Progress and perspective on cyanobacterial glycogen metabolism engineering

Biotechnology Advances - Tập 37 - Trang 771-786 - 2019
Guodong Luan1,2, Shanshan Zhang1,2,3, Min Wang1, Xuefeng Lu1,2,4,5
1Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
2Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
3University of Chinese Academy of Sciences, Beijing, China
4Dalian National Laboratory for Clean Energy, Dalian, China
5Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Tài liệu tham khảo

Abernathy, 2017, Deciphering cyanobacterial phenotypes for fast photoautotrophic growth via isotopically nonstationary metabolic flux analysis, Biotechnol. Biofuels., 10, 273, 10.1186/s13068-017-0958-y Abramson, 2018, Redirecting carbon to bioproduction via a growth arrest switch in a sucrose-secreting cyanobacterium, Algal. Res., 33, 248, 10.1016/j.algal.2018.05.013 Aikawa, 2014, Glycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp. strain PCC 7002 from an oceanic environment, Biotechnol. Biofuels., 7, 88, 10.1186/1754-6834-7-88 Alonso-Casajus, 2006, Glycogen phosphorylase, the product of the glgP Gene, catalyzes glycogen breakdown by removing glucose units from the nonreducing ends in Escherichia coli, J. Bacteriol., 188, 5266, 10.1128/JB.01566-05 Angermayr, 2009, Energy biotechnology with cyanobacteria, Curr. Opin. Biotechnol., 20, 257, 10.1016/j.copbio.2009.05.011 Angermayr, 2012, Engineering a cyanobacterial cell factory for production of lactic acid, Appl. Environ. Microbiol., 78, 7098, 10.1128/AEM.01587-12 Atsumi, 2009, Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde, Nat. Biotechnol., 27, 1177, 10.1038/nbt.1586 Bahaji, 2011, Plant Cell Physiol., 52, 1162, 10.1093/pcp/pcr067 Ball, 2003, From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule, Annu. Rev. Plant Biol., 54, 207, 10.1146/annurev.arplant.54.031902.134927 Benson, 2016, Factors Altering Pyruvate Excretion in a Glycogen Storage Mutant of the Cyanobacterium, Synechococcus PCC7942, Front. Microbiol., 7, 475, 10.3389/fmicb.2016.00475 Cano, 2018, Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria, Cell Rep., 23, 667, 10.1016/j.celrep.2018.03.083 Carrieri, 2012, Photo-catalytic conversion of carbon dioxide to organic acids by a recombinant cyanobacterium incapable of glycogen storage, Energy Environ. Sci., 5, 9457, 10.1039/c2ee23181f Carrieri, 2015, Enhancing photo-catalytic production of organic acids in the cyanobacterium Synechocystis sp. PCC 6803 Delta glgC, a strain incapable of glycogen storage, Microb. Biotechnol., 8, 275, 10.1111/1751-7915.12243 Chwa, 2016, Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO2 in Synechococcus elongatus PCC 7942 under light and aerobic condition, Plant Biotechnol. J., 14, 1768, 10.1111/pbi.12536 Cumino, 2010, The proteins involved in sucrose synthesis in the marine cyanobacterium Synechococcus sp. PCC 7002 are encoded by two genes transcribed from a gene cluster, FEBS Lett., 584, 4655, 10.1016/j.febslet.2010.10.040 Curatti, 2008, Sucrose synthase is involved in the conversion of sucrose to polysaccharides in filamentous nitrogen-fixing cyanobacteria, Planta, 228, 617, 10.1007/s00425-008-0764-7 Damrow, 2016, The Multiple Functions of Common Microbial Carbon Polymers, Glycogen and PHB, during Stress Responses in the Non-Diazotrophic Cyanobacterium Synechocystis sp. PCC 6803, Front. Microbiol., 