Prognostic implication of serum glycated albumin for patients with non-ST-segment elevation acute coronary syndrome undergoing percutaneous coronary intervention

Springer Science and Business Media LLC - Tập 21 - Trang 1-11 - 2022
Chi Liu1, Qi Zhao1, Xiaoteng Ma1, Yujing Cheng1, Yan Sun1, Dai Zhang1, Xiaoli Liu1, Yujie Zhou1
1Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China

Tóm tắt

It has been demonstrated that glycated albumin (GA) is significantly associated with diabetes complications and mortality. However, among patients diagnosed with non-ST-elevation acute coronary syndrome (NSTE-ACS) administered percutaneous coronary intervention (PCI), the predictive value of GA for poor prognosis is unclear. This study eventually included 2247 NSTE-ACS patients in Beijing Anzhen Hospital, Capital Medical University in January-December 2015 who received PCI. All patients were followed up until death or for 48 months post-discharge. The primary endpoint was major adverse cardio-cerebral events (MACCEs), including all-cause death, non-fatal myocardial infarction, ischemia-induced revascularization and non-fatal ischemic stroke. In total, 547 (24.3%) MACCEs were recorded during the follow-up period. Upon adjusting for potential confounders, GA remained an important risk predictor of MACCEs (As nominal variate: hazard ratio [HR] 1.527, 95% confidence interval [CI] 1.236–1.886, P < 0.001; As continuous variate: HR 1.053, 95% CI 1.027–1.079, P < 0.001). GA addition significantly enhanced the predictive ability of the traditional risk model (Harrell’s C-index, GA vs. Baseline model, 0.694 vs. 0.684, comparison P = 0.002; continuous net reclassification improvement (continuous-NRI) 0.085, P = 0.053; integrated discrimination improvement (IDI) 0.007, P = 0.020). GA is highly correlated with poor prognosis in NSTE-ACS patients undergoing PCI, suggesting that it may be a major predictive factor of adverse events among these individuals.

