.1016/j.cej.2020.125841

Kato Y, Yamashita N, Yoshizawa Y (1993) Study of chemical heat pump with reaction system of magnesium oxide/water. Activation of magnesium oxide hydration. Kagaku Kōgaku Ronbunshū 19(6):1213–1216

Yan J, Pan ZH, Zhao CY (2020) Experimental study of MgO/Mg(OH)2 thermochemical heat storage with direct heat transfer mode. Appl Energy 275(10):115356–115356. https://doi.org/10.1016/j.apenergy.2020.115356

Pan Z, Zhao CY (2015) Dehydration/hydration of MgO/H2O chemical thermal storage system. Energy 82:611–618. https://doi.org/10.1016/j.energy.2015.01.070

Ryu J, Hirao N, Takahashi R, Kato Y (2008) Dehydration behavior of metal-salt-added magnesium hydroxide as chemical heat storage media. Chem Soc Jpn 37(11):1140–1

Shkatulov A, Ryu J, Kato Y, Aristov Y (2012) Composite material “Mg(OH)2/vermiculite”: a promising new candidate for storage of middle temperature heat. Energy (Oxford) 44(1):1028–1034. https://doi.org/10.1016/j.energy.2012.04.045

Schmidt M, Szczukowski C, Roßkopf C, Linder M, Wörner A (2014) Experimental results of a 10 kW high temperature thermochemical storage reactor based on calcium hydroxide. Appl Therm Eng 62(2):553–559. https://doi.org/10.1016/j.applthermaleng.2013.09.020

Schmidt M, Gollsch M, Giger F, Grün M, Linder M (2016) Development of a moving bed pilot plant for thermochemical energy storage with CaO/Ca(OH)2. AIP Conf Proc 1734(1):050041. https://doi.org/10.1063/1.4949139

Yan J, Zhao CY (2016) Experimental study of CaO/Ca(OH)2 in a fixed-bed reactor for thermochemical heat storage. Appl Energy 175:277–284. https://doi.org/10.1016/j.apenergy.2016.05.038

Chen JT, Xia BQ, Zhao CY (2020) Topology optimization for heat transfer enhancement in thermochemical heat storage. Int J Heat Mass Transf 154:119785. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119785

Rougé S, Criado YA, Soriano O, Abanades JC (2017) Continuous CaO/Ca(OH)2 fluidized bed reactor for energy storage: first experimental results and reactor model validation. Ind Eng Chem Res 56(4):844–852. https://doi.org/10.1021/acs.iecr.6b04105

Pardo P, Anxionnaz-Minvielle Z, Rougé S, Cognet P, Cabassud M (2014) Ca(OH)2/CaO reversible reaction in a fluidized bed reactor for thermochemical heat storage. Sol Energy 107:605–616. https://doi.org/10.1016/j.solener.2014.06.010

Criado YA, Huille A, Rougé S, Abanades JC (2017) Experimental investigation and model validation of a CaO/Ca(OH)2 fluidized bed reactor for thermochemical energy storage applications. Chem Eng J 313:1194–1205. https://doi.org/10.1016/j.cej.2016.11.010

Bian Z, Li Y, Zhang C, Zhao J, Wang T, Lei W (2021) Heat release performance and evolution of CaO particles under fluidization for CaO/Ca(OH)2 thermochemical heat storage. Process Saf Environ Prot 155:166–176. https://doi.org/10.1016/j.psep.2021.09.019

Risthaus K, Linder M, Schmidt M (2022) Experimental investigation of a novel mechanically fluidized bed reactor for thermochemical energy storage with calcium hydroxide/calcium oxide. Appl Energy 315:118976. https://doi.org/10.1016/j.apenergy.2022.118976

Shkatulov AI, Kim ST, Miura H, Kato Y, Aristov YI (2019) Adapting the MgO-CO2 working pair for thermochemical energy storage by doping with salts. Energy Convers Manag 185:473–481. https://doi.org/10.1016/j.enconman.2019.01.056