7, 966, 10.3389/fmicb.2016.00966 David, 2018, Production of 1,2-propanediol in photoautotrophic Synechocystis is linked to glycogen turn-over, Biotechnol. Bioeng., 115, 300, 10.1002/bit.26468 Davies, 2014, Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002, Front. Bioeng. Biotechnol., 2, 21, 10.3389/fbioe.2014.00021 Deng, 1999, Ethanol synthesis by genetic engineering in cyanobacteria, Appl. Environ. Microbiol., 65, 523, 10.1128/AEM.65.2.523-528.1999 Duan, 2016, Sucrose secreted by the engineered cyanobacterium and its fermentability, J. Ocean U China, 15, 890, 10.1007/s11802-016-3007-8 Ducat, 2012, Rerouting carbon flux to enhance photosynthetic productivity, Appl. Environ. Microbiol., 78, 2660, 10.1128/AEM.07901-11 Eydallin, 2007, An Escherichia coli mutant producing a truncated inactive form of GlgC synthesizes glycogen: Further evidences for the occurrence of various important sources of ADPglucose in enterobacteria, FEBS Lett., 581, 4417, 10.1016/j.febslet.2007.08.016 Flombaum, 2013, Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus, P. Natl. Acad. Sci. USA, 110, 9824, 10.1073/pnas.1307701110 Fu, 2006, The functional divergence of two glgP homologues in Synechocystis sp. PCC 6803, FEMS Microbiol. Lett., 260, 201, 10.1111/j.1574-6968.2006.00312.x Gao, 2012, Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria, Energy Environ. Sci., 5, 9857, 10.1039/C2EE22675H Gelders, 2005, Potato phosphorylase catalyzed synthesis of amylose-lipid complexes, Biomacromolecules, 6, 2622, 10.1021/bm0502011 Georg, 2014, The small regulatory RNA SyR1/PsrR1 controls photosynthetic functions in cyanobacteria, Plant Cell, 26, 3661, 10.1105/tpc.114.129767 Grundel, 2012, Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp PCC 6803, Microbiol-Sgm, 158, 3032, 10.1099/mic.0.062950-0 Guerra, 2013, Natural osmolytes are much less effective substrates than glycogen for catabolic energy production in the marine cyanobacterium Synechococcus sp strain PCC 7002, J. Biotechnol., 166, 65, 10.1016/j.jbiotec.2013.04.005 Hanai, 2014, The effects of dark incubation on cellular metabolism of the wild type cyanobacterium synechocystis sp. PCC 6803 and a mutant lacking the transcriptional regulator cyAbrB2, Life, 4, 770, 10.3390/life4040770 Hendry, 2017, Rerouting of carbon flux in a glycogen mutant of cyanobacteria assessed via isotopically non-stationary 13 C metabolic flux analysis, Biotechnol. Bioeng., 114, 2298, 10.1002/bit.26350 Hendry, 2018, Genome-scale fluxome of Synechococcus elongatus UTEX 2973 using transient 13C-labeling data, Plant Physiol., 179, 761, 10.1104/pp.18.01357 Hickman, 2013, Glycogen synthesis is a required component of the nitrogen stress response in Synechococcus elongatus PCC 7942, Algal Res., 2, 98, 10.1016/j.algal.2013.01.008 Huang, 2016, CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S-elongatus PCC 7942, Microb. Cell Factories, 15, 10.1186/s12934-016-0595-3 Iglesias, 1991, Regulatory and structural-properties of the cyanobacterial ADPglucose pyrophosphorylases, Plant Physiol., 97, 1187, 10.1104/pp.97.3.1187 Iijima, 2014, rre37 Overexpression alters gene expression related to the tricarboxylic acid cycle and pyruvate metabolism in Synechocystis sp. PCC 6803, Sci. World J., 2014, 921976, 10.1155/2014/921976 Iijima, 2015, Seawater cultivation of freshwater cyanobacterium Synechocystis sp PCC 