Progress and Trends in Non-destructive Testing for Thermal Barrier Coatings Based on Infrared Thermography: A Review
Tóm tắt
Thermal barrier coatings (TBCs), as effective thermal protection separating the substrate from high-temperature combustion gases and reducing the substrate temperature, are widely used in aerospace and other fields. During the service cycle of life, surface crack defects, interface disbond defects, and coating thickness changes are the main non-destructive testing (NDT) objects of TBCs. In this paper, the main active infrared thermography NDT techniques including the optical infrared thermography testing, the ultrasonic infrared thermography testing, and the microwave thermography testing techniques are reviewed. Through the summary and highlight of the detection principle and application status of these state-of-the-art techniques, the development of the active infrared thermography DNT technique in TBCs is presented. By comparing the sensitivity, advantages, and disadvantages of the techniques in TBC NDT, can provide a significant reference for researchers to choose an appropriate method. It is noteworthy that fabrication techniques of artificial defects for calibration of the active infrared thermography NDT technique inspection of TBC systems are also reviewed. Moreover, future trends in NDT for the TBC system based on the active infrared thermography NDT technique are also discussed and analyzed.
Tài liệu tham khảo
Nathan, S. Jewel in the Crown: Rolls-Royce’s Single-Crystal Turbine Blade Casting Foundry. August (2015)
Essienubong, I.A., Ikechukwu, O., Ebunilo, P.O., Ikpe, E.: Material selection for high pressure (HP) turbine blade of conventional turbojet engines. Am. J. Mech. Ind. Eng. 1(1), 1–9 (2016)
Lima, R.S., Guerreiro, B.M., Aghasibeig, M.: Microstructural characterization and room-temperature erosion behavior of as-deposited SPS, EB-PVD and APS YSZ-based TBCs. J. Therm. Spray Technol. 28(1–2), 223–232 (2019). https://doi.org/10.1007/s11666-018-0763-6
Bernard, B., Quet, A., Bianchi, L., Joulia, A., Malié, A., Schick, V., Rémy, B.: Thermal insulation properties of YSZ coatings: suspension plasma spraying (SPS) versus electron beam physical vapor deposition (EB-PVD) and atmospheric plasma spraying (APS). Surf. Coat. Technol. 318, 122–128 (2017). https://doi.org/10.1016/j.surfcoat.2016.06.010
Padture, N., Gell, M., Jordan, E.: Thermal barrier coatings for gas-turbine engine applications. Science 296(5566), 280–284 (2002). https://doi.org/10.1126/science.1068609
Schulz, U., Leyens, C., Fritscher, K.: Some recent trends in research and technology of advanced thermal barrier coatings. Aerosp. Sci. Technol. 7(1), 73–80 (2003). https://doi.org/10.1016/S1270-9638(02)00003-2
Bi, X., Xu, H., Gong, S.: Investigation of the failure mechanism of thermal barrier coatings prepared by ele-ctron beam physical vapor deposition. Surf. Coat. Technol. 130(1), 122–127 (2000). https://doi.org/10.1016/S0257-8972(00)00693-9
Schumann, E., Sarioglu, C., Blachere, J.R., et al.: High-temperature stress measurements during the oxidation of NiAl. Oxid. Met. 53(3–4), 259–272 (2000). https://doi.org/10.1023/A:1004585003083
Yang, L., Zhou, Y.C., Lu, C.: Damage evolution and rupture time prediction in thermal barrier coatings sub-jected to cyclic heating and cooling: an acoustic emission method. Acta Mater. 59(17), 6519–6529 (2011). https://doi.org/10.1016/j.actamat.2011.06.018
Yang, L., Zhou, Y.C., Mao, W.G., Liu, Q.X.: Acoustic emission evaluation of the fracture behavior of APS-TBCs subjecting to bond coating oxidation. Surf. Interface Anal. 39(9), 761–769 (2010). https://doi.org/10.1002/sia.2586
Manero, A.C., Knipe, K., Meid, C., Wischek, J., Lacdao, C., Smith, M., Okasinski, J., Almer, J., Bartsch, M., Karlsson, A.: Comparison of thermal barrier coating stresses via high energy X-rays and piezospectros-copy. AIAA. 2015–0874 (2015) https://doi.org/10.2514/6.2015-0874
