Progress and Prospects of Bioelectrochemical Systems: Electron Transfer and Its Applications in the Microbial Metabolism
Tóm tắt
Từ khóa
Tài liệu tham khảo
Amano, 2016, Construction of a biointerface on a carbon nanotube surface for efficient electron transfer., Mater. Lett., 174, 184, 10.1016/j.matlet.2016.03.113
Amelia-Elena, 2014, Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri., Appl. Environ. Microbiol., 80, 10.3389/fmicb.2016.00236
Balzer, 2013, Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD+-dependent formate dehydrogenase., Metab. Eng., 20, 1, 10.1016/j.ymben.2013.07.005
Bari, 2016, Fabrication of high surface area graphene electrodes with high performance towards enzymatic oxygen reduction., Electrochim. Acta, 191, 500, 10.1016/j.electacta.2016.01.101
Bian, 2018, Porous nickel hollow fiber cathodes coated with CNTs for efficient microbial electrosynthesis of acetate from CO2 using Sporomusa ovata., J. Mater. Chem. A, 17201, 10.1039/c8ta05322g
Bretschger, 2007, Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants., Appl. Environ. Microbiol., 73, 7003, 10.1128/aem.01087-07
Brutinel, 2012, Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella., Appl. Microbiol. Biotechnol., 93, 41, 10.1007/s00253-011-3653-0
Butler, 2010, Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes., BMC Genom., 11, 10.1186/1471-2164-11-40
Carmona-Martínez, 2013, Electron transfer and biofilm formation of Shewanella putrefaciens as function of anode potential., Bioelectrochemistry, 93, 23, 10.1016/j.bioelechem.2012.05.002
Carmona-Martínez, 2015, Long-term continuous production of H2 in a microbial electrolysis cell (MEC) treating saline wastewater., Water Res., 81, 149, 10.1016/j.watres.2015.05.041
Chen, 2012, An oxidoreduction potential shift control strategy for high purity propionic acid production by Propionibacterium freudenreichii CCTCC M207015 with glycerol as sole carbon source., Bioprocess Biosyst. Eng., 36, 1165, 10.1007/s00449-012-0843-9
Choi, 2016, Extracellular electron transfer from cathode to microbes: application for biofuel production., Biotechnol. Biofuels, 9, 1, 10.1186/s13068-016-0426-0
Commault, 2015, Maintenance of Geobacter-dominated biofilms in microbial fuel cells treating synthetic wastewater., Bioelectrochemistry, 106, 150, 10.1016/j.bioelechem.2015.04.011
Compagnone, 1997, Glucose oxidase/hexokinase electrode for the determination of ATP., Anal. Chim. Acta, 340, 109, 10.1016/s0003-2670(96)00451-5
Degani, 1987, Direct electrical communication between chemically modified enzymes and metal electrodes. I. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme., J. Am. Chem. Soc., 110, 708
Deutzmann, 2015, Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis., mBio, 6, 10.1128/mBio.00496-15
Ding, 2012, Impact of applied voltage on methane generation and microbial activities in an anaerobic microbial electrolysis cell (MEC)., Chem. Eng. J., 283, 260, 10.1016/j.cej.2015.07.054
Dumas, 2008, Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes., Electrochim. Acta, 53, 2494, 10.1016/j.electacta.2007.10.018
Emde, 1989, Anaerobic oxidation of glycerol by Escherichia coli in an amperometric poised-potential culture system., Appl. Microbiol. Biotechnol., 32, 170, 10.1007/bf00165883
Fan, 2018, Exploit carbon materials to accelerate initiation and enhance process stability of CO anaerobic open-culture Fermentation., ACS Sustain. Chem. Eng., 6, 2787, 10.1021/acssuschemeng.7b04589
Farzaneh, 2009, Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell., Appl. Environ. Microbiol., 75, 3673, 10.1128/AEM.02600-08
Federico, 2007, Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE., Environ. Sci. Technol., 41, 2554, 10.1021/es0624321
Fernandez, 2015, A grey box model of glucose fermentation and syntrophic oxidation in microbial fuel cells., Bioresour. Technol., 200, 10.1016/j.biortech.2015.10.010
Freguia, 2009, Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone., Bioelectrochemistry, 76, 14, 10.1016/j.bioelechem.2009.04.001
