Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tiến bộ trong quá trình cải tiến pha nước của các loại rượu có nguồn gốc từ sinh khối để sản xuất hydro
Tóm tắt
Hydro, với tư cách là một nguồn năng lượng sạch, hiệu quả và bền vững, đã thu hút được sự quan tâm đáng kể trong những năm gần đây. Việc sản xuất hydro từ quá trình cải tiến pha nước (APR) của các rượu có nguồn gốc từ sinh khối được ưa chuộng so với các phương pháp khác do nó có nguồn nguyên liệu tái tạo phong phú, điều kiện phản ứng nhẹ nhàng và chi phí xử lý thấp. Trong bài viết này, chúng tôi tổng hợp tiến trình trong quá trình APR của các loại rượu có nguồn gốc từ sinh khối khác nhau để sản xuất H2 và thảo luận ngắn gọn về cơ chế phản ứng cho các chất xúc tác khác nhau. Các chất xúc tác dựa trên Pt thể hiện độ chọn lọc H2 cao nhưng có tỷ lệ chuyển đổi rượu thấp. Ngược lại, các chất xúc tác dựa trên Ni thể hiện hoạt tính và tỷ lệ chuyển đổi cao nhưng có độ chọn lọc và sản lượng H2 thấp.
Từ khóa
#hydro #sản xuất năng lượng #cải tiến pha nước #rượu có nguồn gốc từ sinh khối #chất xúc tácTài liệu tham khảo
Aiouache, F., McAleer, L., Gan Q., et al., 2013. Path lumping kinetic model for aqueous phase reforming of sorbitol. Applied Catalysis A: General, 466:240–255. [doi:10.1016/j.apcata.2013.06.039]
Bai, Y., Lu, C.S., Ma, L., et al., 2006. Hydrogen production by aqueous-phase reforming of ethylene glycol over Pt catalysts supported on Γ-Al2O3 modified with Ce and Mg. Chinese Journal of Catalysis, 27(3):275–280 (in Chinese).
Balat, M., Balat, H., 2010. Progress in biodiesel processing. Applied Energy, 87(6):1815–1835. [doi:10.1016/j.apenergy.2010.01.012]
Barbelli, M.L., Pompeo, F., Santori, G.F., et al., 2013. Pt catalyst supported on α-Al2O3 modified with CeO2 and ZrO2 for aqueous-phase-reforming of glycerol. Catalysis Today, 213:58–64. [doi:10.1016/j.cattod.2013.02.023]
Chu, X.W., Liu, J., Qiao, M.H., et al., 2009. Aqueous-phase reforming of ethylene glycol to H2 on Sn-modified rapidly quenched skeletal Ni-Mo catalyst. Chinese Journal of Catalysis, 30(7):595–600 (in Chinese).
Chu, X.W., Liu, J., Sun, B., et al., 2011. Aqueous-phase reforming of ethylene glycol on Co/ZnO catalysts prepared by the coprecipitation method. Journal of Molecular Catalysis A: Chemical, 335:129–135. [doi:10.1016/j.molcata.2010.11.024]
Ciftci, A., Ligthart, D., Sen, A., et al., 2014. Pt-Re synergy in aqueous-phase reforming of glycerol and the water-gas shift reaction. Journal of Catalysis, 311:88–101. [doi:10.1016/j.jcat.2013.11.011]
Cortright, R., Davda, R., Dumesic, J., 2002. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature, 418(6901):964–976. [doi:10.1038/nature01009]
Cruz, I.O., Ribeiro, N.F., Aranda, D.A., et al., 2008. Hydrogen production by aqueous-phase reforming of ethanol over nickel catalysts prepared from hydrotalcite precursors. Catalysis Communications, 9(15):2606–2611. [doi:10.1016/j.catcom.2008.07.031]
Dadashova, E., Yagodovskaya, T., Beilin, L., et al., 1991. Modification of Fe2O3/ZSM catalyst of Fischer-Tropsch synthesis by glow discharge in oxygen and in argon. Kinetics and Catalysis, 32(6):1350–1352.
Dadashova, E., Yagodovskaya, T., Shpiro, E., et al., 1993. The synthesis of Fe2O3/ZSM-5 catalyst for carbon monoxide hydrogenation in glow discharge of oxygen and argon. Kinetics and Catalysis, 34(4):670–673.