Sankar, B., Thiyagasundaram, P.: Crack opening displacement as a criterion for crack propagation in ther-mal barrier coatings. In: 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA Paper 2009–1428 (2013) https://doi.org/10.2514/6.2009-1428
Ghasemi, R., Shoja-Razavi, R., Mozafarinia, R., Jamali, H.: The influence of laser treatment on thermal sho-ck resistance of plasma-sprayed nanostructured yttria stabilized zirconia thermal barrier coatings. Ceram. Int. 40(1), 347–355 (2014). https://doi.org/10.1016/j.ceramint.2013.06.008
Zhou, B., Kokini, K.: Effect of surface pre-crack morphology on the fracture of thermal barrier coatings und-er thermal shock. Acta Mater. 52(14), 4189–4197 (2004). https://doi.org/10.1016/j.actamat.2004.05.035
Avdelidis, N.P., Almond, D.P., Dobbinson, A.: Aircraft composites assessment by means of transient thermal NDT. Prog. Aerosp. Sci. 40, 143–162 (2004). https://doi.org/10.1016/j.paerosci.2004.03.001
Barden, T.J., Almond, D.P., Morbidini, M.: Advances in thermosonics for detecting impact damage in CFRP composites. Insight-Non-Destr. Test. Cond. Monit. 48, 90–93 (2006). https://doi.org/10.1784/insi.2006.48.2.90
Pickering, S.G., Almond, D.P.: An evaluation of the performance of an uncooled micro bolometer array in-frared camera for transient thermography NDE. Nondestr. Test. Eval. 22, 63–70 (2007). https://doi.org/10.1080/10589750701446484
Jiang, H.J., Chen, L.: Research status and development trend of pulsed infrared nondestructive testing technology. Infrared Technol. 40, 946–951 (2007)
Ptaszek, G., Cawley, P., Almond, D.: Artificial disbonds for calibration of transient thermography inspection of thermal barrier coating systems. NDT E Int. 45, 71–78 (2012). https://doi.org/10.1016/j.ndteint.2011.09.008
Almond, D.P., Pickering, S.G.: An analytical study of the pulsed thermography defect detection limit. J. Appl. Phys. 093510, 1 (2012)
Maldague, X.V., Marinetti, S.: Pulse phase infrared thermography. Appl. Phys. 79, 2694–2698 (1996). https://doi.org/10.1063/1.362662
Vallerand, S., Maldague, X.: Defect Characterization in pulsed thermography: a statistical method compared with Kohonen and perceptron neural networks. NDT E Int. 33, 307–315 (2000). https://doi.org/10.1016/S0963-8695(99)00056-0
Maldague, X.V., Galmiche, F., Ziadi, A.: Advances in pulsed phase thermography. Infrared Phys. Technol. 43, 175–181 (2002). https://doi.org/10.1016/S1350-4495(02)00138-X
Zhang, J.Y., Meng, X.B., Ma, Y.C.: A new measurement method of coatings thickness based on lock-in thermography. Infrared Phys. Technol. 76, 655–660 (2016). https://doi.org/10.1016/j.infrared.2016.04.028
Wellman, R.G., Nicholls, J.R.: A review of the erosion of thermal barrier coatings. J. Phys. D Appl. Phys. 40, 293–305 (2007). https://doi.org/10.1088/0022-3727/40/16/R01
Torkashvand, K., Poursaeidi, E., Mohammadi, M.: Effect of TGO thickness on the thermal barrier coatings life under thermal shock and thermal cycle loading. Ceram. Int. 44, 9283–9293 (2018). https://doi.org/10.1016/j.ceramint.2018.02.140
Ye, D., Wang, W., Huang, J., Lu, X., Zhou, H.: Nondestructive interface morphology characterization of th-ermal barrier coatings using terahertz time-domain spectroscopy. Coatings 9(2), 89 (2019). https://doi.org/10.3390/coatings9020089
Li, Y., Yan, B., Li, W., Li, D.: Thickness assessment of thermal barrier coatings of aeroengine blades via dual-frequency eddy current evaluation. IEEE Magn. Lett. 7, 1–5 (2016). https://doi.org/10.1109/LMAG.2016.2590465
Ibarra-Castanedo, C., Gonzalez, D., Klein, M., Pilla, M., Vallerand, S., Maldague, X.: Infrared image proce-ssing and data analysis. Infrared Phys. Technol. 46(1–2), 75–83 (2004). https://doi.org/10.1016/j.infrared.2004.03.011
Marinetti, S., Finesso, L., Marsillo, E.: Matrix factorization methods: Application to thermal NDT/E. NDT and E Int. 39(8), 611–616 (2006). https://doi.org/10.1016/j.ndteint.2006.04.008
Marinetti, S., Grinzato, E., Bison, P.G., Bozzi, E., Chimenti, M., Pieri, G., Salvetti, O.: Statistical analysis of IR thermographic sequences by PCA. Infrared Phys. Technol. 46(1–2), 85–91 (2004). https://doi.org/10.1016/j.infrared.2004.03.012
