Progress in the development of interpenetrating polymer network hydrogels

Polymers for Advanced Technologies - Tập 19 Số 6 - Trang 647-657 - 2008
David Myung1,2, Dale J. Waters1, Meredith E. Wiseman1, Pierre‐Emile Duhamel1, Jaan Noolandi2, Christopher N. Ta2, Curtis W. Frank1
1Department of Chemical Engineering, Stanford University, 381 North-South Mall, Stauffer III, Stanford, CA 94305, USA
2Department of Ophthalmology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5080, USA

Tóm tắt

Abstract

Interpenetrating polymer networks (IPNs) have been the subject of extensive study since their advent in the 1960s. Hydrogel IPN systems have garnered significant attention in the last two decades due to their usefulness in biomedical applications. Of particular interest are the mechanical enhancements observed in “double network” IPN systems which exhibit nonlinear increases in fracture properties despite being composed of otherwise weak polymers. We have built upon pioneering work in this field as well as in responsive IPN systems to develop an IPN system based on end‐linked poly‐(ethylene glycol) (PEG) and loosely crosslinked poly(acrylic acid) (PAA) with hydrogen bond‐ reinforced strain‐hardening behavior in water and high initial Young's moduli under physiologic buffer conditions through osmotically induced pre‐stress. Uniaxial tensile tests and equilibrium swelling measurements were used to study PEG/PAA IPN hydrogels having second networks prepared with varying crosslinking and photoinitiator content, pH, solids content, and comonomers. Studies involving the addition of non‐ionic comonomers and neutralization of the second network showed that template polymerization appears to be important in the formation of mechanically enhanced IPNs. Copyright © 2008 John Wiley & Sons, Ltd.

Từ khóa


Tài liệu tham khảo

10.1002/(SICI)1099-1581(199604)7:4<221::AID-PAT529>3.0.CO;2-A

10.1002/pi.1994.210350201

Flory PJ, 1953, Principles of Polymer Chemistry

Olabisi O, 1979, Polymer‐Polymer Miscibility

10.1002/pen.760250902

10.1002/pol.1969.110071104

10.1002/pol.1969.160070214

10.1038/349400a0

10.1002/app.1995.070550610

10.1002/(SICI)1097-4628(19990705)73:1<113::AID-APP13>3.0.CO;2-D

10.1007/s00396-002-0829-2

Osada Y, 1987, Conversion of chemical energy into mechanical energy by synthetic polymers (chemomechanical systems), Adv. Polym. Sci., 82, 2

10.1021/ma00150a001

10.1295/polymj.21.393

10.1002/pol.1981.130190605

10.1021/ma00044a045

10.1002/adma.200304907

10.1021/ma049506i

10.1021/jp0500790

10.1021/jp052419n

Bakri A, 2006, Biocompatibility of a hydrogel corneal inlay in vivo, Invest. Ophthalmol. Vis. Sci., 47

Myung D, 2005, Characterization of poly(ethylene glycol) and poly(acrylic acid) double networks for corneal implant applications, Invest. Ophthalmol. Vis. Sci., 46

Koh WG, 2005, Synthesis and surface modification of double network hydrogel from poly(ethylene glycol) and poly‐(acrylic acid), Invest. Ophthalmol. Vis. Sci., 46

10.1007/s10544-006-9040-4

10.1002/(SICI)1097-4628(19990923)73:13<2749::AID-APP23>3.0.CO;2-9

10.1007/BF02976814

10.1016/j.polymer.2007.06.070

10.1016/S0079-6700(01)00035-1

10.1007/3540587888_15

10.1021/ma00080a016

10.1021/ma00233a047

10.1016/0014-3057(95)00184-0

10.1021/ma00169a002

10.1021/ma00174a024

10.1021/ma00222a013

10.1016/0032-3861(90)90021-P

10.1002/pola.1988.080260514

10.1021/ma00226a027

10.1016/0014-3057(81)90185-3

10.1016/0014-3057(81)90164-6

10.1016/0014-3057(77)90183-5

10.1016/0014-3057(75)90103-2

10.1021/ma062924y

10.1021/ma062642y

10.1209/epl/i2003-10292-x