Progress in Electrolyte Engineering of Aqueous Batteries in a Wide Temperature Range
Tóm tắt
Từ khóa
Tài liệu tham khảo
Hou WH, Lu Y, Ou Y et al (2023) Recent advances in electrolytes for high-voltage cathodes of lithium-ion batteries. Trans Tianjin Univ 29(2):120–135
Wang L, Menakath A, Han F et al (2019) Identifying the components of the solid-electrolyte interphase in Li-ion batteries. Nat Chem 11(9):789–796
Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935
Luo F, Feng X, Zeng L et al (2021) In situ simultaneous encapsulation of defective MoS2 nanolayers and sulfur nanodots into SPAN fibers for high rate sodium-ion batteries. Chem Eng J 404:126430
Wang M, Meng Y, Li K et al (2022) Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer. eScience 2(5):509–517
Yao YX, Yao N, Zhou XR et al (2022) Ethylene-carbonate-free electrolytes for rechargeable Li-ion pouch cells at sub-freezing temperatures. Adv Mater 34(45):e2206448
Liu Z, Huang Y, Huang Y et al (2020) Voltage issue of aqueous rechargeable metal-ion batteries. Chem Soc Rev 49(1):180–232
Zhang X, Li J, Ao H et al (2020) Appropriately hydrophilic/hydrophobic cathode enables high-performance aqueous zinc-ion batteries. Energy Storage Mater 30:337–345
Zhang S, Li S, Lu Y (2021) Designing safer lithium-based batteries with nonflammable electrolytes: a review. eScience 1(2):163–177
Wang J, Wang B, Lu B (2020) Nature of novel 2D van der Waals heterostructures for superior potassium ion batteries. Adv Energy Mater 10(24):2000884
Huang Y, Li Z, Pei Z et al (2018) Solid-state rechargeable Zn/NiCo and Zn-air batteries with ultralong lifetime and high capacity: the role of a sodium polyacrylate hydrogel electrolyte. Adv Energy Mater 8(31):1802288
Wang H, Liu J, He J et al (2022) Pseudo-concentrated electrolytes for lithium metal batteries. eScience 2(5):557–565
Huang J, Guo Z, Ma Y et al (2019) Recent progress of rechargeable batteries using mild aqueous electrolytes. Small Meth 3(1):1800272
Wang D, Zhao Y, Liang G et al (2020) A zinc battery with ultra-flat discharge plateau through phase transition mechanism. Nano Energy 71:104583
Zhang Y, Zhao L, Liang Y et al (2022) Effect of electrolyte anions on the cycle life of a polymer electrode in aqueous batteries. eScience 2(1):110–115
Li H, Ma L, Han C et al (2019) Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62:550–587
Fang L, Cai Z, Ding Z et al (2019) Skin-inspired surface-microstructured tough hydrogel electrolytes for stretchable supercapacitors. ACS Appl Mater Interfaces 11(24):21895–21903
Ji X (2022) A perspective of ZnCl2 electrolytes: the physical and electrochemical properties. eScience 1(2):99–107
Jiang L, Lu Y, Zhao C et al (2019) Building aqueous K-ion batteries for energy storage. Nat Energy 4(6):495–503
Hubble D, Brown DE, Zhao Y et al (2022) Liquid electrolyte development for low-temperature lithium-ion batteries. Energy Environ Sci 15(2):550–578
Zhu K, Sun Z, Li Z et al (2023) Design strategies and recent advancements for low-temperature aqueous rechargeable energy storage. Adv Energy Mater 13(8):2203708
Zhang Q, Ma Y, Lu Y et al (2020) Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat Commun 11(1):4463
Nian Q, Wang J, Liu S et al (2019) Aqueous batteries operated at −50 ℃. Angew Chem Int Ed 58(47):16994–16999
Feng Y, Zhou L, Ma H et al (2022) Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ Sci 15(5):1711–1759
Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4417