Busse, G., Wu, D., Karpen, W.: Thermal wave imaging with phase sensitive modulated thermography. J. Appl. Phys. 71, 3962 (1992). https://doi.org/10.1063/1.351366
Wu, D., Salerno, A., Busse, G.: Lock-in thermography for non-destructive evaluation of aerospace structures. In: Proceedings of the 7th European Conference on Non-Destructive Testing. 26–29 (1998)
Dillenz, A., Busse, G., Wu, D.: Ultrasound Lock-in thermography: Feasibilities and limitation. In: Proceed-ings of the Diagnostic Imaging Technologies and Industrial Applications. 3827, 10–15 (1999). https://doi.org/10.1117/12.361008
Wu, D., Busse, G.: Lock-in thermography for nondestructive evaluation of materials. Rev. Gen. Therm. 37, 693–703 (1998). https://doi.org/10.1016/S0035-3159(98)80047-0
Qu, Z., Jiang, P., Zhang, W.: Development and application of infrared thermography non-destructive testing techniques. Sensors. 20(14), 3851 (2020). https://doi.org/10.3390/s20143851
Hedayatrasa, S., Poelman, G., Segers, J., Van Paepegem, W., Kersemans, M.: Performance of frequency and/ or phase modulated excitation waveforms for optical infrared thermography of CFRPs through thermal wave radar: a simulation study. Compos. Struct. 225, 111177 (2019). https://doi.org/10.1016/j.compstruct.2019.111177
Ciampa, F., Mahmoodi, P., Pinto, F., Meo, M.: Recent advances in active infrared thermography for non-destructive testing of aerospace components. Sensors. 18(2), 609 (2018). https://doi.org/10.3390/s18020609
Antolis, C., Rajic, N.: Optical lock-in thermography for structural health monitoring–a study into infrared detector performance. Procedia Eng. 188, 471–478 (2017). https://doi.org/10.1016/j.proeng.2017.04.510
Caruso, G., Paoloni, S., Orazi, N., Cicero, C., Zammit, U., Mercuri, F.: Quantitative evaluations by infrared thermography in optically semi-transparent paper-based artefacts. Measurement 143, 258–266 (2019). https://doi.org/10.1016/j.measurement.2019.04.086
Pracht, M., Swiderski, W.: Analysis of the possibility of non-destructive testing to detect defects in multi-layered composites reinforced fibers by optical IR thermography. Compos. Struct. 213, 204–208 (2019). https://doi.org/10.1016/j.compstruct.2019.01.071
Poelman, G., Hedayatrasa, S., Segers, J., Van Paepegem, W., Kersemans, M.: Multi-scale gapped smoothing algorithm for robust baseline-free damage detection in optical infrared thermography. NDT & E Int. (2020). https://doi.org/10.1016/j.ndteint.2020.102247
Martens, U., Schröder, K. U.: Monitoring multiple damage mechanisms in crack‐patched structures using optical infrared thermography. Fatigue and Fracture of Engineering Materials and Structures. (2020) https://doi.org/10.22541/au.159362266.62095248
Derusova, D.A., Vavilov, V.P., Guo, X., Druzhinin, N.V.: Comparing the efficiency of ultrasonic infrared thermography under high-power and resonant stimulation of impact damage in a CFRP composite. Russ. J. Nondestr. Test. 54(5), 356–362 (2018). https://doi.org/10.1134/S1061830918050030
Umar, M.Z., Vavilov, V., Abdullah, H., Ariffin, A.K.: Quantitative study of local heat sources by Ultrasonic Infrared Thermography: an approach for estimating total energy released by low energy impact damage in C/C composite. Composite B 165, 167–173 (2019). https://doi.org/10.1016/j.compositesb.2018.11.124
Yang, Z., Kou, G., Li, Y., Zhang, W., Feng, J., Xu, Q., Zhao, Z.: Effects of contact interface roughness and sample mass on vibration characteristics in ultrasonic infrared thermography. IEEE Access. 8, 127631–127639 (2020). https://doi.org/10.1109/ACCESS.2020.3008421
Foudazix, A., Mirala, A., Ghasr, M.T., Donnell, K.M.: Active microwave thermography for nondestructive evaluation of surface cracks in metal structures. IEEE Trans. Instrum. Meas. 68(2), 576–585 (2018). https://doi.org/10.1109/TIM.2018.2843601