Davda, R., Shabaker, J., Huber, G., et al., 2003. Aqueousphase reforming of ethylene glycol on silica-supported metal catalysts. Applied Catalysis B: Environmental, 43(1):13–26. [doi:10.1016/S0926-3373(02)00277-1]
Davda, R., Shabaker, J., Huber, G., et al., 2005. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Applied Catalysis B: Environmental, 56:171–186. [doi:10.1016/j.apcatb.2004.04.027]
Davidson, S.D., Sun, J., Hong, Y., et al., 2014. The effect of ZnO addition on Co/C catalyst for vapor and aqueous phase reforming of ethanol. Catalysis Today, 233:38–45. [doi:10.1016/j.cattod.2013.12.044]
de Vlieger, D.J.M., Mojet, B.L., Lefferts, L., et al., 2012. Aqueous phase reforming of ethylene glycol—role of intermediates in catalyst performance. Journal of Catalysis, 292:239–245. [doi:10.1016/j.jcat.2012.05.019]
Dietrich, P.J., Lobo-Lapidus, R.J., Wu, T., et al., 2012. Aqueous phase glycerol reforming by PtMo bimetallic nano-particle catalyst: product selectivity and structural characterization. Topics in Catalysis, 55(1–2):53–69. [doi:10.1007/s11244-012-9775-5]
Dietrich, P.J., Sollberger, F.G., Akatay, M.C., et al., 2014. Structural and catalytic differences in the effect of Co and Mo as promoters for Pt-based aqueous phase reforming catalysts. Applied Catalysis B: Environmental, 156–157:236–248. [doi:10.1016/j.apcatb.2014.03.016]
Dixit, R.S., Tavlarides, L.L., 1983. Kinetics of the Fischer-Tropsch synthesis. Industrial & Engineering Chemistry Process Design and Development, 22(1):1–9. [doi:10.1021/i200020a001]
El Doukkali, M., Iriondo, A., Arias, P., et al., 2012. A comparison of sol-gel and impregnated Pt or/and Ni based Γ-alumina catalysts for bioglycerol aqueous phase reforming. Applied Catalysis B: Environmental, 125: 516–529. [doi:10.1016/j.apcatb.2012.06.024]
El Doukkali, M., Iriondo, A., Cambra, J., et al., 2014. Recent improvement on H2 production by liquid phase reforming of glycerol: catalytic properties and performance, and deactivation studies. Topics in Catalysis, 57(10–13): 1066–1077. [doi:10.1007/s11244-014-0271-y]
Guo, Y., Azmat, M.U., Liu, X., et al., 2012a. Effect of support’s basic properties on hydrogen production in aqueous-phase reforming of glycerol and correlation between WGS and APR. Applied Energy, 92:218–223. [doi:10.1016/j.apenergy.2011.10.020]
Guo, Y., Liu, X., Azmat, M.U., et al., 2012b. Hydrogen production by aqueous-phase reforming of glycerol over Ni-B catalysts. International Journal of Hydrogen Energy, 37(1):227–234. [doi:10.1016/j.ijhydene.2011.09. 111]
He, C., Zheng, J.W., Wang, K., et al., 2015. Sorption enhanced aqueous phase reforming of glycerol for hydrogen production over Pt-Ni supported on multiwalled carbon nanotubes. Applied Catalysis B: Environmental, 162:401–411. [doi:10.1016/j.apcatb.2014.07.012]
Huang, G., Chen, F., Wei, D., et al., 2010. Biodiesel production by microalgal biotechnology. Applied Energy, 87(1):38–46. [doi:10.1016/j.apenergy.2009.06.016]
Huber, G.W., Shabaker, J., Dumesic, J., 2003. Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons. Science, 300(5628):2075–2077. [doi:10.1126/science.1085597]
Huber, G.W., Cortright, R.D., Dumesic, J.A., 2004. Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates. Angewandte Chemie International Edition, 43(12):1549–1551. [doi:10.1002/anie.200353050]
Huber, G.W., Shabaker, J.W., Evans, S.T., et al., 2006. Aqueous-phase reforming of ethylene glycol over supported Pt and Pd bimetallic catalysts. Applied Catalysis B: Environmental, 62:226–235. [doi:10.1016/j.apcatb.2005.07.010]
Iglesia, E., Soled, S.L., Fiato, R.A., 1992. Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity. Journal of Catalysis, 137(1):212–224. [doi:10.1016/0021-9517(92)90150-G]
