Progress in Electrolyte Engineering of Aqueous Batteries in a Wide Temperature Range

Lingjun He1,2, Chuyuan Lin1, Peixun Xiong3, Huakuan Lin1, Wenbin Lai1, Jingran Zhang1, Fuyu Xiao4, Liren Xiao1,2, Qingrong Qian4, Qinghua Chen4, Zeng Ling5
1Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, China
2College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
3Inorganic Chemistry I, Technische Universität Dresden, Dresden, Germany
4Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, 350007, China
5Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China

Tóm tắt

AbstractAqueous rechargeable batteries are safe and environmentally friendly and can be made at a low cost; as such, they are attracting attention in the field of energy storage. However, the temperature sensitivity of aqueous batteries hinders their practical application. The solvent water freezes at low temperatures, and there is a reduction in ionic conductivity, whereas it evaporates rapidly at high temperatures, which causes increased side reactions. This review discusses recent progress in improving the performance of aqueous batteries, mainly with respect to electrolyte engineering and the associated strategies employed to achieve such improvements over a wide temperature domain. The review focuses on five electrolyte engineering (aqueous high-concentration electrolytes, organic electrolytes, quasi-solid/solid electrolytes, hybrid electrolytes, and eutectic electrolytes) and investigates the mechanisms involved in reducing the solidification point and boiling point of the electrolyte and enhancing the extreme-temperature electrochemical performance. Finally, the prospect of further improving the wide temperature range performance of aqueous rechargeable batteries is presented.

Từ khóa


Tài liệu tham khảo

Hou WH, Lu Y, Ou Y et al (2023) Recent advances in electrolytes for high-voltage cathodes of lithium-ion batteries. Trans Tianjin Univ 29(2):120–135

Wang L, Menakath A, Han F et al (2019) Identifying the components of the solid-electrolyte interphase in Li-ion batteries. Nat Chem 11(9):789–796

Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657

Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935

Luo F, Feng X, Zeng L et al (2021) In situ simultaneous encapsulation of defective MoS2 nanolayers and sulfur nanodots into SPAN fibers for high rate sodium-ion batteries. Chem Eng J 404:126430

Wang M, Meng Y, Li K et al (2022) Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer. eScience 2(5):509–517

Yao YX, Yao N, Zhou XR et al (2022) Ethylene-carbonate-free electrolytes for rechargeable Li-ion pouch cells at sub-freezing temperatures. Adv Mater 34(45):e2206448

Liu Z, Huang Y, Huang Y et al (2020) Voltage issue of aqueous rechargeable metal-ion batteries. Chem Soc Rev 49(1):180–232

Zhang X, Li J, Ao H et al (2020) Appropriately hydrophilic/hydrophobic cathode enables high-performance aqueous zinc-ion batteries. Energy Storage Mater 30:337–345

Zhang S, Li S, Lu Y (2021) Designing safer lithium-based batteries with nonflammable electrolytes: a review. eScience 1(2):163–177

Wang J, Wang B, Lu B (2020) Nature of novel 2D van der Waals heterostructures for superior potassium ion batteries. Adv Energy Mater 10(24):2000884

Huang Y, Li Z, Pei Z et al (2018) Solid-state rechargeable Zn/NiCo and Zn-air batteries with ultralong lifetime and high capacity: the role of a sodium polyacrylate hydrogel electrolyte. Adv Energy Mater 8(31):1802288

Wang H, Liu J, He J et al (2022) Pseudo-concentrated electrolytes for lithium metal batteries. eScience 2(5):557–565

Huang J, Guo Z, Ma Y et al (2019) Recent progress of rechargeable batteries using mild aqueous electrolytes. Small Meth 3(1):1800272

Wang D, Zhao Y, Liang G et al (2020) A zinc battery with ultra-flat discharge plateau through phase transition mechanism. Nano Energy 71:104583

Zhang Y, Zhao L, Liang Y et al (2022) Effect of electrolyte anions on the cycle life of a polymer electrode in aqueous batteries. eScience 2(1):110–115

Li H, Ma L, Han C et al (2019) Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62:550–587

Fang L, Cai Z, Ding Z et al (2019) Skin-inspired surface-microstructured tough hydrogel electrolytes for stretchable supercapacitors. ACS Appl Mater Interfaces 11(24):21895–21903