Barker R (1974) The reactivity of calcium oxide towards carbon dioxide and its use for energy storage. J Chem Technol Biotechnol 24:221–227. https://doi.org/10.1016/j.jcou.2018.10.018

Ortiz C, Romano MC, Valverde JM, Binotti M, Chacartegui R (2018) Process integration of Calcium-Looping thermochemical energy storage system in concentrating solar power plants. Energy 155:535–551. https://doi.org/10.1016/j.energy.2018.04.180

Khosa AA, Xu T, Xia BQ, Yan J, Zhao CY (2019) Technological challenges and industrial applications of CaCO3/CaO based thermal energy storage system – a review. Sol Energy 193:618–636. https://doi.org/10.1016/j.solener.2019.10.003

Sarrion B, Valverde JM, Perejon A, Perez-Maqueda L, Sanchez-Jimenez PE (2016) On the multicycle activity of natural limestone/dolomite for thermochemical energy storage of concentrated solar power. Energ Technol 4(8):1013–1019. https://doi.org/10.1002/ente.201600068

Benitez-Guerrero M, Valverde JM, Sanchez-Jimenez PE, Perejon A, Perez-Maqueda LA (2017) Multicycle activity of natural CaCO3 minerals for thermochemical energy storage in Concentrated Solar Power plants. Sol Energy 153:188–199. https://doi.org/10.1016/j.solener.2017.05.068

Tian XK, Lin SC, Yan J, Zhao CY (2022) Sintering mechanism of calcium oxide/calcium carbonate during thermochemical heat storage process. Chem Eng J (Lausanne, Switzerland: 1996) 428:131229. https://doi.org/10.1016/j.cej.2021.131229

Sánchez Jiménez PE, Perejón A, Benítez Guerrero M, Valverde JM, Ortiz C, Pérez Maqueda LA (2019) High-performance and low-cost macroporous calcium oxide based materials for thermochemical energy storage in concentrated solar power plants. Appl Energy 235:543–552. https://doi.org/10.1016/j.apenergy.2018.10.131

Khosa AA, Yan J, Zhao CY (2021) Investigating the effects of ZnO dopant on the thermodynamic and kinetic properties of CaCO3/CaO TCES system. Energy 215:119132–119132. https://doi.org/10.1016/j.energy.2020.119132

Benitez-Guerrero M, Valverde JM, Sanchez-Jimenez PE, Perejon A, Perez-Maqueda LA (2018) Calcium-Looping performance of mechanically modified Al2O3-CaO composites for energy storage and CO2 capture. Chem Eng J 334(November 2017):2343–2355. https://doi.org/10.1016/j.cej.2017.11.183

Møller KT, Ibrahim A, Buckley CE, Paskevicius M (2020) Inexpensive thermochemical energy storage utilising additive enhanced limestone. J Mater Chem A 8(19):9646–9653. https://doi.org/10.1039/d0ta03080e

Chen X, Jin X, Liu Z, Ling X, Wang Y (2018) Experimental investigation on the CaO/CaCO3 thermochemical energy storage with SiO2 doping. Energy 155:128–138. https://doi.org/10.1016/j.energy.2018.05.016

Benitez-Guerrero M, Valverde JM, Perejon A, Sanchez-Jimenez PE, Perez-Maqueda LA (2018) Low-cost Ca-based composites synthesized by biotemplate method for thermochemical energy storage of concentrated solar power. Appl Energy 210:108–116. https://doi.org/10.1016/j.apenergy.2017.10.109

Wang Y, Zhu Y, Wu S (2013) A new nano CaO-based CO2 adsorbent prepared using an adsorption phase technique. Chem Eng J 218:39–45. https://doi.org/10.1016/j.cej.2012.11.095

Xu TX, Tian XK, Khosa AA, Yan J, Ye Q, Zhao CY (2021) Reaction performance of CaCO3/CaO thermochemical energy storage with TiO2 dopant and experimental study in a fixed-bed reactor. Energy 236:121451–121451. https://doi.org/10.1016/j.energy.2021.121451