Iriondo, A., Barrio, V., Cambra, J., et al., 2008. Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La. Topics in Catalysis, 49(1–2):46–58. [doi:10.1007/s11244-008-9060-9]
Jeong, K.E., Kim, H.D., Kim, T.W., et al., 2014. Hydrogen production by aqueous phase reforming of polyols over nano- and micro-sized mesoporous carbon supported platinum catalysts. Catalysis Today, 232:151–157. [doi:10.1016/j.cattod.2014.02.005]
Kellner, C.S., Bell, A.T., 1981. The kinetics and mechanism of carbon monoxide hydrogenation over aluminasupported ruthenium. Journal of Catalysis, 70(2):418–432. [doi:10.1016/0021-9517(81)90354-7]
Kim, H.D., Park, H.J., Kim, T.W., et al., 2012a. Hydrogen production through the aqueous phase reforming of ethylene glycol over supported Pt-based bimetallic catalysts. International Journal of Hydrogen Energy, 37(10):8310–8317. [doi:10.1016/j.ijhydene.2012.02.160]
Kim, H.D., Kim, T.W., Park, H.J., et al., 2012b. Hydrogen production via the aqueous phase reforming of ethylene glycol over platinum-supported ordered mesoporous carbon catalysts: effect of structure and frameworkconfiguration. International Journal of Hydrogen Energy, 37(17):12187–12197. [doi:10.1016/j.ijhydene.2012.05.126]
Kim, H.D., Park, H.J., Kim, T.W., et al., 2012c. The effect of support and reaction conditions on aqueous phase reforming of polyol over supported Pt-Re bimetallic catalysts. Catalysis Today, 185(1):73–80. [doi:10.1016/j.cattod.2011.08.012]
Kim, T.W., Kim, H.D., Jeong, K.E., et al., 2011. Catalytic production of hydrogen through aqueous-phase reforming over platinum/ordered mesoporous carbon catalysts. Green Chemistry, 13(7):1718–1728. [doi:10.1039/c1gc15235a]
Kim, T.W., Park, H.J., Yang, Y.C., et al., 2014. Hydrogen production via the aqueous phase reforming of polyols over three dimensionally mesoporous carbon supported catalysts. International Journal of Hydrogen Energy, 39(22):11509–11516. [doi:10.1016/j.ijhydene.2014.05.106]
King, D.L., Zhang, L., Xia, G., et al., 2010. Aqueous phase reforming of glycerol for hydrogen production over Pt-Re supported on carbon. Applied Catalysis B: Environmental, 99:206–213. [doi:10.1016/j.apcatb.2010.06.021]
Kirilin, A.V., Tokarev, A.V., Kustov, L.M., et al., 2012. Aqueous phase reforming of xylitol and sorbitol: comparison and influence of substrate structure. Applied Catalysis A: General, 435-436:172–180. [doi:10.1016/j.apcata.2012.05.050]
Kirilin, A.V., Tokarev, A.V., Manyar, H., et al., 2014. Aqueous phase reforming of xylitol over Pt-Re bimetallic catalyst: effect of the Re addition. Catalysis Today, 223:97–107. [doi:10. 1016/j.cattod.2013.09.020]
Lehnert, K., Claus, P., 2008. Influence of Pt particle size and support type on the aqueous-phase reforming of glycerol. Catalysis Communications, 9(15):2543–2546. [doi:10.1016/j.catcom.2008.07.002]
Li, N., Huber, G.W., 2010. Aqueous-phase hydrode-oxygenation of sorbitol with Pt/SiO2-Al2O3: identification of reaction intermediates. Journal of Catalysis, 270(1):48–59. [doi:10.1016/j.jcat.2009.12.006]
Li, Z., Tian, S., Wang, H., et al., 2004. Plasma treatment of Ni catalyst via a corona discharge. Journal of Molecular Catalysis A: Chemical, 211(1-2):149–153. [doi:10.1016/j.molcata.2003.10.003]
Liu, C.J., Vissokov, G.P., Jang, B.W.L., 2002. Catalyst preparation using plasma technologies. Catalysis Today, 72:173–184. [doi:10.1016/S0920-5861(01)00491-6]
Liu, X.H., 2011. Aqueous-phase Reforming of Ethylene Glyeol to Hydrogen on Supported Platinum Catalysts. PhD Thesis, East China University of Science and Technology, Shanghai, China (in Chinese).