Hou J, Yang M, Wang D et al (2020) Lithium-ion batteries: fundamentals and challenges of lithium ion batteries at temperatures between −40 and 60 ℃. Adv Energy Mater 10(18):2070079
Dong X, Wang YG, Xia Y (2021) Promoting rechargeable batteries operated at low temperature. Acc Chem Res 54(20):3883–3894
Wang M, Li T, Yin Y et al (2022) A −60 ℃ low-temperature aqueous lithium ion-bromine battery with high power density enabled by electrolyte design. Adv Energy Mater 12(25):2200728
Shang Y, Chen S, Chen N et al (2022) A universal strategy for high-voltage aqueous batteries via lone pair electrons as the hydrogen bond-breaker. Energy Environ Sci 15(6):2653–2663
Zhang X, Chen J, Xu Z et al (2022) Aqueous electrolyte with moderate concentration enables high-energy aqueous rechargeable lithium ion battery for large scale energy storage. Energy Storage Mater 46:147–154
Lu C, Chen X (2020) All-temperature flexible supercapacitors enabled by antifreezing and thermally stable hydrogel electrolyte. Nano Lett 20(3):1907–1914
Wang H, Chen Z, Ji Z et al (2021) Temperature adaptability issue of aqueous rechargeable batteries. Mater Today Energy 19:100577
Li F, Hu X (2021) Zinc metal energy storage devices under extreme conditions of low temperatures. Batter Supercaps 4(3):389–406
Ramanujapuram A, Yushin G (2018) Understanding the exceptional performance of lithium-ion battery cathodes in aqueous electrolytes at subzero temperatures. Adv Energy Mater 8(35):1802624
Liu Z, Luo X, Qin L et al (2022) Progress and prospect of low-temperature zinc metal batteries. Adv Powder Mater 1(2):100011
Tamtögl A, Bahn E, Sacchi M et al (2021) Motion of water monomers reveals a kinetic barrier to ice nucleation on graphene. Nat Commun 12(1):3120
Deng T, Zhang W, Zhang H et al (2018) Anti-freezing aqueous electrolyte for high-performance Co(OH)2 supercapacitors at −30 ℃. Energy Technol 6(4):605–612
Ma L, Li N, Long C et al (2019) Achieving both high voltage and high capacity in aqueous zinc-ion battery for record high energy density. Adv Funct Mater 29(46):1906142
Zhang H, Liu X, Li H et al (2020) High-voltage operation of a V2O5 cathode in a concentrated gel polymer electrolyte for high-energy aqueous zinc batteries. ACS Appl Mater Interfaces 12(13):15305–15312
Lukatskaya MR, Feldblyum JI, Mackanic DG et al (2018) Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy Environ Sci 11(10):2876–2883
Zhang Q, Xia K, Ma Y et al (2021) Chaotropic anion and fast-kinetics cathode enabling low-temperature aqueous Zn batteries. ACS Energy Lett 6(8):2704–2712
Liang G, Gan Z, Wang X et al (2021) Reconstructing vanadium oxide with anisotropic pathways for a durable and fast aqueous K-ion battery. ACS Nano 15(11):17717–17728
Jiang L, Liu L, Yue J et al (2020) High-voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte. Adv Mater 32(2):e1904427
Yue J, Lin L, Jiang L et al (2020) Interface concentrated-confinement suppressing cathode dissolution in water-in-salt electrolyte. Adv Energy Mater 10(36):2000665
Becker M, Kühnel RS, Battaglia C (2019) Water-in-salt electrolytes for aqueous lithium-ion batteries with liquidus temperatures below −10 ℃. Chem Commun 55(80):12032–12035
Reber D, Kühnel RS, Battaglia C (2019) Suppressing crystallization of water-in-salt electrolytes by asymmetric anions enables low-temperature operation of high-voltage aqueous batteries. ACS Mater Lett 1(1):44–51
Sun T, Yuan X, Wang K et al (2021) An ultralow-temperature aqueous zinc-ion battery. J Mater Chem A 9(11):7042–7047
Borodin O, Self J, Persson KA et al (2020) Uncharted waters: super-concentrated electrolytes. Joule 4(1):69–100