6803 drastically alters amino acid composition and glycogen metabolism, Front. Microbiol., 6, 326, 10.3389/fmicb.2015.00326 Jackson, 2015, Dynamics of photosynthesis in a glycogen-deficient glgC mutant of Synechococcus sp. strain PCC 7002, Appl. Environ. Microbiol., 81, 6210, 10.1128/AEM.01751-15 Jacobsen, 2014, Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium, Metab. Eng., 21, 60, 10.1016/j.ymben.2013.11.004 Jacobsen, 2011, One-step plasmid construction for generation of knock-out mutants in cyanobacteria: studies of glycogen metabolism in Synechococcus sp. PCC 7002, Photosynth. Res., 107, 215, 10.1007/s11120-010-9613-1 Jeanjean, 1993, Exposure of the Cyanobacterium Synechocystis Pcc6803 to Salt Stress Induces Concerted Changes in Respiration and Photosynthesis, Plant Cell Physiol., 34, 1073 Jiang, 2015, The feasibility of using complex wastewater from a monosodium glutamate factory to cultivate Spirulina subsalsa and accumulate biochemical composition, Bioresour. Technol., 180, 304, 10.1016/j.biortech.2015.01.019 Jin, 2014, Engineering biofuel tolerance in non-native producing microorganisms, Biotechnol. Adv., 32, 541, 10.1016/j.biotechadv.2014.02.001 Joseph, 2014, Increased biomass production and glycogen accumulation in apcE gene deleted Synechocystis sp PCC 6803, AMB Express, 4, 17, 10.1186/s13568-014-0017-z Kaniya, 2013, Deletion of the transcriptional regulator cyAbrB2 deregulates primary carbon metabolism in Synechocystis sp. PCC 6803, Plant Physiol., 162, 1153, 10.1104/pp.113.218784 Lee, 1973, Sweet corn phosphorylase: purification and properties, Arch. Biochem. Biophys., 156, 276, 10.1016/0003-9861(73)90366-4 Lerner, 2009, Glycogen phosphorylase is involved in stress endurance and biofilm formation in Azospirillum brasilense Sp7, FEMS Microbiol. Lett., 300, 75, 10.1111/j.1574-6968.2009.01773.x Levi, 1976, Regulatory properties of the ADP-Glucose pyrophosphorylase of the blue-green bacterium Synechococcus 6301, Plant Physiol., 58, 753, 10.1104/pp.58.6.753 Li, 2014, Isobutanol production as an alternative metabolic sink to rescue the growth deficiency of the glycogen mutant of Synechococcus elongatus PCC 7942, Photosynth. Res., 120, 301, 10.1007/s11120-014-9987-6 Li, 2016, CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production, Metab. Eng., 38, 293, 10.1016/j.ymben.2016.09.006 Linder, 1976, 1, 4-alpha-Glucan phosphorylase from Klebsiella pneumoniae purification, subunit structure and amino acid composition, Eur. J. Biochem., 70, 291, 10.1111/j.1432-1033.1976.tb10981.x Lou, 2018, A specific single nucleotide polymorphism in the ATP synthase gene significantly improves environmental stress tolerance of Synechococcus elongatus PCC 7942, Appl. Environ. Microbiol., 84 Lu, 2010, A perspective: photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria, Biotechnol. Adv., 28, 742, 10.1016/j.biotechadv.2010.05.021 Lu, 2006, The role of cytosolic alpha-glucan phosphorylase in maltose metabolism and the comparison of amylomaltase in Arabidopsis and Escherichia coli, Plant Physiol., 142, 878, 10.1104/pp.106.086850 Luan, 2018, Tailoring cyanobacterial cell factory for improved industrial properties, Biotechnol. Adv., 36, 430, 10.1016/j.biotechadv.2018.01.005 Martin, 1997, A glgC gene essential only for the first of two spatially distinct phases of glycogen synthesis in Streptomyces coelicolor