Mirala, A., Foudazi, A., Al Qaseer, M.T., Donnell, K.M.: Active microwave thermography to detect and locate water ingress. IEEE Trans. Instrum. Meas. 69(12), 9774–9783 (2020). https://doi.org/10.1109/TIM.2020.3003394
Zou, X., Mirala, A., Sneed, L.H., Al Qaseer, M.T., Donnell, K.: Detection of CFRP-concrete interfacial de-bonding using active microwave thermography. Composite Struct. (2020). https://doi.org/10.1016/j.compstruct.2020.113261
Mirala, A., Ghasr, M. T., Donnell, K. M.: Nondestructive assessment of microwave absorbing structures via active microwave thermography. In: 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) 1–6, (2018) IEEE. https://doi.org/10.1109/I2MTC.2018.8409631
Mirala, A., Foudazi, A., Ghasr, M.T., Donnell, K.M.: Detection of flat-bottom holes in conductive composites using active microwave thermography. J. Nondestruct. Eval. (2018). https://doi.org/10.1115/1.4040673
Grubbs, G.S., II., Mirala, A., Bischof, D., Ghasr, M.T., Donnell, K.M.: Measurement of the molecular dipole moment using active microwave thermography (AMT). J. Chem. Thermodyn. 151, 106245 (2020). https://doi.org/10.1016/j.jct.2020.106245
Mirala, A., Zou, X., Ghasr, M. T., Sneed, L., Donnell, K. M.: Active Microwave Thermography: A Real-Time Monitoring Tool for CFRP-Concrete Bond Testing. In: 2019 IEEE International Instrumentation and Mea-surement Technology Conference (I2MTC) 1–6, (2019) https://doi.org/10.1109/I2MTC.2019.8827038
Zinovyev, S. V.: New medical technology–functional microwave thermography: experimental study. KnE Energy. (2018) https://doi.org/10.18502/ken.v3i2.1864
Parker, W.J., Jenkins, R.J., Butler, C.P., Abbott, G.L.: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32(9), 1679–1684 (1961). https://doi.org/10.1063/1.1728417
Liu, Z., Gao, J., Xie, H., Wallace, P.: NDT capability of digital shearography for different materials. Opt. Lasers Eng. 49(12), 1462–1469 (2011). https://doi.org/10.1016/j.optlaseng.2011.04.006
Gleiter, A., Riegert, G., Zweachper, T.: Ultrasound lock-in thermography for advanced depth resolved defect selective imaging. Insight Non-Destr. Test. Cond. Monit. 5, 272–274 (2007). https://doi.org/10.1784/insi.2007.49.5.272
Wallbrink, C., Wade, S.A., Jones, R.: The effect of size on the quantitative estimation of defect depth in steel structures using lock-in thermography. J. Appl. Phys. 101, 104907 (2007). https://doi.org/10.1063/1.2732443
Bai, W., Wong, B.S.: Evaluation of defects in composite plates under convective environments using lock-in thermography. Meas. Sci. Technol. 12, 142–150 (2001). https://doi.org/10.1088/0957-0233/12/2/303
Montanini, R.: Quantitative determination of subsurface defects in a reference specimen made of Plexiglas by means of lock-in and pulse phase infrared thermography. Infrared Phys. Tech. 53, 363–371 (2010). https://doi.org/10.1016/j.infrared.2010.07.002
Feng, L., Tao, N., Xu, C.: Lock-in thermography and its application in nondestructive evaluation. Infrared Laser Eng. 39, 1121–1123 (2010)
Denis, A., Vasyl, R.: A digital lock-in technique for small signal detection with square wave reference over a wide frequency range. In: Proceedings of the 14th International Conference on Advanced Trends in Radio elecrtronics, Telecommunications and Computer Engineering. 20–24 (2018)
Honner, M., Honnerová, P., Kučera, M.: Laser scanning heating method for high-temperature spectral emiss-ivity analyses. Appl. Therm. Eng. 94, 76–81 (2016). https://doi.org/10.1016/j.applthermaleng.2015.10.121
Zhao, S.B., Zhang, C.L., Wu, N.M., Wang, H.M.: Quality evaluation for air plasma spray thermal barrier coatings with pulsed thermography. Prog. Nat. Sci. Mater. Int. 21(4), 301–306 (2011). https://doi.org/10.1016/S1002-0071(12)60061-6
Jiao, D., Shi, W., Liu, Z., Xie, H.: Laser multi-mode scanning thermography method for fast inspection of micro-cracks in TBCs surface. J. Nondestr. Eval. 37(2), 30 (2018). https://doi.org/10.1007/s10921-018-0485-1
Gruss, C., F. Lepoutre, D. Balageas.: Nondestructive evaluation using a flying-spot camera. ONERA TP (1993).
