Tiến bộ trong các hệ thống chuyển giao gen không virus được chế tạo thông qua lắp ghép siêu phân tử

Science China Press., Co. Ltd. - Tập 50 - Trang 289-294 - 2005
Youxiang Wang1, Jiacong Shen1
1Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China

Tóm tắt

Các hệ thống chuyển giao gen là một trong những vấn đề chính hạn chế sự phát triển của liệu pháp gen. Các hệ thống chuyển giao gen không virus mới được chế tạo thông qua lắp ghép siêu phân tử đã bắt đầu cho thấy những triển vọng và ứng dụng ngày càng tăng trong liệu pháp gen nhờ kích thước nano phù hợp, cấu trúc có thể kiểm soát và tính tương thích sinh học tuyệt vời. Trong bài tổng quan này, những tiến bộ cơ bản và gần đây về lắp ghép siêu phân tử cho chuyển giao gen không virus đã được xem xét. Các virus nhân tạo - hướng đi tương lai của các hệ thống chuyển giao gen không virus cũng được mô tả.

Từ khóa

#chuyển giao gen không virus #lắp ghép siêu phân tử #liệu pháp gen #virus nhân tạo #tương thích sinh học

Tài liệu tham khảo

Gu, J. R., Cao, X. T., Gene Therapy, Beijing: Science Press, 2002, 83–96. Luo, D., Saltaman, W. M., Synthetic DNA delivery systems, Nature Biotechnology, 2000, 18(1): 33–37. Zuber, G., Dauty, E., Nothisen, M. et al., Towards synthetic viruses, Adv. Drug. Derliv. Rev, 2001, 52(3): 245–253. Sebestyen, M. G., Ludtke, J. J., Bassik, M. C. et al., DNA vector chemistry: the covalent attachment of signal peptides to plasmid DNA, Nat. Biotechnol., 1998, 16(1): 80–85. Ludtke, J. J., Zhang, G. F., Sebestyen, M. G. et al., A nuclear localization signal can enhance both the nuclear transport and expression of 1 kb DNA, J. Cell Sci., 1999, 112(12): 2033–2041. Neves, C., Byk, G., Scherman, D. et al., Coupling of a targeting peptide to plasmid DNA by covalent triple helix formation, FEBS Lett., 1999, 453(1): 41–45. Zanta, M. A., Belguise-Valladier, P., Behr, J. P., Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus, Proc. Natl. Acad. Sci. USA, 1999, 96(5): 91–96. Templeton, N. S., Lasic, D. D., Frederik, P. M. et al., Improved DNA: liposome complexes for increased systemic delivery and gene express, Nat. Biotechnol., 1997, 15(7): 647–652. Radier, J. Q., Koltover, J., Salditt, T. et al., Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes, Science, 1997, 275(5301): 810–814. Li, J. M., Han, J. S., Huang, Y. et al., A novel gene delivery system targeting cell expressing VEGF receptors, Cell Res., 1999, 9(1): 11–25. Borchard, G., Chitosans for gene delivery, Advanced Drug Delivery Reviews, 2001, 52(2): 145–150. Zauner, W., Ogris, M., Wagner, E., Polylysine-based transfection systems utilizing receptor-mediated delivery, Adv. Drug Derliv. Rev, 1998, 30(1–3): 97–113. Fischer, D., Bieber, T., Lin, Y. X. et al., Anovel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity, Pharmaceutical Research, 1999, 16(8): 1273–1279. Godbey, W. T., Wu, K. K., Mikos, A. G., Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery, Proc. Natl. Acad. Sci. USA, 1999, 96(9): 5177–5181. Uherek, C., Wels, W., DNA-carrier proteins for targeted gene delivery, Advanced Drug Delivery Reviews, 2000, 44(2–3): 153–166. Schwartz, B., Ivanov, M. A., Pitard, B. et al., Synthetic DNA-compacting peptides derived from human sequence enhance cationic lipid-mediated gene transfer, Gene Ther, 1999, 6(2): 282–292. Wang, D. A., Narang, A. S., Kotb, M. et al., Novel branched poly(ethylenimine)-cholesterol water-soluble lipopolymers for gene delivery, Biomacromolecules, 2002, 3(6): 1197–1207. Oupicky, D., Konak, C., Dash, P. R. et al., Effect of albumin and polyanion on the structure of DNA complexes with polycation containing hydrophilic nonionic block, Bioconjugate Chem., 1999, 10(5): 764–772. Katayose, S., Kataoka, K., Water-soluble polyion complex associates of DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer, Bioconjug. Chem., 1997, 8(5): 702–707. Akiyama, Y., Harada, A., Nagasaki, Y. et al., Synthesis of poly(ethylene glycol)-block-poly(ethylenimine) possessing an acetal group at the PEG end, Macromolecules, 2000, 33(16): 5841–5845. Kataoka, K., Harada, A., Wakebayashi, D. et al., Polyion complex micelles with reactive aldehyde groups on their surface from