Ji X (2022) A perspective of ZnCl2 electrolytes: the physical and electrochemical properties. eScience 1(2):99–107

Xu CX, Jiang J (2021) Electrolytes speed up development of zinc batteries. Rare Met 40(4):749–751

Jiang L, Lu Y, Zhao C et al (2019) Building aqueous K-ion batteries for energy storage. Nat Energy 4(6):495–503

Hubble D, Brown DE, Zhao Y et al (2022) Liquid electrolyte development for low-temperature lithium-ion batteries. Energy Environ Sci 15(2):550–578

Zhu K, Sun Z, Li Z et al (2023) Design strategies and recent advancements for low-temperature aqueous rechargeable energy storage. Adv Energy Mater 13(8):2203708

Zhang Q, Ma Y, Lu Y et al (2020) Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat Commun 11(1):4463

Nian Q, Wang J, Liu S et al (2019) Aqueous batteries operated at −50 ℃. Angew Chem Int Ed 58(47):16994–16999

Feng Y, Zhou L, Ma H et al (2022) Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ Sci 15(5):1711–1759

Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4417

Hou J, Yang M, Wang D et al (2020) Lithium-ion batteries: fundamentals and challenges of lithium ion batteries at temperatures between −40 and 60 ℃. Adv Energy Mater 10(18):2070079

Dong X, Wang YG, Xia Y (2021) Promoting rechargeable batteries operated at low temperature. Acc Chem Res 54(20):3883–3894

Wang M, Li T, Yin Y et al (2022) A −60 ℃ low-temperature aqueous lithium ion-bromine battery with high power density enabled by electrolyte design. Adv Energy Mater 12(25):2200728

Shang Y, Chen S, Chen N et al (2022) A universal strategy for high-voltage aqueous batteries via lone pair electrons as the hydrogen bond-breaker. Energy Environ Sci 15(6):2653–2663

Zhang X, Chen J, Xu Z et al (2022) Aqueous electrolyte with moderate concentration enables high-energy aqueous rechargeable lithium ion battery for large scale energy storage. Energy Storage Mater 46:147–154

Lu C, Chen X (2020) All-temperature flexible supercapacitors enabled by antifreezing and thermally stable hydrogel electrolyte. Nano Lett 20(3):1907–1914

Wang H, Chen Z, Ji Z et al (2021) Temperature adaptability issue of aqueous rechargeable batteries. Mater Today Energy 19:100577

Li F, Hu X (2021) Zinc metal energy storage devices under extreme conditions of low temperatures. Batter Supercaps 4(3):389–406

Ramanujapuram A, Yushin G (2018) Understanding the exceptional performance of lithium-ion battery cathodes in aqueous electrolytes at subzero temperatures. Adv Energy Mater 8(35):1802624

Liu Z, Luo X, Qin L et al (2022) Progress and prospect of low-temperature zinc metal batteries. Adv Powder Mater 1(2):100011

Tamtögl A, Bahn E, Sacchi M et al (2021) Motion of water monomers reveals a kinetic barrier to ice nucleation on graphene. Nat Commun 12(1):3120

Deng T, Zhang W, Zhang H et al (2018) Anti-freezing aqueous electrolyte for high-performance Co(OH)2 supercapacitors at −30 ℃. Energy Technol 6(4):605–612

Ma L, Li N, Long C et al (2019) Achieving both high voltage and high capacity in aqueous zinc-ion battery for record high energy density. Adv Funct Mater 29(46):1906142

Zhang H, Liu X, Li H et al (2020) High-voltage operation of a V2O5 cathode in a concentrated gel polymer electrolyte for high-energy aqueous zinc batteries. ACS Appl Mater Interfaces 12(13):15305–15312

Lukatskaya MR, Feldblyum JI, Mackanic DG et al (2018) Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy Environ Sci 11(10):2876–2883

Zhang Q, Xia K, Ma Y et al (2021) Chaotropic anion and fast-kinetics cathode enabling low-temperature aqueous Zn batteries. ACS Energy Lett 6(8):2704–2712

Liang G, Gan Z, Wang X et al (2021) Reconstructing vanadium oxide with anisotropic pathways for a durable and fast aqueous K-ion battery. ACS Nano 15(11):17717–17728

Jiang L, Liu L, Yue J et al (2020) High-voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte. Adv Mater 32(2):e1904427