Gru, C.: Theoretical and experimental applications of the flying spot camera. (1992).
Rodríguez-Aseguinolaza, J., Colom, M., González, J., Mendioroz, A., Salazar, A.: Quantifying the width and angle of inclined cracks using laser-spot lock-in thermography. NDT and E Int. 122, 102494 (2021). https://doi.org/10.1016/j.ndteint.2021.102494
Colom, M., Rodríguez-Aseguinolaza, J., Mendioroz, A., Salazar, A.: Sizing the depth and width of narrow cracks in real parts by laser-spot lock-in thermography. Materials 14(19), 5644 (2021)
Bodnar, J.L., Egée, M.: Wear Crack characterization by photothermal radiometry. Wear 196(1–2), 54–59 (1996). https://doi.org/10.1016/0043-1648(95)06837-6
Burrows, S.E., Dixon, S., Pickering, S.G., Li, T., Almond, D.P.: Thermographic detection of surface brea-king defects using a scanning laser source. NDT and E Int. 44(7), 589–596 (2011). https://doi.org/10.1016/j.ndteint.2011.06.001
Li, T., Almond, D.P., Rees, D.A.S.: Crack imaging by scanning pulsed laser spot thermography. NDT and E Int. 44(2), 216–225 (2011). https://doi.org/10.1016/j.ndteint.2010.08.006
Ibarra-Castanedo, C., Maldague, X. P.: Pulsed phase thermography inversion procedure using normalized parameters to account for defect size variations. In:Thermosense XXVII. International Society for Optics and Photonics. 5782, 334–341 (2005) https://doi.org/10.1117/12.596602
Qu, Z., Zhang, W., Lv, Z., Wang, F.: A new grating thermography for nondestructive detection of cracks in coatings: fundamental principle. Coatings 9(7), 411 (2019). https://doi.org/10.3390/coatings9070411
Subhani, S.K., Suresh, B., Ghali, V.S.: Empirical mode decomposition approach for defect detection in non-stationary thermal wave imaging. NDT & E Int. 81, 39–45 (2016). https://doi.org/10.1016/j.ndteint.2016.03.004
Vesala, G. T., Chandra Sekhar Yadav, G. V. P., Ghali, V. S., Suresh, B., and Naik, R. B. Proper Orthogonal Decomposition-Based Coating Thickness Estimation in Quadratic Frequency Modulated Thermal Wave Imaging. Advances in Non-destructive Evaluation. 51–61 (2021).
Mulaveesala, R., Tuli, S.: Theory of frequency modulated thermal wave imaging for nondestructive subsurface defect detection. Appl Phys Lett. 89(19), 191913 (2006). https://doi.org/10.1063/1.2382738
Mulaveesala, R., Tuli, S.: Phase sensitive digitized frequency modulated thermal wave imaging and pulse compression for NDE applications. Thermosense XXVIII. Vol. 6205. International Society for Optics and Photonics. 6205: 620515 (2006).