Yamada Y (2020) Concentrated battery electrolytes: developing new functions by manipulating the coordination states. Bull Chem Soc Jpn 93(1):109–118
Song M, Tan H, Chao D et al (2018) Recent advances in Zn-ion batteries. Adv Funct Mater 28(41):1802564
Yamada Y, Yaegashi M, Abe T et al (2013) A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Chem Commun 49(95):11194–11196
Zhang H, Liu X, Li H et al (2021) Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew Chem Int Ed 60(2):598–616
Chao D, Qiao SZ (2020) Toward high-voltage aqueous batteries: super- or low-concentrated electrolyte? Joule 4(9):1846–1851
Yu M, Lu Y, Zheng H et al (2018) New insights into the operating voltage of aqueous supercapacitors. Chem-Eur J 24(15):3639–3649
Sui X, Guo H, Chen P et al (2019) Zwitterionic osmolyte-based hydrogels with antifreezing property, high conductivity, and stable flexibility at subzero temperature. Adv Funct Mater 30(7):1907986
Wang M, Wang Q, Ding X et al (2022) The prospect and challenges of sodium-ion batteries for low-temperature conditions. Interdiscipl Mater 1(3):373–395
Huang J, Dong X, Wang N et al (2022) Building low-temperature batteries: non-aqueous or aqueous electrolyte? Curr Opin Electrochem 33:100949
Zhou W, Chen J, Chen M et al (2020) An environmentally adaptive quasi-solid-state zinc-ion battery based on magnesium vanadate hydrate with commercial-level mass loading and anti-freezing gel electrolyte. J Mater Chem A 8(17):8397–8409
Shi Y, Wang R, Bi S et al (2023) An anti-freezing hydrogel electrolyte for flexible zinc-ion batteries operating at –70 ℃. Adv Funct Mater 33(24):2214546
Hu Y, Shi R, Ren Y et al (2022) A “two-in-one” strategy for flexible aqueous batteries operated at –80 ℃. Adv Funct Mater 32(27):2203081
Liu T, Liu KT, Wang J et al (2021) Achievement of a polymer-free KAc gel electrolyte for advanced aqueous K-ion battery. Energy Storage Mater 41:133–140
Mo F, Li Q, Liang G et al (2021) A self-healing crease-free supramolecular all-polymer supercapacitor. Adv Sci 8(12):2100072
Fu Q, Hao S, Meng L et al (2021) Engineering self-adhesive polyzwitterionic hydrogel electrolytes for flexible zinc-ion hybrid capacitors with superior low-temperature adaptability. ACS Nano 15(11):18469–18482
Fu Q, Hao S, Zhang X et al (2023) All-round supramolecular zwitterionic hydrogel electrolytes enabling environmentally adaptive dendrite-free aqueous zinc ion capacitors. Energy Environ Sci 16(3):1291–1311
Gong JP, Katsuyama Y, Kurokawa T et al (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15(14):1155–1158
Sun N, Lu F, Yu Y et al (2020) Alkaline double-network hydrogels with high conductivities, superior mechanical performances, and antifreezing properties for solid-state zinc-air batteries. ACS Appl Mater Interfaces 12(10):11778–11788
Zhang Y, Qin H, Alfred M et al (2021) Reaction modifier system enable double-network hydrogel electrolyte for flexible zinc-air batteries with tolerance to extreme cold conditions. Energy Storage Mater 42:88–96
Zhao Y, Chen Z, Mo F et al (2020) Aqueous rechargeable metal-ion batteries working at subzero temperatures. Adv Sci 8(1):2002590
Zhou D, Chen F, Handschuh-Wang S et al (2019) Biomimetic extreme-temperature- and environment-adaptable hydrogels. ChemPhysChem 20(17):2139–2154
Zheng J, Engelhard MH, Mei D et al (2017) Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat Energy 2:17012