Yue J, Lin L, Jiang L et al (2020) Interface concentrated-confinement suppressing cathode dissolution in water-in-salt electrolyte. Adv Energy Mater 10(36):2000665

Becker M, Kühnel RS, Battaglia C (2019) Water-in-salt electrolytes for aqueous lithium-ion batteries with liquidus temperatures below −10 ℃. Chem Commun 55(80):12032–12035

Reber D, Kühnel RS, Battaglia C (2019) Suppressing crystallization of water-in-salt electrolytes by asymmetric anions enables low-temperature operation of high-voltage aqueous batteries. ACS Mater Lett 1(1):44–51

Sun T, Yuan X, Wang K et al (2021) An ultralow-temperature aqueous zinc-ion battery. J Mater Chem A 9(11):7042–7047

Borodin O, Self J, Persson KA et al (2020) Uncharted waters: super-concentrated electrolytes. Joule 4(1):69–100

Yamada Y (2020) Concentrated battery electrolytes: developing new functions by manipulating the coordination states. Bull Chem Soc Jpn 93(1):109–118

Song M, Tan H, Chao D et al (2018) Recent advances in Zn-ion batteries. Adv Funct Mater 28(41):1802564

Yamada Y, Yaegashi M, Abe T et al (2013) A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Chem Commun 49(95):11194–11196

Zhang H, Liu X, Li H et al (2021) Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew Chem Int Ed 60(2):598–616

Chao D, Qiao SZ (2020) Toward high-voltage aqueous batteries: super- or low-concentrated electrolyte? Joule 4(9):1846–1851

Yu M, Lu Y, Zheng H et al (2018) New insights into the operating voltage of aqueous supercapacitors. Chem-Eur J 24(15):3639–3649

Sui X, Guo H, Chen P et al (2019) Zwitterionic osmolyte-based hydrogels with antifreezing property, high conductivity, and stable flexibility at subzero temperature. Adv Funct Mater 30(7):1907986

Wang M, Wang Q, Ding X et al (2022) The prospect and challenges of sodium-ion batteries for low-temperature conditions. Interdiscipl Mater 1(3):373–395

Huang J, Dong X, Wang N et al (2022) Building low-temperature batteries: non-aqueous or aqueous electrolyte? Curr Opin Electrochem 33:100949

Zhou W, Chen J, Chen M et al (2020) An environmentally adaptive quasi-solid-state zinc-ion battery based on magnesium vanadate hydrate with commercial-level mass loading and anti-freezing gel electrolyte. J Mater Chem A 8(17):8397–8409

Shi Y, Wang R, Bi S et al (2023) An anti-freezing hydrogel electrolyte for flexible zinc-ion batteries operating at –70 ℃. Adv Funct Mater 33(24):2214546

Hu Y, Shi R, Ren Y et al (2022) A “two-in-one” strategy for flexible aqueous batteries operated at –80 ℃. Adv Funct Mater 32(27):2203081

Liu T, Liu KT, Wang J et al (2021) Achievement of a polymer-free KAc gel electrolyte for advanced aqueous K-ion battery. Energy Storage Mater 41:133–140

Mo F, Li Q, Liang G et al (2021) A self-healing crease-free supramolecular all-polymer supercapacitor. Adv Sci 8(12):2100072

Fu Q, Hao S, Meng L et al (2021) Engineering self-adhesive polyzwitterionic hydrogel electrolytes for flexible zinc-ion hybrid capacitors with superior low-temperature adaptability. ACS Nano 15(11):18469–18482

Fu Q, Hao S, Zhang X et al (2023) All-round supramolecular zwitterionic hydrogel electrolytes enabling environmentally adaptive dendrite-free aqueous zinc ion capacitors. Energy Environ Sci 16(3):1291–1311

Gong JP, Katsuyama Y, Kurokawa T et al (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15(14):1155–1158

Sun N, Lu F, Yu Y et al (2020) Alkaline double-network hydrogels with high conductivities, superior mechanical performances, and antifreezing properties for solid-state zinc-air batteries. ACS Appl Mater Interfaces 12(10):11778–11788

Zhang Y, Qin H, Alfred M et al (2021) Reaction modifier system enable double-network hydrogel electrolyte for flexible zinc-air batteries with tolerance to extreme cold conditions. Energy Storage Mater 42:88–96