Favro, L. D., Han, X., Ouyang, Z., Sun, G., Sui, H., Thomas, R. L.: IR imaging of cracks excited by an ultrasonic pulse. In: Thermosense XXII. International Society for Optics and Photonics. 4020, 182–185 (2000) https://doi.org/10.1117/12.381549
Vavilov, V.P., Chulkov, A.O., Derusova, D.A.: IR thermographic characterization of low energy impact damage in carbon/carbon composite by applying optical and ultrasonic stimulation. Proc. SPIE. 9105, 91050J (2014). https://doi.org/10.1117/12.2049810
Han, X., Li, W., Zeng, Z., Favro, L.D., Thomas, R.L.: Acoustic chaos and sonic infrared imaging. Appl. Phys. Lett. 81, 3188–3190 (2002). https://doi.org/10.1063/1.1516240
Shepard, S.M., Ahmed, T., Lhota, J.: Experimental considerations in vibro thermography. Proc. SPIE. 5405, 332–335 (2004). https://doi.org/10.1117/12.546599
Krapez, J.C., Taillade, F., Balageas, D.: Untrasound-lock-in-thermography NDE of composite plates with low power actuators. Experimental investigation of the influence of the lamb wave frequency. Quant. Infrared Thermogr. 2, 191–206 (2005). https://doi.org/10.3166/qirt.2.191-206
Zweschper, T., Gleiter, A., Riegert, G.: Ultrasound excited thermography using frequency modulated elastic waves. Insight Non-Destr. Test. Cond. Monit. 45, 178–182 (2003). https://doi.org/10.1784/insi.45.3.178.53162
Ibarra-Castanedo, C., Piau, J.M., Guilbert, S.: Comparative study of active thermography techniques for the nondestructive evaluation of honeycomb structures. Res. Nondestruct. Eval. 20, 1–31 (2009). https://doi.org/10.1080/09349840802366617
Umar, M.Z., Vavilov, V., Abdullah, H., Ariffin, A.K.: Ultrasonic infrared thermography in non-destructive testing: a review. Russ. J. Nondestr. Test. 52(4), 212–219 (2016). https://doi.org/10.1134/S1061830916040082
Qu, Z., Zhang, W.X., Lv, Z.C.: A new grating thermography for nondestructive detection of cracks in coatings: fundamental principle. Coatings 9, 411 (2019). https://doi.org/10.3390/coatings9070411
Liu, J., Yang, W., Dai, J.: Research on thermal wave processing of lock-in thermography based on analyzing image sequences for NDT. Infrared Phys. Technol. 53, 348–357 (2010). https://doi.org/10.1016/j.infrared.2010.06.002
Osiander, R., Spicer, J.W.: Time-resolved infrared radiometry with step heating. A review. Rev. Gén. Therm. 37, 680–692 (1998). https://doi.org/10.1016/S0035-3159(98)80046-9
Zhang, H., Yang, R., He, Y., Foudazi, A., Cheng, L., Tian, G.: A review of microwave thermography nondestructive testing and evaluation. Sensors 17(5), 1123 (2017). https://doi.org/10.3390/s17051123
He, Y., Yang, R., Zhang, H., Zhou, D., Wang, G.: Volume or inside heating thermography using electromagn-ettic excitation for advanced composite materials. Int. J. Thermal Sci. 111, 41–49 (2017). https://doi.org/10.1016/j.ijthermalsci.2016.08.007
Yang, R., He, Y.: Optically and non-optically excited thermography for composites: a review. Infrared. Phys. Technol. 75, 26–50 (2016). https://doi.org/10.1016/j.infrared.2015.12.026
Meredith, R.: Engineers’ Handbook of Industrial Microwave Heating. Power Eng. 13, 3 (1999). https://doi.org/10.1049/PBPO025E
He, Y., Tian, G., Pan, M., Chen, D.: Impact evaluation in carbon fiber reinforced plastic (CFRP) laminates using eddy current pulsed thermography. Compos. Struct. 109, 1–7 (2013). https://doi.org/10.1016/j.compstruct.2013.10.049
Pan, M., He, Y., Tian, G., Chen, D., Luo, F.: Defect characterisation using pulsed eddy current thermography under transmission mode and NDT applications. NDT & E Int. 52, 28–36 (2012). https://doi.org/10.1016/j.ndteint.2012.08.007
He, Y., Yang, R.: Eddy current volume heating thermography and phase analysis for imaging characterization of interface delamination in CFRP. IEEE Trans. Ind. Inf. 11(6), 1287–1297 (2015). https://doi.org/10.1109/TII.2015.2479856
Zhu, W., Liu, Z., Jiao, D., Xie, H.: Eddy current thermography with adaptive carrier algorithm for non-destructive testing of debonding defects in thermal barrier coatings. J. Nondestr. Eval. 37(2), 31 (2018). https://doi.org/10.1007/s10921-018-0483-3