Song M, Zhong CL (2022) Achieving both high reversible and stable Zn anode by a practical glucose electrolyte additive toward high-performance Zn-ion batteries. Rare Met 41(2):356–360
Ren HT, Zhang ZQ, Zhang JZ et al (2022) Improvement of stability and solid-state battery performances of annealed 70Li2S–30P2S5 electrolytes by additives. Rare Met 41:106–114
Tang X, Zhang WC, Cao LY (2022) Multifunctional high-fluorine-content molecule with high dipole moment as electrolyte additive for high performance lithium metal batteries. Rare Met 41(3):726–729
Jin Y, Han KS, Shao Y et al (2020) Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes. Adv Funct Mater 30(43):2003932
Han W, Ardhi R, Liu GC (2022) Dual impact of superior SEI and separator wettability to inhibit lithium dendrite growth. Rare Met 41(2):353–355
Guo Y, Liu J, Yang Q et al (2020) Metal-tuned acetylene linkages in hydrogen substituted graphdiyne boosting the electrochemical oxygen reduction. Small 16(10):e1907341
Xu Z, Yang J, Li H et al (2019) Electrolytes for advanced lithium ion batteries using silicon-based anodes. J Mater Chem A 7(16):9432–9446
Sun P, Ma L, Zhou W et al (2021) Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew Chem Int Ed 60(33):18247–18255
Ma Z, Chen J, Vatamanu J et al (2022) Expanding the low-temperature and high-voltage limits of aqueous lithium-ion battery. Energy Storage Mater 45:903–910
Xiong P, Kang Y, Yao N et al (2023) Zn-ion transporting, in situ formed robust solid electrolyte interphase for stable zinc metal anodes over a wide temperature range. ACS Energy Lett 8(3):1613–1625
Tron A, Jeong S, Park YD et al (2019) Aqueous lithium-ion battery of nano-LiFePO4 with antifreezing agent of ethyleneglycol for low-temperature operation. ACS Sustain Chem Eng 7(17):14531–14538
Lin C, Yang X, Xiong P et al (2022) High-rate, large capacity, and long life dendrite-free Zn metal anode enabled by trifunctional electrolyte additive with a wide temperature range. Adv Sci 9(21):e2201433
Wang A, Zhou W, Huang A et al (2021) Developing improved electrolytes for aqueous zinc-ion batteries to achieve excellent cyclability and antifreezing ability. J Colloid Interface Sci 586:362–370
Chen J, Vatamanu J, Xing L et al (2020) Improving electrochemical stability and low-temperature performance with water/acetonitrile hybrid electrolytes. Adv Energy Mater 10(3):1902654
Ma Q, Gao R, Liu Y et al (2022) Regulation of outer solvation shell toward superior low-temperature aqueous zinc-ion batteries. Adv Mater 34(49):e2207344
Chang N, Li T, Li R et al (2020) An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ Sci 13(10):3527–3535
Cai S, Chu X, Liu C et al (2021) Water-salt oligomers enable supersoluble electrolytes for high-performance aqueous batteries. Adv Mater 33(13):e2007470
Yang Y, Yang Y, Cao Y et al (2021) Anti-freezing, resilient and tough hydrogels for sensitive and large-range strain and pressure sensors. Chem Eng J 403:126431
Ding Y, Zhong X, Yuan C et al (2021) Sodium alginate binders for bivalency aqueous batteries. ACS Appl Mater Interfaces 13(17):20681–20688
Ahn SM, Suk J, Kim DY et al (2017) High-performance lithium-oxygen battery electrolyte derived from optimum combination of solvent and lithium salt. Adv Sci 4(10):1700235
Rong JZ, Cai TX, Bai YZ et al (2022) A free-sealed high-voltage aqueous polymeric sodium battery enabling operation at −25 ℃. Cell Rep Phys Sci 3(3):100805
Liu J, Yang C, Chi X et al (2022) Water/sulfolane hybrid electrolyte achieves ultralow-temperature operation for high-voltage aqueous lithium-ion batteries. Adv Funct Mater 32(1):2106811
