Progress in Triboelectric Materials: Toward High Performance and Widespread Applications

Advanced Functional Materials - Tập 29 Số 41 - 2019
Aifang Yu1,2,3, Yaxing Zhu1,3, Wei Wang1,3, Junyi Zhai1,2,3
1CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
2Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
3School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Tóm tắt

Abstract

Triboelectric phenomena can be observed everywhere; however, they are consistently omitted from applications. Although almost all substances exhibit a triboelectrification effect in daily life, chemists as well as materials scientists have performed extensive investigations in both the aspects of basic science and practical applications to promote the development of triboelectric nanogenerators (TENGs). Here, a detailed survey of materials engineering for high triboelectric performance and multifunctional materials toward specific applications is summarized, including constructing micro/nanostructures, chemically modifying the frication surface, modulating bulk friction materials, the mechanism for improved performance, and preparing materials for implantable medical devices, bionic skin, and wearable electronic devices. Moreover, an in depth discussion of the current challenges and future efforts for strengthening the performance of TENGs is elaborated in detail, which will better guide new researchers toward a deeper understanding of and explorations about TENGs.

Từ khóa


Tài liệu tham khảo

10.1038/nature17653

10.1126/science.1094329

10.1016/S1364-0321(00)00004-6

10.1038/nmat4834

10.1038/nnano.2016.300

10.1038/nature11475

10.1016/j.nanoen.2017.10.040

10.1002/aenm.201800711

10.1039/C7TA07696G

10.1021/nl101973h

10.1016/j.nanoen.2012.01.004

10.1088/0957-4484/26/34/344001

10.1016/j.nanoen.2011.09.001

10.1021/nl3003039

10.1002/aenm.201400519

10.1038/ncomms1098

10.1021/nn302481p

10.1021/nn200942s

10.1088/0957-4484/27/28/28LT02

10.1049/ip-cds:20010525

10.1038/nenergy.2015.27

10.1016/j.nanoen.2015.07.011

10.1002/adma.201504462

10.1021/nl303573d

10.1021/am500864t

10.1038/ncomms9975

10.1021/nn4063616

10.1021/acsnano.5b00534

10.1002/adma.201404794

10.1002/aenm.201501593

10.1002/aenm.201501467

10.1002/adma.201402064

10.1039/c3ee42571a

10.1016/j.nanoen.2014.11.034

10.1038/ncomms9376

10.1039/C4FD00159A

10.1002/adfm.201303799

10.1016/j.mattod.2016.12.001

10.1002/adfm.201501331

10.1002/adma.201402428

10.1038/s41467-017-00131-4

10.1021/acsnano.6b02076

10.1016/j.elstat.2004.05.005

10.1016/j.nanoen.2018.06.075

10.1002/app.45674

10.1016/j.nanoen.2018.04.025

10.1016/j.nanoen.2017.10.037

10.1021/nl300988z

10.1002/adfm.201700794

10.1002/adfm.201200498

10.1126/sciadv.1700015

10.1002/advs.201700029

10.1002/adma.201200246

10.1021/nn501732z

10.1002/admt.201600017

10.1016/j.nanoen.2014.05.018

10.1002/adfm.201700049

http://owlsmag.wordpress.com/2010/01/20/a‐natural‐history‐devin‐corbin/.

J. C.Wilcke Disputatio Physica Experimentalis De Electricitatibus Contrariis Rostochii Typis Ioannis Iacobi Adleri 1757.

10.1021/acsnano.7b00866

10.1038/nmat2745

10.1021/nl302560k

10.1021/jp907072z

10.1021/nl503402c

10.1002/adma.201401184

10.1039/C5EE01705J

10.1021/acsnano.6b04344

10.1021/nn507221f

10.1016/j.nanoen.2016.12.032

10.1021/acsami.6b14729

10.1016/j.nanoen.2017.04.009

10.1002/adma.201705840

10.1021/am401397h

10.1016/j.nanoen.2018.04.071

10.1002/adem.201700957

10.1002/smll.201700373

10.1021/acssuschemeng.7b03745

10.1021/nl4001053

10.1016/j.nanoen.2016.01.021

10.1002/adem.201700767

10.1021/nl3045684

10.1016/j.nanoen.2016.08.014

10.1002/adfm.201706365

10.1021/acsami.6b02802

10.1016/j.nanoen.2016.05.048

10.1002/adfm.201502318

10.1016/j.tsf.2017.03.034

10.1002/adfm.201701367

10.1021/acsnano.7b02156

10.1021/acsnano.5b01340

10.1002/adma.201402491

10.1039/C5TA10239A

10.1016/j.eml.2016.02.019

10.1016/j.nanoen.2013.12.016

10.1021/cr9502357

10.1021/acsami.5b09907

10.1002/adfm.201703778

10.1021/acsaem.8b00530

10.1021/acsami.8b05966

10.1016/j.nanoen.2017.06.017

10.1021/acsami.8b02495

10.1038/srep13942

10.1002/aenm.201800654

10.1021/acsami.7b15238

10.1016/j.nanoen.2018.05.037

10.1016/j.nanoen.2016.12.035

10.1021/acsnano.7b03657

10.1016/j.carbon.2016.10.041

10.1002/adma.201502546

10.1021/acsami.8b02133

10.1002/smll.201200999

10.1088/2053-1583/3/3/034002

10.1016/j.nanoen.2017.12.048

10.1021/acs.jpcc.5b00360

10.1002/adma.201706267

10.1002/adfm.201600624

10.1002/smll.201702929

10.1002/adma.201603115

10.1002/adma.201603527

10.1039/C7NR02147J

10.1021/acsnano.8b02479

10.1002/adma.201500652

10.1002/admt.201700370

10.1002/mop.27200

10.1002/aenm.201601048

10.1038/ncomms12744

10.1002/aenm.201502329

10.1126/sciadv.1501478

10.1002/adma.201801895

10.1021/am5071688

10.1002/adma.201504403

10.1021/am504110u

10.1002/adma.201603679

10.1021/acsnano.7b05317

10.1021/acsnano.7b07534

10.1002/adma.201402574

10.1021/acsnano.6b03007

10.1039/C8TA03262A

10.1088/1742-6596/773/1/012005

10.1021/acsnano.8b00147

10.1002/adma.201702181