Tashan, J., Al-Mahaidi, R.: Investigation of the parameters that influence the accuracy of bond defect detection in CFRP bonded specimens using IR thermography. Compos. Struct. 94(2), 519–531 (2012). https://doi.org/10.1016/j.compstruct.2011.08.017
Yin, A., Gao, B., Tian, G.Y., Woo, W.L., Li, K.: Physical interpretation and separation of eddy current pulsed thermography. J. Appl. Phys. 113, 064101 (2013). https://doi.org/10.1063/1.4790866
Tian, G.Y., Gao, Y., Li, K., Wang, Y., Gao, B., He, Y.: Eddy current pulsed thermography with different excitation configurations for metallic material and defect characterization. Sensors. 16(6), 843 (2016). https://doi.org/10.3390/s16060843
Zhou, B., Kokini, K.: Effect of preexisting surface cracks on the interfacial thermal fracture of thermal barri-er coatings: an experimental study. Surf. Coat. Technol. 187(1), 17–25 (2004). https://doi.org/10.1016/j.surfcoat.2004.01.028
Sumner, I., Ruckle, D.: Development of improved-durability plasma sprayed ceramic coatings for gas turbine engines. In: 16th Joint Propulsion Conference. 1193 (1980) https://doi.org/10.2514/6.1980-1193
Taylor, T.A., Appleby, D.L., Weatherill, A.E., Griffiths, J.: Plasma-sprayed yttria-stabilized zirconia coat-ings: structure-property relationships. Surf. Coat. Technol. 43, 470–480 (1990). https://doi.org/10.1016/0257-8972(90)90098-W
Zhong, M.L., Liu, W.: Comparative Research on Cracking Tendency in Powder Feeding Laser Cladding Stellite and NiCrSiB Alloys. Chin. J. Lasers 29(11), 1031–1036 (2002)
Théry, P.Y., Poulain, M., Dupeux, M., Braccini, M.: Adhesion energy of a YPSZ EB-PVD layer in two ther-mal barrier coating systems. Surf. Coat. Technol. 202(4–7), 648–652 (2007). https://doi.org/10.1016/j.surfcoat.2007.06.014
Cernuschi, F., Capelli, S., Bison, P., Marinetti, S., Lorenzoni, L., Campagnoli, E., Giolli, C.: Non-destructive thermographic monitoring of crack evolution of thermal barrier coating coupons during cyclic oxidation aging. Acta Mater. 59(16), 6351–6361 (2011). https://doi.org/10.1016/j.actamat.2011.06.045
Jiao, D.C., Liu, Z.W., Zhu, W.Y., Xie, H.M.: Exact localization of debonding defects in thermal barrier coatings. AIAA J. 56(9), 3691–3700 (2018). https://doi.org/10.2514/1.J056806
Liu, Z., Jiao, D., Shi, W., Xie, H.: Linear laser fast scanning thermography NDT for artificial disbond defects in thermal barrier coatings. Opt. Express 25(25), 31789–31800 (2017). https://doi.org/10.1364/OE.25.031789
Ptaszek, G., Cawley, P., Almond, D., Pickering, S.: Transient thermography testing of unpainted thermal ba-rrier coating (tbc) systems. NDT&E Int. 59, 48–56 (2013). https://doi.org/10.1016/j.ndteint.2013.05.001
Tang, Q., Dai, J., Liu, J., Liu, C., Liu, Y., Ren, C.: Quantitative detection of defects based on Markov–PCA–BP algorithm using pulsed infrared thermography technology. Infrared Phys. Technol. 77, 144–148 (2016). https://doi.org/10.1016/j.infrared.2016.05.027
Tang, Q., Gao, S., Liu, Y., Lu, Y., Xu, P.: Experimental research on YSZ TBC structure debonding defect detection using long-pulsed excitation of infrared thermal wave non-destructive testing. Thermal Sci. 23(3 Part A), 1313–1321 (2019). https://doi.org/10.2298/TSCI180513128T
Bu, C., Sun, Z., Tang, Q., Liu, Y., Mei, C.: Thermography sequence processing and defect edge identification of TBC structure debonding defects detection using long-pulsed infrared wave non-destructive testing technology. Russ. J. Nondestr. Test. 55(1), 80–87 (2019). https://doi.org/10.1134/S1061830919010030
Tang, Q., Dai, J., Bu, C., Qi, L., Li, D.: Experimental study on debonding defects detection in thermal barrier coating structure using infrared lock-in thermographic technique. Appl. Therm. Eng. 107, 463–468 (2016). https://doi.org/10.1016/j.applthermaleng.2016.07.008
Marinetti, S., Robba, D., Cernuschi, F., Bison, P.G., Grinzato, E.: Thermographic inspection of TBC coated gas turbine blades: Discrimination between coating over-thicknesses and adhesion defects. Infrared Phys. Technol. 49(3), 281–285 (2007). https://doi.org/10.1016/j.infrared.2006.06.018