Liu, X.H., Shen, K., Wang, Y.G., et al., 2008. Preparation and catalytic properties of Pt supported Fe-Cr mixed oxide catalysts in the aqueous-phase reforming of ethylene glycol. Catalysis Communications, 9(14):2316–2318. [doi:10.1016/j.catcom.2008.05.035]
Luo, N., Fu, X., Cao, F., et al., 2008. Glycerol aqueous phase reforming for hydrogen generation over Pt catalyst—effect of catalyst composition and reaction conditions. Fuel, 87(17–18):3483–3489. [doi:10.1016/j.fuel.2008.06.021]
Luo, N., Ouyang, K., Cao, F., et al., 2010. Hydrogen generation from liquid reforming of glycerin over Ni-Co bimetallic catalyst. Biomass and Bioenergy, 34(4):489–495. [doi:10.1016/j.biombioe.2009.12.013]
Manfro, R.L., Da Costa, A.F., Ribeiro, N.F., et al., 2011. Hydrogen production by aqueous-phase reforming of glycerol over nickel catalysts supported on CeO2. Fuel Processing Technology, 92(3):330–335. [doi:10.1016/j.fuproc.2010.09.024]
Menezes, A.O., Rodrigues, M.T., Zimmaro, A., et al., 2011. Production of renewable hydrogen from aqueous-phase reforming of glycerol over Pt catalysts supported on different oxides. Renewable Energy, 36(2):595–599. [doi:10.1016/j.renene.2010.08.004]
Meryemoglu, B., Kaya, B., Irmak, S., et al., 2012. Comparison of batch aqueous-phase reforming of glycerol and lignocellulosic biomass hydrolysate. Fuel, 97:241–244. [doi:10.1016/j.fuel.2012.02.011]
Nozawa, T., Mizukoshi, Y., Yoshida, A., et al., 2014. Aqueous phase reforming of ethanol and acetic acid over TiO2 supported Ru catalysts. Applied Catalysis B: Environmental, 146:221–226. [doi:10.1016/j.apcatb.2013.06.017]
Özgür, D.Ö., Uysal, B.Z., 2011. Hydrogen production by aqueous phase catalytic reforming of glycerine. Biomass and Bioenergy, 35(2):822–826. [doi:10.1016/j.biombioe.2010.11.012]
Pagliaro, M., Ciriminna, R., Kimura, H., et al., 2007. From glycerol to value-added products. Angewandte Chemie International Edition, 46(24):4434–4440. [doi:10.1002/anie.200604694]
Pan, G., Ni, Z., Cao, F., et al., 2012. Hydrogen production from aqueous-phase reforming of ethylene glycol over Ni/Sn/Al hydrotalcite derived catalysts. Applied Clay Science, 58:108–113. [doi:10.1016/j.clay.2012.01.023]
Roy, B., Loganathan, K., Pham, H., et al., 2010. Surface modification of solution combustion synthesized Ni/Al2O3 catalyst for aqueous-phase reforming of ethanol. International Journal of Hydrogen Energy, 35(21):11700–11708. [doi:10.1016/j.ijhydene.2010.07.167]
Roy, B., Sullivan, H., Leclerc, C.A., 2011. Aqueous-phase reforming of n-BuOH over Ni/Al2O3 and Ni/CeO2 catalysts. Journal of Power Sources, 196(24):10652–10657. [doi:10.1016/j.jpowsour.2011.08.093]
Roy, B., Martinez, U., Loganathan, K., et al., 2012a. Effect of preparation methods on the performance of Ni/Al2O3 catalysts for aqueous-phase reforming of ethanol: Part Icatalytic activity. International Journal of Hydrogen Energy, 37(10):8143–8153. [doi:10.1016/j.ijhydene.2012.02.056]
Roy, B., Artyushkova, K., Pham, H., et al., 2012b. Effect of preparation method on the performance of the Ni/Al2O3 catalysts for aqueous-phase reforming of ethanol: Part IIcharacterization. International Journal of Hydrogen Energy, 37(24):18815–18826. [doi:10.1016/j.ijhydene.2012.09.098]
Shabaker, J.W., Dumesic, J.A., 2004. Kinetics of aqueousphase reforming of oxygenated hydrocarbons: Pt/Al2O3 and Sn-modified Ni catalysts. Industrial & Engineering Chemistry Research, 43(12):3105–3112. [doi:10.1021/ie049852o]
Shabaker, J.W., Davda, R.R., Huber, G.W., et al., 2003. Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts. Journal of Catalysis, 215(2):344–352. [doi:10.1016/S0021-9517(03)00032-0]
Shabaker, J.W., Huber, G.W., Dumesic, J.A., 2004. Aqueousphase reforming of oxygenated hydrocarbons over Snmodified Ni catalysts. Journal of Catalysis, 222(1):180–191. [doi:10.1016/j.jcat.2003.10.022]
Shabaker, J.W., Simonetti, D.A., Cortright, R.D., et al., 2005. Sn-modified Ni catalysts for aqueous-phase reforming: characterization and deactivation studies. Journal of Catalysis, 231(1):67–76. [doi:10.1016/j.jcat.2005.01.019]
Sjöström, E., 1993. Wood Chemistry: Fundamentals and Applications. Gulf Professional Publishing, Houston.