Han R et al (2018) Strongly coupled calcium carbonate/antioxidative graphite nanosheets composites with high cycling stability for thermochemical energy storage. Appl Energy 231(May):412–422. https://doi.org/10.1016/j.apenergy.2018.09.142

Tian XK, Lin SC, Yan J, Zhao CY (2022) Improved durability in thermochemical energy storage using Ti/Al/Mg Co-doped Calcium-based composites with hierarchical Meso/Micro pore structures. Chem Eng J 450:138142. https://doi.org/10.1016/j.cej.2022.138142

Tian XK, Xu TX, Yan J, Lin SC, Zhao CY (2022) Designing calcium-looping composites based on lattice energy and phase combination/separation for thermochemical energy storage. Sol Energy Mater Sol Cells 248:111972. https://doi.org/10.1016/j.solmat.2022.111972

Silcox GD, Kramlich JC, Pershing DW (1989) A mathematical model for the flash calcination of dispersed calcium carbonate and calcium hydroxide particles. Ind Eng Chem Res 28(2):155–160. https://doi.org/10.1021/ie00086a005

Barin I (1995) Calculation of thermochemical functions. In: Thermochemical data of pure substances. pp 21–31

Fedunik-Hofman L, Bayon A, Donne SW. Kinetics of solid-gas reactions and their application to carbonate looping systems. Energies 12(15). https://doi.org/10.3390/en12152981

Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA (2011) Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B 115(8):1780–1791. https://doi.org/10.1021/jp110895z

Song C et al (2021) Decomposition kinetics of Al- and Fe-doped calcium carbonate particles with improved solar absorbance and cycle stability. Chem Eng J 406(July 2020):126282–126282. https://doi.org/10.1016/j.cej.2020.126282

Khosa AA, Zhao CY (2019) Heat storage and release performance analysis of CaCO3/CaO thermal energy storage system after doping nano silica. Sol Energy 188:619–630. https://doi.org/10.1016/j.solener.2019.06.048

Arcenegui-Troya J, Sánchez-Jiménez PE, Perejón A, Moreno V, Valverde JM, Pérez-Maqueda LA (2021) Kinetics and cyclability of limestone (CaCO3) in presence of steam during calcination in the CaL scheme for thermochemical energy storage. Chem Eng J 417:129194. https://doi.org/10.1016/j.cej.2021.129194

L’Vov BV, Ugolkov VL (2004) Kinetics of free-surface decomposition of magnesium, strontium and barium carbonates analyzed thermogravimetrically by the third-law method. Thermochim Acta 409(1):13–18. https://doi.org/10.1016/S0040-6031(03)00322-8

Xu YX, Yan J, Zhao CY (2021) Investigation on application temperature zone and exergy loss regulation based on MgCO3/MgO thermochemical heat storage and release process. Energy 239:122155–122155. https://doi.org/10.1016/j.energy.2021.122155

Pardo P, Deydier A, Anxionnaz-Minvielle Z, Rougé S, Cabassud M, Cognet P (2014) A review on high temperature thermochemical heat energy storage. Renew Sustain Energy Rev 32:591–610. https://doi.org/10.1016/j.rser.2013.12.014

Chen X et al (2022) Experimental investigation of CaCO3/CaO in a spiral coil reactor for thermochemical energy storage. Chem Eng J 428(100):131971–131971. https://doi.org/10.1016/j.cej.2021.131971

Ma Z, Li Y, Zhang W, Wang Y, Zhao J, Wang Z (2020) Energy storage and attrition performance of limestone under fluidization during CaO/CaCO3 cycles. Energy 207:118291–118291. https://doi.org/10.1016/j.energy.2020.118291

Di Lauro F, Tregambi C, Montagnaro F, Salatino P, Chirone R, Solimene R (2021) Improving the performance of calcium looping for solar thermochemical energy storage and CO2 capture. Fuel 298(April):120791. https://doi.org/10.1016/j.fuel.2021.120791