Zhao Y, Chen Z, Mo F et al (2020) Aqueous rechargeable metal-ion batteries working at subzero temperatures. Adv Sci 8(1):2002590

Zhou D, Chen F, Handschuh-Wang S et al (2019) Biomimetic extreme-temperature- and environment-adaptable hydrogels. ChemPhysChem 20(17):2139–2154

Zheng J, Engelhard MH, Mei D et al (2017) Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat Energy 2:17012

Song M, Zhong CL (2022) Achieving both high reversible and stable Zn anode by a practical glucose electrolyte additive toward high-performance Zn-ion batteries. Rare Met 41(2):356–360

Ren HT, Zhang ZQ, Zhang JZ et al (2022) Improvement of stability and solid-state battery performances of annealed 70Li2S–30P2S5 electrolytes by additives. Rare Met 41:106–114

Tang X, Zhang WC, Cao LY (2022) Multifunctional high-fluorine-content molecule with high dipole moment as electrolyte additive for high performance lithium metal batteries. Rare Met 41(3):726–729

Jin Y, Han KS, Shao Y et al (2020) Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes. Adv Funct Mater 30(43):2003932

Han W, Ardhi R, Liu GC (2022) Dual impact of superior SEI and separator wettability to inhibit lithium dendrite growth. Rare Met 41(2):353–355

Guo Y, Liu J, Yang Q et al (2020) Metal-tuned acetylene linkages in hydrogen substituted graphdiyne boosting the electrochemical oxygen reduction. Small 16(10):e1907341

Xu Z, Yang J, Li H et al (2019) Electrolytes for advanced lithium ion batteries using silicon-based anodes. J Mater Chem A 7(16):9432–9446

Sun P, Ma L, Zhou W et al (2021) Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew Chem Int Ed 60(33):18247–18255

Ma Z, Chen J, Vatamanu J et al (2022) Expanding the low-temperature and high-voltage limits of aqueous lithium-ion battery. Energy Storage Mater 45:903–910

Xiong P, Kang Y, Yao N et al (2023) Zn-ion transporting, in situ formed robust solid electrolyte interphase for stable zinc metal anodes over a wide temperature range. ACS Energy Lett 8(3):1613–1625

Tron A, Jeong S, Park YD et al (2019) Aqueous lithium-ion battery of nano-LiFePO4 with antifreezing agent of ethyleneglycol for low-temperature operation. ACS Sustain Chem Eng 7(17):14531–14538

Lin C, Yang X, Xiong P et al (2022) High-rate, large capacity, and long life dendrite-free Zn metal anode enabled by trifunctional electrolyte additive with a wide temperature range. Adv Sci 9(21):e2201433

Wang A, Zhou W, Huang A et al (2021) Developing improved electrolytes for aqueous zinc-ion batteries to achieve excellent cyclability and antifreezing ability. J Colloid Interface Sci 586:362–370

Chen J, Vatamanu J, Xing L et al (2020) Improving electrochemical stability and low-temperature performance with water/acetonitrile hybrid electrolytes. Adv Energy Mater 10(3):1902654

Ma Q, Gao R, Liu Y et al (2022) Regulation of outer solvation shell toward superior low-temperature aqueous zinc-ion batteries. Adv Mater 34(49):e2207344

Chang N, Li T, Li R et al (2020) An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ Sci 13(10):3527–3535

Cai S, Chu X, Liu C et al (2021) Water-salt oligomers enable supersoluble electrolytes for high-performance aqueous batteries. Adv Mater 33(13):e2007470

Yang Y, Yang Y, Cao Y et al (2021) Anti-freezing, resilient and tough hydrogels for sensitive and large-range strain and pressure sensors. Chem Eng J 403:126431

Ding Y, Zhong X, Yuan C et al (2021) Sodium alginate binders for bivalency aqueous batteries. ACS Appl Mater Interfaces 13(17):20681–20688

Ahn SM, Suk J, Kim DY et al (2017) High-performance lithium-oxygen battery electrolyte derived from optimum combination of solvent and lithium salt. Adv Sci 4(10):1700235

Rong JZ, Cai TX, Bai YZ et al (2022) A free-sealed high-voltage aqueous polymeric sodium battery enabling operation at −25 ℃. Cell Rep Phys Sci 3(3):100805