Skoplyak, O., Barteau, M.A., Chen, J.G., 2009. Comparison of H2 production from ethanol and ethylene glycol on M/Pt (111) (M=Ni, Fe, Ti) bimetallic surfaces. Catalysis Today, 147(2):150–157. [doi:10.1016/j.cattod.2008.12.005]
Tang, Z., Monroe, J., Dong, J., et al., 2009. Platinum-loaded NaY zeolite for aqueous-phase reforming of methanol and ethanol to hydrogen. Industrial & Engineering Chemistry Research, 48(5):2728–2733. [doi:10.1021/ie801222f]
Tanksale, A., Beltramini, J., Dumesic, J., et al., 2008. Effect of Pt and Pd promoter on Ni supported catalysts-ATPR/TPO/TPD and microcalorimetry study. Journal of Catalysis, 258(2):366–377. [doi:10.1016/j.jcat.2008.06.024]
Tanksale, A., Zhou, C., Beltramini, J., et al., 2009. Hydrogen production by aqueous phase reforming of sorbitol using bimetallic Ni-Pt catalysts: metal support interaction. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 65(1–2):83–88. [doi:10.1007/s10847-009-9618-6]
Tokarev, A., Kirilin, A., Murzina, E., et al., 2010. The role of bio-ethanol in aqueous phase reforming to sustainable hydrogen. International Journal of Hydrogen Energy, 35(22):12642–12649. [doi:10.1016/j.ijhydene.2010.07.118]
Tuza, P.V., Manfro, R.L., Ribeiro, N.F., et al., 2013. Production of renewable hydrogen by aqueous-phase reforming of glycerol over Ni-Cu catalysts derived from hydrotalcite precursors. Renewable Energy, 50:408–414. [doi:10.1016/j.renene.2012.07.006]
Vannice, M., 1977. The catalytic synthesis of hydrocarbons from H2CO mixtures over the Group VIII metals: V. The catalytic behavior of silica-supported metals. Journal of Catalysis, 50(2):228–236. [doi:10.1016/0021-9517(77)90031-8]
Wang, X., Li, N., Pfefferle, L.D., et al., 2009. Pt-Co bimetallic catalyst supported on single walled carbon nanotube: XAS and aqueous phase reforming activity studies. Catalysis Today, 146(1–2):160–165. [doi:10.1016/j.cattod.2009.02.010]
Wawrzetz, A., Peng, B., Hrabar, A., et al., 2010. Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol. Journal of Catalysis, 269(2):411–420. [doi:10.1016/j.jcat.2009.11.027]
Wen, G.D., Xu, Y.P., Ma, H.J., et al., 2008. Production of hydrogen by aqueous-phase reforming of glycerol. International Journal of Hydrogen Energy, 33(22):6657–6666. [doi:10.1016/j.ijhydene.2008.07.072]
Wen, G.D., Xu, Y.P., Wei, Y., et al., 2009. Hydrogen production by aqueous-phase reforming of biomass over supported Pt catalysts. Chinese Journal of Catalysis, 30(8):830–835. [doi:10.1016/j.ijhydene.2010.09.094]
Wen, Z., Yu, X., Tu, S.T., et al., 2010. Synthesis of biodiesel from vegetable oil with methanol catalyzed by Li-doped magnesium oxide catalysts. Applied Energy, 87(3):743–748. [doi:10.1016/j.apenergy.2009.09.013]
Xie, F., Chu, X., Hu, H., et al., 2006. Characterization and catalytic properties of Sn-modified rapidly quenched skeletal Ni catalysts in aqueous-phase reforming of ethylene glycol. Journal of Catalysis, 241(1):211–220. [doi:10.1016/j.jcat.2006.05.001]
Yagodovskaya, T., Lunin, V., 1997. Surface modification of cements and zeolite catalysts by glow discharge. Russian Journal of Physical Chemistry, 71(5):775–786.
Zhang, L., Karim, A.M., Engelhard, M.H., et al., 2012. Correlation of Pt-Re surface properties with reaction pathways for the aqueous-phase reforming of glycerol. Journal of Catalysis, 287:37–43. [doi:10.1016/j.jcat.2011.11.015]
Zhang, Y., Chu, W., Cao, W., et al., 2000. A plasmaactivated Ni/α-Al2O3 catalyst for the conversion of CH4 to syngas. Plasma Chemistry and Plasma Processing, 20(1):137–144. [doi:10.1023/A:1006978012228]
Zhu, L., Guo, P., Chu, X., et al., 2008. An environmentally benign and catalytically efficient non-pyrophoric Ni catalyst for aqueous-phase reforming of ethylene glycol. Green Chemistry, 10(12):1323–1330. [doi:10.1039/b808190e]