Freguia, 2008, Sequential anode–cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells., Water Res., 42, 1387, 10.1016/j.watres.2007.10.007
Freguia, 2012, Bioelectrochemical systems: microbial versus enzymatic catalysis., Electrochim. Acta, 82, 165, 10.1002/cssc.201100835
Ghosh, 2015, Enhancing organic matter removal, biopolymer recovery and electricity generation from distillery wastewater by combining fungal fermentation and microbial fuel cell., Bioresour. Technol., 176, 8, 10.1016/j.biortech.2014.10.158
Gildemyn, 2017, The type of ion selective membrane determines stability and production levels of microbial electrosynthesis., Bioresour. Technol., 224, 358, 10.1016/j.biortech.2016.11.088
Gul, 2019, Bioelectrochemical systems: sustainable bio-energy powerhouses., Biosens. Bioelectron., 142, 10.1016/j.bios.2019.111576
Gutierrez, 2016, Electrochemical sensor for amino acids and glucose based on glassy carbon electrodes modified with multi-walled carbon nanotubes and copper microparticles dispersed in polyethylenimine., J. Electroanalyt. Chem., 765, 16, 10.1016/j.jelechem.2015.10.029
Harrington, 2015, The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli: menaquinone reduction., Bioresour. Technol., 192, 689, 10.1016/j.biortech.2015.06.037
He, 2016, Enhanced butanol production in a microbial electrolysis cell by Clostridium beijerinckii IB4., Bioprocess Biosyst. Eng., 39, 245, 10.1007/s00449-015-1508-2
He, 2015, Electron acceptors for energy generation in microbial fuel cells fed with wastewaters: a mini-review., Chemosphere, 140, 12, 10.1016/j.chemosphere.2015.03.059
Holm, 2010, Metabolic and transcriptional response to cofactor perturbations in Escherichia coli., J. Biol. Chem., 285, 17498, 10.1074/jbc.M109.095570
Jafary, 2015, Biocathode in microbial electrolysis cell; present status and future prospects., Renew. Sustain. Energy Rev., 47, 23, 10.1016/j.rser.2015.03.003
Karthikeyan, 2015, Interfacial electron transfer and bioelectrocatalysis of carbonized plant material as effective anode of microbial fuel cell., Electrochim. Acta, 157, 314, 10.1016/j.electacta.2015.01.029
Kracher, 2016, Extracellular electron transfer systems fuel cellulose oxidative degradation., Science, 352, 10.1126/science.aaf3165
Kracke, 2015, Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems., Front. Microbiol., 6, 10.3389/fmicb.2015.00575
Laura, 2015, Microbial community analysis in a long-term membrane-less microbial electrolysis cell with hydrogen and methane production., Bioelectrochemistry, 106, 359, 10.1016/j.bioelechem.2015.06.003
Ledezma, 2015, Oxidised stainless steel: a very effective electrode material for microbial fuel cell bioanodes but at high risk of corrosion., Electrochim. Acta, 158, 356, 10.1016/j.electacta.2015.01.175
Lee, 2016, A decahaem cytochrome as an electron conduit in protein-enzyme redox processes., Chem. Commun., 52, 7390, 10.1039/c6cc02721k
Li, 2019, Engineering mcrobial consortia for high-performance cellulosic hydrolyzates-fed microbial fuel cells., Front. Microbiol., 10, 10.3389/fmicb.2019.00409
Li, 2018, Power output of microbial fuel cell emphasizing interaction of anodic binder with bacteria., J. Power Sources, 379, 115, 10.1016/j.jpowsour.2018.01.040
Li, 2015, Perchlorate reduction in microbial electrolysis cell with polyaniline modified cathode., Bioresour. Technol., 177, 74, 10.1016/j.biortech.2014.11.065
Lin, 2018, Engineered Shewanella oneidensis-reduced graphene oxide biohybrid with enhanced biosynthesis and transport of flavins enabled a highest bioelectricity output in microbial fuel cells., Nano Energy, 50, 639, 10.1016/j.nanoen.2018.05.072
Liu, 2012, Promoting direct interspecies electron transfer with activated carbon., Energy Environ. Sci., 5, 8982, 10.1016/j.biortech.2018.03.050
Logan, 2006, Microbial fuel cells: methodology and technology., Environ. Sci. Technol., 40, 5181, 10.1021/es0605016
Lovley, 2008, The microbe electric: conversion of organic matter to electricity., Curr. Opin. Biotechnol., 19, 564, 10.1016/j.copbio.2008.10.005