Do DH, Specht E (2011) Determination of reaction coefficient, thermal conductivity and pore diffusivity in decomposition of limestone of different origin. Lect Notes Eng Comput Sci 2194:617–622 (https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109844554&partnerID=40&md5=4001f839f7d95d70f8685c7ff8dc2495)

Rhodes NR et al (2015) Solar thermochemical energy storage through carbonation cycles of SrCO3/SrO supported on SrZrO3. ChemSusChem 8(22):3793–3798. https://doi.org/10.1002/cssc.201501023

Kato T, Usami T, Noda Y, Hasegawa M, Ueda M, Nabeshima T (1997) The effect of the loss of molar teeth on spatial memory and acetylcholine release from the parietal cortex in aged rats. Behav Brain Res 83(1):239–242. https://doi.org/10.1016/S0166-4328(97)86078-0

Wong B (2011) Thermochemical heat storage for concentrated solar power. https://doi.org/10.2172/1039304

Liu L, et al (2021) CoOx ceramics synthesized by a facile and rapid combustion method and its application for thermochemical energy storage. Ceram Int. https://doi.org/10.1016/j.ceramint.2021.09.046.

Carrillo AJ, Pizarro P, Coronado JM (2021) Assessing Cr incorporation in Mn2O3/Mn3O4 redox materials for thermochemical heat storage applications. J Energy Storage 33:102028–102028. https://doi.org/10.1016/j.est.2020.102028

Lei F, Dyall A, AuYeung N (2021) An in-depth investigation of BaO2/BaO redox oxides for reversible solar thermochemical energy storage. Sol Energy Mater Sol Cells 223:110957–110957. https://doi.org/10.1016/j.solmat.2021.110957

Deutsch M et al (2017) High-temperature energy storage: kinetic investigations of the CuO/Cu2O reaction cycle. Energy Fuels 31(3):2324–2334. https://doi.org/10.1021/acs.energyfuels.6b02343

Block T, Schmücker M (2016) Metal oxides for thermochemical energy storage: a comparison of several metal oxide systems. Sol Energy 126:195–207. https://doi.org/10.1016/j.solener.2015.12.032

Fan J, Zhang Y, Yang Y, Hao J, Wang Y, Qian A (2021) Performance of thermochemical energy storage for spinel CuMn2O4 material. J Energy Storage 41:102881–102881. https://doi.org/10.1016/j.est.2021.102881

(2019) Isothermal redox kinetics of Co3O4-Fe2O3 nano-composite as a thermochemical heat storage material. Int J Eng (Tehran) 32(8). https://doi.org/10.5829/ije.2019.32.08b.17

Xiang D, Gu C, Xu H, Xiao G (2021) Self-assembled structure evolution of MnFe oxides for high temperature thermochemical energy storage. Small 17(29):2101524–2101524. https://doi.org/10.1002/smll.202101524

Pein M et al (2020) Redox thermochemistry of Ca-Mn-based perovskites for oxygen atmosphere control in solar-thermochemical processes. Sol Energy 198:612–622. https://doi.org/10.1016/j.solener.2020.01.088

Gokon N, Yawata T, Bellan S, Kodama T, Cho H-S (2019) Thermochemical behavior of perovskite oxides based on LaxSr1-x(Mn, Fe, Co)O3-δ and BaySr1-yCoO3-δ redox system for thermochemical energy storage at high temperatures. Energy 171:971–980. https://doi.org/10.1016/j.energy.2019.01.081

Chen X, Kubota M, Yamashita S, Kita H (2021) Investigation of Sr-based perovskites for redox-type thermochemical energy storage media at medium-high temperature. J Energy Storage 38:102501–102501. https://doi.org/10.1016/j.est.2021.102501

Agrafiotis C, Roeb M, Schmücker M, Sattler C (2014) Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 1: testing of cobalt oxide-based powders. Sol Energy 102:189–211. https://doi.org/10.1016/j.solener.2013.12.032