Tài liệu tham khảo

Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet (London, England). 2010;375(9733):2215–22. Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42(34):3227–337. Ravipati G, Aronow WS, Ahn C, Sujata K, Saulle LN, Weiss MB. Association of hemoglobin A(1c) level with the severity of coronary artery disease in patients with diabetes mellitus. Am J Cardiol. 2006;97(7):968–9. Ueda H, Mitsusada N, Harimoto K, Miyawaki M, Yasuga Y, Hiraoka H. Glycosylated hemoglobin is a predictor of major adverse cardiac events after drug-eluting stent implantation in patients with diabetes mellitus. Cardiology. 2010;116(1):51–7. Hong LF, Li XL, Guo YL, Luo SH, Zhu CG, Qing P, et al. Glycosylated hemoglobin A1c as a marker predicting the severity of coronary artery disease and early outcome in patients with stable angina. Lipids Health Dis. 2014;13:89. Gencer B, Rigamonti F, Nanchen D, Klingenberg R, Räber L, Moutzouri E, et al. Prognostic values of fasting hyperglycaemia in non-diabetic patients with acute coronary syndrome: a prospective cohort study. Eur Heart J Acute Cardiovasc Care. 2020;9(6):589–98. Sinnaeve PR, Steg PG, Fox KA, Van de Werf F, Montalescot G, Granger CB, et al. Association of elevated fasting glucose with increased short-term and 6-month mortality in ST-segment elevation and non-ST-segment elevation acute coronary syndromes: the Global Registry of Acute Coronary Events. Arch Intern Med. 2009;169(4):402–9. Kohzuma T, Tao X, Koga M. Glycated albumin as biomarker: evidence and its outcomes. J Diabet Complicat. 2021;35(11):108040. Shimizu I, Kohzuma T, Koga MJ. A proposed glycemic control marker for the future: glycated albumin. J Lab Precis Med. 2019;2019:4. Anguizola J, Matsuda R, Barnaby OS, Hoy KS, Wa C, DeBolt E, et al. Review: glycation of human serum albumin. Clin Chim Acta. 2013;425:64–76. Ueda Y, Matsumoto H. Recent topics in chemical and clinical research on glycated albumin. J Diabetes Sci Technol. 2015;9(2):177–82. Zendjabil M. Glycated albumin. Clin Chim Acta. 2020;502:240–4. Cohen MP. Perspective: measurement of circulating glycated proteins to monitor intermediate-term changes in glycaemic control. Eur J Clin Chem Clin Biochem. 1992;30(12):851–9. Roohk HV, Zaidi AR. A review of glycated albumin as an intermediate glycation index for controlling diabetes. J Diabetes Sci Technol. 2008;2(6):1114–21. Guerin-Dubourg A, Catan A, Bourdon E, Rondeau P. Structural modifications of human albumin in diabetes. Diabetes Metab. 2012;38(2):171–8. Selvin E, Rawlings AM, Lutsey PL, Maruthur N, Pankow JS, Steffes M, et al. Fructosamine and glycated albumin and the risk of cardiovascular outcomes and death. Circulation. 2015;132(4):269–77. Shen Y, Pu LJ, Lu L, Zhang Q, Zhan RY, Shen WF. Glycated albumin is superior to hemoglobin A1c for evaluating the presence and severity of coronary artery disease in type 2 diabetic patients. Cardiology. 2012;123(2):84–90. Collet JP, Thiele H, Barbato E, Barthélémy O, Bauersachs J, Bhatt DL, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Revista Espanola De Cardiologia (English ed). 2021;74(6):544. Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, et al. 2020 International society of hypertension global hypertension practice guidelines. Hypertension. 2020;75(6):1334–57. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539–53. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S14–S31. Kouzuma T, Usami T, Yamakoshi M, Takahashi M, Imamura S. An enzymatic method for the measurement of glycated albumin in biological samples. Clin Chim Acta. 2002;324(1–2):61–71. [Chinese guideline for percutaneous coronary intervention (2016)]. Zhonghua xin xue guan bing za zhi. 2016;44(5):382–400. Brilakis ES, Mashayekhi K, Tsuchikane E, Abi Rafeh N, Alaswad K, Araya M, et al. Guiding principles for chronic total occlusion percutaneous coronary intervention. Circulation. 2019;140(5):420–33. Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40(2):87–165. Dolhofer R, Wieland OH. Glycosylation of serum albumin: elevated glycosyl-albumin in diabetic patients. FEBS Lett. 1979;103(2):282–6. Kohzuma T, Yamamoto T, Uematsu Y, Shihabi ZK, Freedman BI. Basic performance of an enzymatic method for glycated albumin and reference range determination. J Diabetes Sci Technol. 2011;5(6):1455–62. Winocour PH, Bhatnagar D, Reed P, Dhar H. Does the measurement of serum fructosamine accurately reflect levels of glycated albumin in insulin-dependent diabetes? Ann Clin Biochem. 1987;24(Pt 1):47–52. Tahara Y, Shima K. Kinetics of HbA1c, glycated albumin, and fructosamine and analysis of their weight functions against preceding plasma glucose level. Diabetes Care. 1995;18(4):440–7. Ren Q, Ji LN, Lu JM, Li YF, Li QM, Lin SS, et al. Search for clinical predictors of good glycemic control in patients starting or intensifying oral hypoglycemic pharmacological therapy: A mult. J Diabetes Complicat. 2020;34(2):107464. Suwa T, Ohta A, Matsui T, Koganei R, Kato H, Kawata T, et al. Relationship between clinical markers of glycemia and glucose excursion evaluated by continuous glucose monitoring (CGM). Endocr J. 2010;57(2):135–40. Hashimoto K, Tanikawa K, Nishikawa J, Chen Y, Suzuki T, Koga M. Association of variation range in glycated albumin (GA) with increase but not decrease in plasma glucose: implication for the mechanism by which GA reflects glycemic excursion. Clin Biochem. 2015;48(6):397–400. Lee EY, Lee BW, Kim D, Lee YH, Kim KJ, Kang ES, et al. Glycated albumin is a useful glycation index for monitoring fluctuating and poorly controlled type 2 diabetic patients. Acta Diabetol. 2011;48(2):167–72. Mukai N, Ninomiya T, Hata J, Hirakawa Y, Ikeda F, Fukuhara M, et al. Association of hemoglobin A1c and glycated albumin with carotid atherosclerosis in community-dwelling Japanese subjects: the Hisayama Study. Cardiovasc Diabetol. 2015;14:84. Yang ZK, Shen Y, Shen WF, Pu LJ, Meng H, Zhang RY, et al. Elevated glycated albumin and reduced endogenous secretory receptor for advanced glycation endproducts levels in serum predict major adverse cardio-cerebral events in patients with type 2 diabetes and stable coronary artery disease. Int J Cardiol. 2015;197:241–7. Pu LJ, Lu L, Shen WF, Zhang Q, Zhang RY, Zhang JS, et al. Increased serum glycated albumin level is associated with the presence and severity of coronary artery disease in type 2 diabetic patients. Circ J. 2007;71(7):1067–73. Lu L, Pu LJ, Zhang Q, Wang LJ, Kang S, Zhang RY, et al. Increased glycated albumin and decreased esRAGE levels are related to angiographic severity and extent of coronary artery disease in patients with type 2 diabetes. Atherosclerosis. 2009;206(2):540–5. Shen Y, Lu L, Ding FH, Sun Z, Zhang RY, Zhang Q, et al. Association of increased serum glycated albumin levels with low coronary collateralization in type 2 diabetic patients with stable angina and chronic total occlusion. Cardiovasc Diabetol. 2013;12:165. Mihara A, Ohara T, Hata J, Honda T, Chen S, Sakata S, et al. Association between serum glycated albumin and risk of cardiovascular disease in a Japanese community: the Hisayama Study. Atherosclerosis. 2020;311:52–9. Kayali Y, Ozder A. Glycosylated hemoglobin A1c predicts coronary artery disease in non-diabetic patients. J Clin Lab Anal. 2021;35(2):e23612. Hattori Y, Suzuki M, Hattori S, Kasai K. Vascular smooth muscle cell activation by glycated albumin (Amadori adducts). Hypertension. 2002;39(1):22–8. Rubenstein DA, Maria Z, Yin W. Glycated albumin modulates endothelial cell thrombogenic and inflammatory responses. J Diabetes Sci Technol. 2011;5(3):703–13. Du R, Zhang RY, Lu L, Shen Y, Pu LJ, Zhu ZB, et al. Increased glycated albumin and decreased esRAGE levels in serum are related to negative coronary artery remodeling in patients with type 2 diabetes: an Intravascular ultrasound study. Cardiovasc Diabetol. 2018;17(1):149. Rubenstein DA, Yin W. Glycated albumin modulates platelet susceptibility to flow induced activation and aggregation. Platelets. 2009;20(3):206–15. Yamada S, Inaba M, Shidara K, Okada S, Emoto M, Ishimura E, et al. Association of glycated albumin, but not glycated hemoglobin, with peripheral vascular calcification in hemodialysis patients with type 2 diabetes. Life Sci. 2008;83(13–14):516–9.