A3(2), J. Bacteriol., 179, 7784, 10.1128/jb.179.24.7784-7789.1997 Matson, 2017, Photomixotrophic chemical production in cyanobacteria, Curr. Opin. Biotechnol., 50, 65, 10.1016/j.copbio.2017.11.008 McEwen, 2013, Engineering Synechococcus elongatus PCC 7942 for continuous growth under diurnal conditions, Appl. Environ. Microbiol., 79, 1668, 10.1128/AEM.03326-12 Miao, 2003, Sucrose accumulation in salt-stressed cells of agp gene deletion-mutant in cyanobacterium Synechocystis sp PCC 6803, FEMS Microbiol. Lett., 218, 71, 10.1111/j.1574-6968.2003.tb11500.x Miao, 2003, Changes in photosynthesis and pigmentation in an agp deletion mutant of the cyanobacterium Synechocystis sp, Biotechnol. Lett., 25, 391, 10.1023/A:1022446330284 Mo, 2017, Effects of global transcription factor NtcA on photosynthetic production of ethylene in recombinant Synechocystis sp. PCC 6803, Biotechnol. Biofuels., 10, 145, 10.1186/s13068-017-0832-y Moran-Zorzano, 2007, Occurrence of more than one important source of ADPglucose linked to glycogen biosynthesis in Escherichia coli and Salmonella, FEBS Lett., 581, 4423, 10.1016/j.febslet.2007.08.017 Nakamoto, 2014, Physical Interaction between Bacterial Heat Shock Protein (Hsp) 90 and Hsp70 Chaperones Mediates Their Cooperative Action to Refold Denatured Proteins, J. Biol. Chem., 289, 6110, 10.1074/jbc.M113.524801 Nakamura, 2005, Some cyanobacteria synthesize semi-amylopectin type alpha-polyglucans instead of glycogen, Plant Cell Physiol., 46, 539, 10.1093/pcp/pci045 Namakoshi, 2016, Combinatorial deletions of glgC and phaCE enhance ethanol production in Synechocystis sp. PCC 6803, J. Biotechnol., 239, 13, 10.1016/j.jbiotec.2016.09.016 Oliver, 2014, Metabolic design for cyanobacterial chemical synthesis, Photosynth. Res., 120, 249, 10.1007/s11120-014-9997-4 Oliver, 2015, A carbon sink pathway increases carbon productivity in cyanobacteria, Metab. Eng., 29, 106, 10.1016/j.ymben.2015.03.006 Qiao, 2018, Effects of reduced and enhanced glycogen pools on salt-induced sucrose production in a sucrose-secreting strain of Synechococcus elongatus PCC 7942, Appl. Environ. Microbiol., 84, 10.1128/AEM.02023-17 Robson, 1974, Mobilization of granulose in Clostridium pasteurianum. Purification and properties of granulose phosphorylase, Biochem. J., 144, 513, 10.1042/bj1440513 Rousseaux, 2014, Interannual variation in phytoplankton primary production at a global scale, Remote Sens-Basel, 6, 1 Sengupta, 2018, Recent advances in synthetic biology of cyanobacteria, Appl. Microbiol. Biotechnol., 102, 5457, 10.1007/s00253-018-9046-x Serrano, 2001, Ion homeostasis during salt stress in plants, Curr. Opin. Cell Biol., 13, 399, 10.1016/S0955-0674(00)00227-1 Shabestary, 2018, Targeted repression of essential genes to arrest growth and increase carbon partitioning and biofuel titers in cyanobacteria, ACS Synth. Biol., 7, 1669, 10.1021/acssynbio.8b00056 Shimakawa, 2014, Respiration accumulates Calvin cycle intermediates for the rapid start of photosynthesis in Synechocystis sp. PCC 6803, Biosci. Biotechnol. Biochem., 78, 1997, 10.1080/09168451.2014.943648 Shimmori, 2018, Transcriptional activation of glycogen catabolism and oxidative pentose phosphate pathway by NrrA facilitates cell survival under nitrogen starvation in the cyanobacterium Synechococcus sp. strain PCC 7002, Plant Cell Physiol., 59, 1225, 10.1093/pcp/pcy059 