Liu J, Yang C, Chi X et al (2022) Water/sulfolane hybrid electrolyte achieves ultralow-temperature operation for high-voltage aqueous lithium-ion batteries. Adv Funct Mater 32(1):2106811

Zhao Z, Yin J, Yin J et al (2023) End-capping of hydrogen bonds: a strategy for blocking the proton conduction pathway in aqueous electrolytes. Energy Storage Mater 55:479–489

Dong Y, Zhang N, Wang Z et al (2023) Cell-nucleus structured electrolyte for low-temperature aqueous zinc batteries. J Energy Chem 83:324–332

Yao N, Chen X, Fu ZH et al (2022) Applying classical, ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries. Chem Rev 122(12):10970–11021

Sun T, Zheng S, Du H et al (2021) Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nanomicro Lett 13(1):204

Zhu K, Sun Z, Jin T et al (2022) Tailoring pure inorganic electrolyte for aqueous sodium-ion batteries operating at –60 ℃. Batter Supercaps 5(12):e202200308

Zhu K, Li Z, Sun Z et al (2022) Inorganic electrolyte for low-temperature aqueous sodium ion batteries. Small 18(14):e2107662

Du H, Wang K, Sun T et al (2022) Improving zinc anode reversibility by hydrogen bond in hybrid aqueous electrolyte. Chem Eng J 427:131705

Liu S, Mao J, Pang WK et al (2021) Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc-ion batteries. Adv Funct Mater 31(38):2104281

Ahmed F, Rahman MM, Chandra Sutradhar S et al (2019) Novel divalent organo-lithium salts with high electrochemical and thermal stability for aqueous rechargeable Li-Ion batteries. Electrochim Acta 298:709–716

Jin D, Choi S, Jang W et al (2019) Bismuth islands for low-temperature sodium-beta alumina batteries. ACS Appl Mater Interfaces 11(3):2917–2924

Sui Y, Ji X (2021) Anticatalytic strategies to suppress water electrolysis in aqueous batteries. Chem Rev 121(11):6654–6695

Zhang Y, Xu J, Li Z et al (2022) All-climate aqueous Na-ion batteries using water-in-salt electrolyte. Sci Bull 67(2):161–170

Yan L, Qi YE, Dong X et al (2021) Ammonium-ion batteries with a wide operating temperature window from −40 to 80℃. eScience 1(2):212–218

Xie J, Liang Z, Lu YC (2020) Molecular crowding electrolytes for high-voltage aqueous batteries. Nat Mater 19(9):1006–1011

Wang J, Yang Y, Wang Y et al (2022) Working aqueous Zn metal batteries at 100 ℃. ACS Nano 16(10):15770–15778

Gu C, Xie XQ, Liang Y et al (2021) Small molecule-based supramolecular-polymer double-network hydrogel electrolytes for ultra-stretchable and waterproof Zn-air batteries working from −50 to 100 ℃. Energy Environ Sci 14(8):4451–4462

Zheng J, Yang Y, Li W et al (2020) Novel flame retardant rigid spirocyclic biphosphate based copolymer gel electrolytes for sodium ion batteries with excellent high-temperature performance. J Mater Chem A 8(43):22962–22968

Hyun WJ, de Moraes ACM, Lim JM et al (2019) High-modulus hexagonal boron nitride nanoplatelet gel electrolytes for solid-state rechargeable lithium-ion batteries. ACS Nano 13(8):9664–9672

Jiang Y, Ma K, Sun M et al (2023) All-climate stretchable dendrite-free Zn-ion hybrid supercapacitors enabled by hydrogel electrolyte engineering. Energy Environ Mater 6(2):e12357

Hou X, Pollard TP, He X et al (2022) “Water-in-eutectogel” electrolytes for quasi-solid-state aqueous lithium-ion batteries. Adv Energy Mater 12(23):2200401

Lu H, Hu J, Wang L et al (2022) Multi-component crosslinked hydrogel electrolyte toward dendrite-free aqueous Zn ion batteries with high temperature adaptability. Adv Funct Mater 32(19):2112540

Zhou J, Yuan H, Li J et al (2022) Highly reversible and stable Zn metal anode under wide temperature conditions enabled by modulating electrolyte chemistry. Chem Eng J 442:136218

Li X, Wang H, Sun X et al (2021) Flexible wide-temperature zinc-ion battery enabled by an ethylene glycol-based organohydrogel electrolyte. ACS Appl Energy Mater 4(11):12718–12727