plasmid DNA and end-functionalized charged block copolymers, Macromolecules, 1999, 32(20): 6892–6894. Petersen, H., Kunath, K., Martin, A. L. et al., Star-shaped poly(ethylene glycol)-block-polyethylenimine copolymers enhance DNA condensation of low molecular weight polyethylenimines, Biomacromolecules, 2002, 3(5): 926–936. Ahn, C. H., Chae, S. Y., Bae, Y. H. et al., Biodegradable poly (ethylenimine) for plasmid DNA delivery, Journal of Controlled Release, 2002, 80(1–3): 273–282. Harada, A., Togawa, H., Kataoka, K., Physicochemical properties and nuclease resistance of antisense-oligodeoxynucleotides entrapped in the core of polyion complex micelles composed of poly(ethylene glycol)-poly(L-Lysine) block copolymers, Eur. J. Pharm. Sci., 2001, 13(1): 35–42. Petersen, H., Fechner, P. M., Martin, A. L. et al., Polyethylenimine-graft-poly(ethylene glycol) copolymers: influence of copolymer block structure on DNA complexation and biological activities as gene delivery system, Bioconjugate Chem., 2002, 13(4): 845–854. Katayose, S., Kataoka, K., Remarkable increase in nuclease resistance of plasmid DNA through supramolecular assembly with poly(ethylene glycol)-poly(L-lysine) block copolymer, J. Pharm. Sci., 1998, 87(2): 160–163. Zanta, M. A., Boussif, O., Adib, A. et al.,In vitro gene delivery to hepatocytes with galactosylated polyethylenimine, Bioconjug. Chem., 1997, 8(6): 839–844. Dauty, E., Remy, J. S., Zuber, G. et al., Intracellular delivery of nanometric DNA particles via the folate receptor, Bioconjug. Chem., 2002, 13(4): 831–839. Zuber, G., Liliane, Z. I., Dauty, E. et al., Targeted gene delivery to cancer cells: directed assembly of nanometric DNA particles coated with folic acid, Angew. Chem. Int. Ed., 2003, 42(23): 2666–2669. Dash, P. R., Read, M. L., Fisher, K. D. et al., Decreased binding to proteins and cells of polymeric gene delivery vectors surface modified with a multivalent hydrophilic polymer and targeting through attachment of transferrin, The Journal of Biological Chemistry, 2000, 275(6): 3793–3802. Bettinger, T., Remy, J. S., Erbacher, P., Size Reduction of galactosylated PEI/DNA complexes improves lectin-mediated gene transfer into hepatocytes, Bioconjug. Chem., 1999, 10(4): 558–561. Koyama, Y., Yamada, E., Ito, T. et al., Sugar-containing polyanions as a self-assembled coating of plasmid/polycation complexes for receptor-mediated gene delivery, Macromol. Biosci., 2002, 2(6): 251–256. Wolfert, M. A., Schacht, E. H., Toncheva, V. et al., Characterization of vectors for gene therapy formed by self-assembly of DNA with synthetic block copolymers, Human Gene Ther., 1996, 7(17): 2123–2133. Mckenzie, D. L., Smiley, E., Kwok, K. Y. et al., Low molecular weight disulfide cross-linking peptides as nonviral gene delivery carriers, Bioconjug. Chem., 2000, 11(6): 901–909. Kakizama, Y., Harada, A., Kataoka, K., Glutathione-sensitive stabilization of block copolymer micelles composed of antisense DNA and thiolated poly(ethylene glycol)-block-poly(L-lysine): A potential carrier for systemic delivery of antisense DNA, Biomacromolecules, 2001, 2(2): 491–497. Sambrook, J., Fritsch, E. F., Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., New York: Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989. Remy, J. S., Sirlin, C., Vierling, P. et al., Gene transfer with a series of lipophilic DNA-binding molecules, Bioconjug. Chem., 1994, 5(6): 647–654. Blessing, T., Remy, J. S., Behr, J. P., Template oligomerization of DNA-bound cations produces calibrated nanometric particles, J. Am. Chem. Soc, 1998, 120(33): 8519–8520. Dauty, E., Remy, J. S., Blessing, T. et al., Dimerizable cationic detergents with a low cmc condense plasmid DNA into nanometric particles and transfect cells in culture, J. Am. Chem. Soc., 2001, 123(38): 9227–9234. Blessing, T., Remy, J. S., Behr, J. P., Monomolecular collapse of plasmid DNA into stable virus-like particles, Proc. Natl. Acad. Sci. USA, 1998, 95(4): 1427–1431. Aoyama, Y., Kanamon, T., Nakai, T. et al., Artificial viruses and their application to gene delivery, size-controlled gene coating with glycocluster nanoparticles, J. Am. Chem. Soc., 2003, 125(12): 3455–3457.