Song, 2016, The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production, Appl. Microbiol. Biotechnol., 100, 7865, 10.1007/s00253-016-7510-z Stal, 1997, Fermentation in cyanobacteria, FEMS Microbiol. Rev., 21, 179, 10.1016/S0168-6445(97)00056-9 Sun, 2018, Toolboxes for cyanobacteria: Recent advances and future direction, Biotechnol. Adv., 36, 1293, 10.1016/j.biotechadv.2018.04.007 Sun, 2018, Re-direction of carbon flux to key precursor malonyl-CoA via artificial small RNAs in photosynthetic Synechocystis sp PCC 6803, Biotechnol. Biofuels., 11, 10.1186/s13068-018-1032-0 Suzuki, 2010, Carbohydrate metabolism in mutants of the cyanobacterium Synechococcus elongatus PCC 7942 fefective in glycogen synthesis, Appl. Environ. Microbiol., 76, 3153, 10.1128/AEM.00397-08 Tan, 2018, The primary transcriptome of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973, Biotechnol. Biofuels., 11, 218, 10.1186/s13068-018-1215-8 Ueno, 2017, Applying a riboregulator as a new chromosomal gene regulation tool for higher glycogen production in Synechocystis sp PCC 6803, Appl. Microbiol. Biotechnol., 101, 8465, 10.1007/s00253-017-8570-4 Ungerer, 2018, Adjustments to photosystem stoichiometry and electron transfer proteins are key to the remarkably fast growth of the cyanobacterium Synechococcus elongatus UTEX 2973, MBio, 9, 10.1128/mBio.02327-17 van der Woude, 2014, Carbon sink removal: Increased photosynthetic production of lactic acid by Synechocystis sp. PCC6803 in a glycogen storage mutant, J. Biotechnol., 184, 100, 10.1016/j.jbiotec.2014.04.029 Veetil, 2017, Ethylene production with engineered Synechocystis sp PCC 6803 strains, Microb. Cell Factories, 16, 34, 10.1186/s12934-017-0645-5 Waditee, 2002, Overexpression of a Na+/H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water, Proc. Natl. Acad. Sci. U. S. A., 99, 4109, 10.1073/pnas.052576899 Waterbury, 1979, Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium, Nature, 277, 293, 10.1038/277293a0 Work, 2015, Lauric acid production in a glycogen-less strain of Synechococcus sp. PCC 7002, Front. Bioeng. Biotechnol., 3, 48, 10.3389/fbioe.2015.00048 Xiong, 2017, The plasticity of cyanobacterial carbon metabolism, Curr. Opin. Chem. Biol., 41, 12, 10.1016/j.cbpa.2017.09.004 Xu, 2013, Altered carbohydrate metabolism in glycogen synthase mutants of Synechococcus sp strain PCC 7002: Cell factories for soluble sugars, Metab. Eng., 16, 56, 10.1016/j.ymben.2012.12.002 Xue, 2015, Cyanobacteria as Cell Factories to Produce Plant Secondary Metabolites, Front. Bioeng. Biotech., 3, 57, 10.3389/fbioe.2015.00057 Yao, 2016, Multiple gene repression in cyanobacteria using CRISPRi, ACS Synth. Biol., 5, 207, 10.1021/acssynbio.5b00264 Young, 2011, Mapping photoautotrophic metabolism with isotopically nonstationary C-13 flux analysis, Metab. Eng., 13, 656, 10.1016/j.ymben.2011.08.002 Yu, 2015, Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2, Sci. Rep., 5 Zea, 2004, General assay for sugar nucleotidyltransferases using electrospray ionization mass spectrometry, Anal. Biochem., 328, 196, 10.1016/j.ab.2004.01.019 Zhou, 2016, Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria, Metab. Eng., 38, 217, 10.1016/j.ymben.2016.08.002 Zhou, 2016, From cyanochemicals to cyanofactories: a review and perspective, Microb. Cell Factories, 15, 2, 10.1186/s12934-015-0405-3 Zilliges, 2014