Zhao Z, Yin J, Yin J et al (2023) End-capping of hydrogen bonds: a strategy for blocking the proton conduction pathway in aqueous electrolytes. Energy Storage Mater 55:479–489
Dong Y, Zhang N, Wang Z et al (2023) Cell-nucleus structured electrolyte for low-temperature aqueous zinc batteries. J Energy Chem 83:324–332
Yao N, Chen X, Fu ZH et al (2022) Applying classical, ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries. Chem Rev 122(12):10970–11021
Sun T, Zheng S, Du H et al (2021) Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nanomicro Lett 13(1):204
Zhu K, Sun Z, Jin T et al (2022) Tailoring pure inorganic electrolyte for aqueous sodium-ion batteries operating at –60 ℃. Batter Supercaps 5(12):e202200308
Zhu K, Li Z, Sun Z et al (2022) Inorganic electrolyte for low-temperature aqueous sodium ion batteries. Small 18(14):e2107662
Du H, Wang K, Sun T et al (2022) Improving zinc anode reversibility by hydrogen bond in hybrid aqueous electrolyte. Chem Eng J 427:131705
Liu S, Mao J, Pang WK et al (2021) Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc-ion batteries. Adv Funct Mater 31(38):2104281
Ahmed F, Rahman MM, Chandra Sutradhar S et al (2019) Novel divalent organo-lithium salts with high electrochemical and thermal stability for aqueous rechargeable Li-Ion batteries. Electrochim Acta 298:709–716
Jin D, Choi S, Jang W et al (2019) Bismuth islands for low-temperature sodium-beta alumina batteries. ACS Appl Mater Interfaces 11(3):2917–2924
Sui Y, Ji X (2021) Anticatalytic strategies to suppress water electrolysis in aqueous batteries. Chem Rev 121(11):6654–6695
Zhang Y, Xu J, Li Z et al (2022) All-climate aqueous Na-ion batteries using water-in-salt electrolyte. Sci Bull 67(2):161–170
Yan L, Qi YE, Dong X et al (2021) Ammonium-ion batteries with a wide operating temperature window from −40 to 80℃. eScience 1(2):212–218
Xie J, Liang Z, Lu YC (2020) Molecular crowding electrolytes for high-voltage aqueous batteries. Nat Mater 19(9):1006–1011
Wang J, Yang Y, Wang Y et al (2022) Working aqueous Zn metal batteries at 100 ℃. ACS Nano 16(10):15770–15778
Gu C, Xie XQ, Liang Y et al (2021) Small molecule-based supramolecular-polymer double-network hydrogel electrolytes for ultra-stretchable and waterproof Zn-air batteries working from −50 to 100 ℃. Energy Environ Sci 14(8):4451–4462
Zheng J, Yang Y, Li W et al (2020) Novel flame retardant rigid spirocyclic biphosphate based copolymer gel electrolytes for sodium ion batteries with excellent high-temperature performance. J Mater Chem A 8(43):22962–22968
Hyun WJ, de Moraes ACM, Lim JM et al (2019) High-modulus hexagonal boron nitride nanoplatelet gel electrolytes for solid-state rechargeable lithium-ion batteries. ACS Nano 13(8):9664–9672
Jiang Y, Ma K, Sun M et al (2023) All-climate stretchable dendrite-free Zn-ion hybrid supercapacitors enabled by hydrogel electrolyte engineering. Energy Environ Mater 6(2):e12357
Hou X, Pollard TP, He X et al (2022) “Water-in-eutectogel” electrolytes for quasi-solid-state aqueous lithium-ion batteries. Adv Energy Mater 12(23):2200401
Lu H, Hu J, Wang L et al (2022) Multi-component crosslinked hydrogel electrolyte toward dendrite-free aqueous Zn ion batteries with high temperature adaptability. Adv Funct Mater 32(19):2112540
Zhou J, Yuan H, Li J et al (2022) Highly reversible and stable Zn metal anode under wide temperature conditions enabled by modulating electrolyte chemistry. Chem Eng J 442:136218