Agrafiotis C, Roeb M, Schmücker M, Sattler C (2015) Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 2: redox oxide-coated porous ceramic structures as integrated thermochemical reactors/heat exchangers. Sol Energy 114:440–458. https://doi.org/10.1016/j.solener.2014.12.036

André L, Abanades S, Cassayre L (2017) High-temperature thermochemical energy storage based on redox reactions using Co-Fe and Mn-Fe mixed metal oxides. J Solid State Chem 253(March):6–14. https://doi.org/10.1016/j.jssc.2017.05.015

Carrillo AJ, Gonzalez-Aguilar J, Romero M, Coronado JM (2019) Solar Energy on demand: a review on high temperature thermochemical heat storage systems and materials. Chem Rev 119(7):4777–4816. https://doi.org/10.1021/acs.chemrev.8b00315

Wokon M, Block T, Nicolai S, Linder M, Schmücker M (2017) Thermodynamic and kinetic investigation of a technical grade manganese-iron binary oxide for thermochemical energy storage. Sol Energy 153:471–485. https://doi.org/10.1016/j.solener.2017.05.045

Carrillo AJ, Serrano DP, Pizarro P, Coronado JM (2014) Thermochemical heat storage based on the Mn2O3/Mn3O4 redox couple: influence of the initial particle size on the morphological evolution and cyclability. J Mater Chem A 2(45):19435–19443. https://doi.org/10.1039/c4ta03409k

Agrafiotis C, Block T, Senholdt M, Tescari S, Roeb M, Sattler C (2017) Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 6: testing of Mn-based combined oxides and porous structures. Sol Energy 149:227–244. https://doi.org/10.1016/j.solener.2017.03.083

Hamidi M et al (2019) Reduction kinetics for large spherical 2:1 iron–manganese oxide redox materials for thermochemical energy storage. Chem Eng Sci 201:74–81. https://doi.org/10.1016/j.ces.2019.02.012

Carrillo AJ, Serrano DP, Pizarro P, Coronado JM (2015) Improving the thermochemical energy storage performance of the Mn2O3/Mn3O4 redox couple by the Incorporation of Iron. ChemSusChem 8(11):1947–1954. https://doi.org/10.1002/cssc.201500148

Carrillo AJ, Serrano DP, Pizarro P, Coronado JM (2016) Understanding redox kinetics of iron-doped manganese oxides for high temperature thermochemical energy storage. J Phys Chem C 120(49):27800–27812. https://doi.org/10.1021/acs.jpcc.6b08708

Alonso E, Pérez-Rábago C, Licurgo J, Fuentealba E, Estrada CA (2015) First experimental studies of solar redox reactions of copper oxides for thermochemical energy storage. Sol Energy 115:297–305. https://doi.org/10.1016/j.solener.2015.03.005

Wu S, Zhou C, Doroodchi E, Nellore R, Moghtaderi B (2018) A review on high-temperature thermochemical energy storage based on metal oxides redox cycle. Energy Convers Manag 168:421–453. https://doi.org/10.1016/j.enconman.2018.05.017

Al-Shankiti IA et al (2019) Particle design and oxidation kinetics of iron-manganese oxide redox materials for thermochemical energy storage. Sol Energy 183(February):17–29. https://doi.org/10.1016/j.solener.2019.02.071

Yin W-J, Weng B, Ge J, Sun Q, Li Z, Yan Y (2019) Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy Environ Sci 12(2):442–462. https://doi.org/10.1039/c8ee01574k

Bekhti Siad A, Baira M, Siad MB (2021) Structural, mechanical, optoelectronic and thermoelectric properties of double perovskite compounds Cs2TeX6 (X = Br, I) for energy storage applications: first principles investigations. J Phys Chem Solids 152:109955–109955. https://doi.org/10.1016/j.jpcs.2021.109955

Muroyama AP, Schrader AJ, Loutzenhiser PG (2015) Solar electricity via an Air Brayton cycle with an integrated two-step thermochemical cycle for heat storage based on Co3O4/CoO redox reactions II: kinetic analyses. Sol Energy 122:409–418. https://doi.org/10.1016/j.solener.2015.08.038