Mahadevan, 2006, Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling., Appl. Environ. Microbiol., 72, 1558, 10.1128/aem.72.2.1558-1568.2006
Man, 2016, Improvement of the intracellular environment for enhancing L-arginine production of Corynebacterium glutamicum by inactivation of H2O2-forming flavin reductases and optimization of ATP supply., Metab. Eng., 38, 310, 10.1016/j.ymben.2016.07.009
Masuda, 2010, Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis., Bioelectrochemistry, 78, 173, 10.1016/j.bioelechem.2009.08.004
Mayo, 1986, Long-range electron transfer in heme proteins., Science, 233, 948, 10.1126/science.3016897
Moscoviz, 2016, Electro-fermentation: how to drive fermentation using electrochemical systems., Trends Biotechnol., 34, 856, 10.1016/j.tibtech.2016.04.009
Omar, 2018, Simultaneous biogas upgrading and biochemicals production using anaerobic bacterial mixed cultures., Water Res., 142, 86, 10.1016/j.watres.2018.05.049
Oscar, 2014, Reconstitution of respiratory complex I on a biomimetic membrane supported on gold electrodes., Langmuir, 30, 9007, 10.1021/la501825r
Pandit, 2011, In silico characterization of microbial electrosynthesis for metabolic engineering of biochemicals., Microb. Cell Factor., 10, 1, 10.1186/1475-2859-10-76
Pareek, 2019, Exploring chemically reduced graphene oxide electrode for power generation in microbial fuel cell., Mater. Sci. Energy Technol., 2, 600, 10.1016/j.mset.2019.06.006
Park, 1999, Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production., Appl. Environ. Microbiol., 65, 2912, 10.1128/aem.65.7.2912-2917.1999
Pillot, 2019, Production of current by syntrophy between exoelectrogenic and fermentative hyperthermophilic microorganisms in heterotrophic biofilm from a deep-sea hydrothermal chimney., Microb. Ecol., 79, 38, 10.1007/s00248-019-01381-z
Potter, 1911, Electrical effects accompanying the decomposition of organic compounds., Proc. R. Soc. B Biol. Sci., 84, 260, 10.1098/rspb.1911.0073
Qu, 2012, Use of a coculture to enable current production by geobacter sulfurreducens., Appl. Environ. Microbiol., 78, 3484, 10.1128/AEM.00073-12
Rabaey, 2007, Microbial ecology meets electrochemistry: electricity-driven and driving communities., ISME J., 1, 9, 10.1038/ismej.2007.4
Rashid, 2019, Recent trends in microalgae research for sustainable energy production and biorefinery applications, Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment, 3, 10.1007/978-981-13-2264-8_1
Richter, 2009, Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer., Energy Environ. Sci., 2, 10.1039/b816647a
Rose, 2015, Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation., Bioelectrochemistry, 106, 213, 10.1016/j.bioelechem.2015.03.003
Ross, 2012, Towards electrosynthesis in shewanella: energetics of reversing the mtr pathway for reductive metabolism., PLoS One, 6, 10.1371/journal.pone.0016649
Ruecha, 2015, Sensitive electrochemical sensor using a graphene–polyaniline nanocomposite for simultaneous detection of Zn(II) Cd(II), and Pb(II)., Anal. Chim. Acta, 874, 40, 10.1016/j.aca.2015.02.064
Sadeghifar, 2017, Nanoporous gold electrode prepared from gold compact disk as the anode for the microbial fuel cell., J. Iran. Chem. Soc., 15, 607, 10.1007/s13738-017-1260-4
Santoro, 2015, High catalytic activity and pollutants resistivity using Fe-AAPyr cathode catalyst for microbial fuel cell application., Sci. Rep., 5, 10.1038/srep16596
Santoro, 2016, Self-powered supercapacitive microbial fuel cell: the ultimate way of boosting and harvesting power., Biosens. Bioelectron., 78, 229, 10.1016/j.bios.2015.11.026
Schroder, 2007, Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency., Phys. Chem. Chem. Phys., 9, 2619, 10.1039/b703627m
She, 2006, Electrolytic stimulation of bacteria Enterobacter dissolvens by a direct current., Biochem. Eng. J., 28, 23, 10.1016/j.bej.2005.08.033
Shi, 2010, Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes., Mol. Microbiol., 65, 12, 10.1111/j.1365-2958.2007.05783.x