Li X, Wang H, Sun X et al (2021) Flexible wide-temperature zinc-ion battery enabled by an ethylene glycol-based organohydrogel electrolyte. ACS Appl Energy Mater 4(11):12718–12727
Zhao M, Lv Y, Zhao S et al (2022) Simultaneously stabilizing both electrodes and electrolytes by a self-separating organometallics interface for high-performance zinc-ion batteries at wide temperatures. Adv Mater 34(49):e2206239
Wang Y, Wang Z, Pang WK et al (2023) Solvent control of water O–H bonds for highly reversible zinc ion batteries. Nat Commun 14(1):2720
Han D, Cui C, Zhang K et al (2022) A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nat Sustain 5(3):205–213
Sun Y, Zhang Y, Xu Z et al (2022) Dilute hybrid electrolyte for low-temperature aqueous sodium-ion batteries. Chemsuschem 15(23):e202201362
Sun T, Nian Q, Du H et al (2022) Aqueous proton battery stably operates in mild electrolyte and low-temperature conditions. J Mater Chem A 10(33):17288–17296
Wang N, Yang Y, Qiu X et al (2020) Stabilized rechargeable aqueous zinc batteries using ethylene glycol as water blocker. Chemsuschem 13(20):5556–5564
Hao J, Yuan L, Ye C et al (2021) Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew Chem Int Ed 60(13):7366–7375
Wang J, Zhu Q, Li F et al (2022) Low-temperature and high-rate Zn metal batteries enabled by mitigating Zn2+ concentration polarization. Chem Eng J 433:134589
Deng W, Zhou Z, Li Y et al (2020) High-capacity layered magnesium vanadate with concentrated gel electrolyte toward high-performance and wide-temperature zinc-ion battery. ACS Nano 14(11):15776–15785
Wang H, Liu J, Wang J et al (2019) Concentrated hydrogel electrolyte-enabled aqueous rechargeable NiCo// Zn battery working from –20 to 50 ℃. ACS Appl Mater Interfaces 11(1):49–55
Chen M, Chen J, Zhou W et al (2021) Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn–MnO2 batteries. Adv Mater 33(9):e2007559
Mo F, Liang G, Wang D et al (2019) Biomimetic organohydrogel electrolytes for high-environmental adaptive energy storage devices. EcoMat 1(1):e12008
Gu C, Xie XQ, Liang Y et al (2021) Small molecule-based supramolecular-polymer double-network hydrogel electrolytes for ultra-stretchable and waterproof Zn-air batteries working from −50 to 100 ℃. Energy Environ Sci 14(8):4451–4462
Yesibolati N, Umirov N, Koishybay A et al (2015) High performance Zn/LiFePO4 aqueous rechargeable battery for large scale applications. Electrochim Acta 152:505–511
Cao L, Li D, Soto FA et al (2021) Highly reversible aqueous zinc batteries enabled by zincophilic-zincophobic interfacial layers and interrupted hydrogen-bond electrolytes. Angew Chem Int Ed 60(34):18845–18851
Wang N, Dong X, Wang B et al (2020) Zinc-organic battery with a wide operation-temperature window from –70 to 150 ℃. Angew Chem Int Ed 59(34):14577–14583
Yuan Z, Xiao F, Fang Y et al (2023) Defect engineering on VO2(B) nanoleaves/graphene oxide for the high performance of cathodes of zinc-ion batteries with a wide temperature range. J Power Sources 559:232688
Yuan Z, Yang X, Lin C et al (2023) Progressive activation of porous vanadium nitride microspheres with intercalation-conversion reactions toward high performance over a wide temperature range for zinc-ion batteries. J Colloid Interface Sci 640:487–497
Wang Y, Xiao F, Chen X et al (2023) Extraordinarily stable and wide-temperature range sodium/potassium-ion batteries based on 1D SnSe2-SePAN composite nanofibers. InfoMat 5(10):e12467
Xiong P, Zhang Y, Zhang J et al (2022) Recent progress of artificial interfacial layers in aqueous Zn metal batteries. EnergyChem 4(4):100076