Bielsa D, Zaki A, Arias PL, Faik A (2021) Development of a kinetic reaction model for reduction and oxidation of Si doped Mn2O3 for thermochemical energy storage in concentrated solar power plants. J Energy Storage 43:103271. https://doi.org/10.1016/j.est.2021.103271

Tescari S et al (2017) Experimental evaluation of a pilot-scale thermochemical storage system for a concentrated solar power plant. Appl Energy 189:66–75. https://doi.org/10.1016/j.apenergy.2016.12.032

Hamidi M, Wheeler VM, Gao X, Pye J, Catchpole K, Weimer AW (2020) Reduction of iron–manganese oxide particles in a lab-scale packed-bed reactor for thermochemical energy storage. Chem Eng Sci 221:115700. https://doi.org/10.1016/j.ces.2020.115700

Hamidi M, Wheeler VM, Kreider P, Catchpole K, Weimer AW (2019) Effective thermal conductivity of a bed packed with granular iron–manganese oxide for thermochemical energy storage. Chem Eng Sci 207:490–494. https://doi.org/10.1016/j.ces.2019.06.035

Ge YQ, Zhao Y, Zhao CY (2021) Transient simulation and thermodynamic analysis of pumped thermal electricity storage based on packed-bed latent heat/cold stores. Renew Energy 174:939–951. https://doi.org/10.1016/j.renene.2021.04.094

Xue XJ, Zhao CY (2023) Transient behavior and thermodynamic analysis of Brayton-like pumped-thermal electricity storage based on packed-bed latent heat/cold stores. Appl Energy 329:120274. https://doi.org/10.1016/j.apenergy.2022.120274

Zhao Y, Liu M, Song J, Wang C, Yan J, Markides CN (2021) Advanced exergy analysis of a Joule-Brayton pumped thermal electricity storage system with liquid-phase storage. Energy Convers Manag 231:113867. https://doi.org/10.1016/j.enconman.2021.113867

Wang L, Lin X, Zhang H, Peng L, Chen H (2021) Brayton-cycle-based pumped heat electricity storage with innovative operation mode of thermal energy storage array. Appl Energy 291:116821. https://doi.org/10.1016/j.apenergy.2021.116821

Newcastle University connects first grid-scale pumped heat energy storage system. https://www.theengineer.co.uk/grid-scale-pumped-heat-energy-storage/. Accessed 1 Dec 2021

Hassan A, O’Donoghue L, Sánchez-Canales V, Corberán J, Payá J, Jockenhöfer H (2020) Thermodynamic analysis of high-temperature pumped thermal energy storage systems: refrigerant selection, performance and limitations. Energy Rep 6:147–159. https://doi.org/10.1016/j.egyr.2020.05.010

Xue XJ, Zhao Y, Zhao CY (2022) Multi-criteria thermodynamic analysis of pumped-thermal electricity storage with thermal integration and application in electric peak shaving of coal-fired power plant. Energy Convers Manag 258:115502. https://doi.org/10.1016/j.enconman.2022.115502

Steinmann W-D, Bauer D, Jockenhöfer H, Johnson M (2019) Pumped thermal energy storage (PTES) as smart sector-coupling technology for heat and electricity. Energy 183:185–190. https://doi.org/10.1016/j.energy.2019.06.058

Laboratory preparation and status of the CHEST technology. Available: https://www.chester-project.eu/news/laboratory-preparation-and-status-of-the-chest-technology/. Accessed 1 Dec 2021

Zamengo M, Yoshida K, Morikawa J (2021) Numerical evaluation of a Carnot battery system comprising a chemical heat storage/pump and a Brayton cycle. J Energy Storage 41:102955. https://doi.org/10.1016/j.est.2021.102955

Saghafifar M, Schnellmann MA, Scott SA (2020) Chemical looping electricity storage. Appl Energy 279:115553. https://doi.org/10.1016/j.apenergy.2020.115553