Shreeram, 2018, Effect of impaired twitching motility and biofilm dispersion on performance of Pseudomonas aeruginosa-powered microbial fuel cells., J. Indust. Microbiol. Biotechnol., 45, 103, 10.1007/s10295-017-1995-z
Smith, 2015, Syntrophic growth via quinone-mediated interspecies electron transfer., Front. Microbiol., 6, 10.3389/fmicb.2015.00121
Song, 2016, Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell., J. Hazard. Mater., 317, 73, 10.1016/j.jhazmat.2016.05.055
Sturm, 2015, A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime., ISME J., 9, 1802, 10.1038/ismej.2014.264
Su, 2019, Reaching full potential: bioelectrochemical systems for storing renewable energy in chemical bonds., Curr. Opin. Biotechnol., 57, 66, 10.1016/j.copbio.2019.01.018
Unden, 1997, Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors., Biochim. Biophys. Acta Bioenerget., 1320, 217, 10.1016/s0005-2728(97)00034-0
Vassilev, 2018, Anodic electro-fermentation: anaerobic production of L-Lysine by recombinant Corynebacterium glutamicum., Biotechnol. Bioeng., 115, 1499, 10.1002/bit.26562
Verea, 2014, Performance of a microbial electrolysis cell (MEC) for hydrogen production with a new process for the biofilm formation., Int. J. Hydrogen Energy, 39, 8938, 10.1016/j.ijhydene.2014.03.203
Villano, 2011, Electrochemically assisted methane production in a biofilm reactor., J. Power Sources, 196, 9467, 10.1016/j.jpowsour.2011.07.016
Wang, 2019, Electricity production and the analysis of the anode microbial community in a constructed wetland-microbial fuel cell., RSC Adv., 9, 21460, 10.1039/C8RA10130B
Wang, 2016, Electrochemical sensor for glutathione detection based on mercury ion triggered hybridization chain reaction signal amplification., Biosens. Bioelectron., 77, 914, 10.1016/j.bios.2015.10.071
Wetser, 2015, Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode., Appl. Energy, 137, 151, 10.1016/j.apenergy.2014.10.006
Yang, 2017, Boosting current generation in microbial fuel cells by an order of magnitude by coating an ionic liquid polymer on carbon anodes., Biosens. Bioelectron., 91, 644, 10.1016/j.bios.2017.01.028
Yang, 2015, Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway., ACS Synth. Biol., 4, 10.1021/sb500331x
Yazdi, 2015, Pluggable microbial fuel cell stacks for septic wastewater treatment and electricity production., Bioresour. Technol., 180, 258, 10.1016/j.biortech.2014.12.100
Yin, 2016, Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina., J. Environ. Sci. China, 42, 210, 10.1016/j.jes.2015.07.006
Yuan, 2019, Strategies for bioelectrochemical CO2 reduction., Chemistry, 25, 14258, 10.1002/chem.201902880
Yuan, 2016, Wiring microbial biofilms to the electrode by osmium redox polymer for the performance enhancement of microbial fuel cells., Bioelectrochemistry, 108, 8, 10.1016/j.bioelechem.2015.11.001
Zhang, 2017, Phenol-degrading anode biofilm with high coulombic efficiency in graphite electrodes microbial fuel cell., J. Biosci. Bioeng., 123, 364, 10.1016/j.jbiosc.2016.10.010
Zhang, 2015, Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali., Water Res., 81, 188, 10.1016/j.watres.2015.05.058
Zhao, 2015, Graphene/Au composites as an anode modifier for improving electricity generation in Shewanella-inoculated microbial fuel cells., Anal. Methods, 7, 4640, 10.1039/c5ay00976f
Zhao, 2006, Challenges and constraints of using oxygen cathodes in microbial fuel cells., Environ. Sci. Technol., 40, 5193, 10.1021/es060332p
Zhao, , Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell., Bioresour. Technol., 200, 10.1016/j.biortech.2015.10.021
Zhao, , Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion., Sci. Rep., 5, 10.1038/srep11094
Zhen, 2016, Promoted electromethanosynthesis in a two-chamber microbial electrolysis cells (MECs) containing a hybrid biocathode covered with graphite felt (GF)., Chem. Eng. J., 284, 1146, 10.1016/j.cej.2015.09.071
Zheng, 2015, Co-occurrence of Methanosarcina mazei and Geobacteraceae in an iron (III)-reducing enrichment culture., Front. Microbiol., 6, 10.3389/fmicb.2015.00941