Unnikrishnakurup, S., Dash, J., Ray, S., Pesala, B., Balasubramaniam, K.: Nondestructive evaluation of thermal barrier coating thickness degradation using pulsed IR thermography and THz-TDS measurements: a comparative study. NDT and E Int. 116, 102367 (2020). https://doi.org/10.1016/j.ndteint.2020.102367
Halloua, H., Elhassnaoui, A., Saifi, A., Elamiri, A., Obbadi, A., Errami, Y.: Neural networks and genetic algorithms for the evaluation of coatings thicknesses in thermal barriers by infrared thermography data. Procedia Struct. Integr. 5, 997–1004 (2017). https://doi.org/10.1016/j.prostr.2017.07.153
Tang, Q., Liu, J., Dai, J., Yu, Z.: Theoretical and experimental study on thermal barrier coating (TBC) uneven thickness detection using pulsed infrared thermography technology. Appl. Therm. Eng. 114, 770–775 (2017). https://doi.org/10.1016/j.applthermaleng.2016.12.032
Bison, P. G., Marinetti, S., Grinzato, E. G., Vavilov, V. P., Cernuschi, F., Robba, D.: Inspecting thermal barrier coatings by IR thermography. In Thermosense XXV. International Society for Optics and Photonics. 5073, 318–327 (2003) https://doi.org/10.1117/12.486019
Shepard, S. M., Hou, Y. L., Lhota, J. R., Wang, D., Ahmed, T.: Thermographic measurement of thermal barrier coating thickness. In Thermosense XXVII. International Society for Optics and Photonics. 5782, 407–410 (2005) https://doi.org/10.1117/12.606124
Shrestha, R., Kim, W.: Evaluation of coating thickness by thermal wave imaging: a comparative study of pulsed and lock-in infrared thermography—Part I: simulation. Infrared Phys. Technol. 83, 124–131 (2017). https://doi.org/10.1016/j.infrared.2017.04.016
Muzika, L., Švantner, M.: Flash pulse phase thermography for a paint thickness determination. In: IOP Conference Series: Materials Science and Engineering. 723, 012021 (2020). https://doi.org/10.1088/1757-899X/723/1/012021
Rantala, J., Wu, D., Salerno, A., Busse, G.: Lock-in thermography with mechanical loss angle heating at ultrasonic frequencies. Proc. Conf. Quant. Infrared Thermogr. 50, 388–393 (1997)
Favro, L.D., Han, X., Ouyang, Z., Sun, G., Sui, H., Thomas, R.L.: Infrared imaging of defects heated by a sonic pulse. Rev. Sci. Instrum. 71, 2418–2421 (2000). https://doi.org/10.1063/1.1150630
Han, X., Zeng, Z., Li, W., Islam, S., Lu, J., Loggins, V., Yitamben, E., Favro, L.D., Newaz, G., Thomas, R.L.: Acoustic chaos for enhanced detectability of cracks by sonic infrared imaging. J. Appl. Phys. 95(7), 3792–3797 (2004). https://doi.org/10.1063/1.1652243
Zalameda, J.N., Winfree, W.P., Yost, W.T.: Air coupled acoustic thermography (ACAT) inspection technique. AIP Conf. Proc. 975, 467–474 (2008). https://doi.org/10.1063/1.2902697
Almond, D.P., Weekes, B., Li, T., Pickering, S.G., Kostson, E., Wilson, J., Tian, G.Y., Dixon, S., Burrows, S.: Thermographic techniques for the detection of cracks in metallic components. Insight 53(11), 614–620 (2011). https://doi.org/10.1784/insi.2011.53.11.614
Guo, Y., Ruhge, F.R.: Comparison of detection capability for acoustic thermography, visual inspection and Fluorescent penetrant inspection on gas turbine components. In:AIP Conference Proceedings. American Institute of Physics. 28, 1848–1854, (2009).
Jiao, D., Liu, Z., Shi, W., Xie, H.: Temperature fringe method with phase-shift for the 3D shape measurement. Opt. Lasers Eng. 112, 93–102 (2019). https://doi.org/10.1016/j.optlaseng.2018.09.010
Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision. 1440–1448 (2015) https://doi.org/10.1109/ICCV.2015.169
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031
Dai, J., Li, Y., He, K., Sun, J.: R-fcn: Object detection via region-based fully convolutional networks. Advances in Neural Information Processing Systems. 379–387 (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778 (2016) https://doi.org/10.1109/CVPR.2016.90
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision. 2961–2969 (2017). https://doi.org/10.1109/ICCV.2017.322