Zhao M, Lv Y, Zhao S et al (2022) Simultaneously stabilizing both electrodes and electrolytes by a self-separating organometallics interface for high-performance zinc-ion batteries at wide temperatures. Adv Mater 34(49):e2206239

Wang Y, Wang Z, Pang WK et al (2023) Solvent control of water O–H bonds for highly reversible zinc ion batteries. Nat Commun 14(1):2720

Han D, Cui C, Zhang K et al (2022) A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nat Sustain 5(3):205–213

Sun Y, Zhang Y, Xu Z et al (2022) Dilute hybrid electrolyte for low-temperature aqueous sodium-ion batteries. Chemsuschem 15(23):e202201362

Sun T, Nian Q, Du H et al (2022) Aqueous proton battery stably operates in mild electrolyte and low-temperature conditions. J Mater Chem A 10(33):17288–17296

Wang N, Yang Y, Qiu X et al (2020) Stabilized rechargeable aqueous zinc batteries using ethylene glycol as water blocker. Chemsuschem 13(20):5556–5564

Hao J, Yuan L, Ye C et al (2021) Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew Chem Int Ed 60(13):7366–7375

Wang J, Zhu Q, Li F et al (2022) Low-temperature and high-rate Zn metal batteries enabled by mitigating Zn2+ concentration polarization. Chem Eng J 433:134589

Deng W, Zhou Z, Li Y et al (2020) High-capacity layered magnesium vanadate with concentrated gel electrolyte toward high-performance and wide-temperature zinc-ion battery. ACS Nano 14(11):15776–15785

Wang H, Liu J, Wang J et al (2019) Concentrated hydrogel electrolyte-enabled aqueous rechargeable NiCo// Zn battery working from –20 to 50 ℃. ACS Appl Mater Interfaces 11(1):49–55

Chen M, Chen J, Zhou W et al (2021) Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn–MnO2 batteries. Adv Mater 33(9):e2007559

Mo F, Liang G, Wang D et al (2019) Biomimetic organohydrogel electrolytes for high-environmental adaptive energy storage devices. EcoMat 1(1):e12008

Gu C, Xie XQ, Liang Y et al (2021) Small molecule-based supramolecular-polymer double-network hydrogel electrolytes for ultra-stretchable and waterproof Zn-air batteries working from −50 to 100 ℃. Energy Environ Sci 14(8):4451–4462

Yesibolati N, Umirov N, Koishybay A et al (2015) High performance Zn/LiFePO4 aqueous rechargeable battery for large scale applications. Electrochim Acta 152:505–511

Cao L, Li D, Soto FA et al (2021) Highly reversible aqueous zinc batteries enabled by zincophilic-zincophobic interfacial layers and interrupted hydrogen-bond electrolytes. Angew Chem Int Ed 60(34):18845–18851

Wang N, Dong X, Wang B et al (2020) Zinc-organic battery with a wide operation-temperature window from –70 to 150 ℃. Angew Chem Int Ed 59(34):14577–14583

Liu K, Liu Y, Lin D et al (2018) Materials for lithium-ion battery safety. Sci Adv 4(6):eaas9820

Yuan Z, Xiao F, Fang Y et al (2023) Defect engineering on VO2(B) nanoleaves/graphene oxide for the high performance of cathodes of zinc-ion batteries with a wide temperature range. J Power Sources 559:232688

Yuan Z, Yang X, Lin C et al (2023) Progressive activation of porous vanadium nitride microspheres with intercalation-conversion reactions toward high performance over a wide temperature range for zinc-ion batteries. J Colloid Interface Sci 640:487–497

Wang Y, Xiao F, Chen X et al (2023) Extraordinarily stable and wide-temperature range sodium/potassium-ion batteries based on 1D SnSe2-SePAN composite nanofibers. InfoMat 5(10):e12467

Xiong P, Zhang Y, Zhang J et al (2022) Recent progress of artificial interfacial layers in aqueous Zn metal batteries. EnergyChem 4(4):100076

Lei Z, Zheng J, He X et al (2023) Defect-rich WS2–SPAN nanofibers for sodium/potassium-ion batteries: ultralong lifespans and wide-temperature workability. Inorg Chem Front 10(4):1187–1196